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Abstract

Existing Internet protocols rely on cooperative behavior of end users. We present a control-
theoretic algorithm to counteract uncooperative users which change their congestion control
schemes to gain larger bandwidth. This algorithm rectifies uncooperative users; that is, forces
them to comply with their fair share, by adjusting the prices fed back to them. It is to be
implemented at the edge of the network (e.g. by ISPs), and can be used with any congestion
notification policy deployed by the network. Our design achieves a separation of time-scales
between the network congestion feedback loop and the price-adjustment loop, thus recovering

the fair allocation of bandwidth upon a fast transient phase.

1 Introduction

In a network which does not differentiate among users, the equilibrium rate for any user is primarily
decided by the congestion control being used [1]. With new software advancements, however,
“uncooperative” users can change their congestion control schemes to gain more than their fair
share of bandwidth, at the cost of cooperative users. This uncooperative behavior can lead to TCP
unfriendliness, congestion collapse [3], [4] and, to a traffic-based denial-of-service to cooperative
users [5], [6]. Detecting uncooperative users, and “rectifying” their flow rates to comply with
cooperative rates, and thus, improving quality of service for individual flows becomes an important

emerging problem in network management.
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Among rectification mechanisms proposed in the literature, the majority are “router-based”
that is, they modify the router algorithm to detect and limit uncooperative flows, e.g. Active
Queue Management (AQM) schemes or scheduling disciplines. In [3] and [4], the authors study
AQM schemes, and investigate the effect of uncooperative flows on network throughput and loss
rates. Flow Random Early Drop (FRED), a modified RED scheme, is proposed in [7] to detect
uncooperative users, and to limit their rates by increasing their packet drop probabilities. In [8],
the authors combine the BLUE queue management algorithm with a Bloom filter to detect and
rate-limit uncooperative flows. Several other rate-based schemes are surveyed in [9]. Scheduling
schemes, such as ack-spacing, have been suggested to manage uncooperative flows in [10].

More recently, edge-based price-adjustment mechanisms have been proposed in [11] and [12],
which manage uncooperative flows only at edge routers. A significant advantage of this approach
is that it does not require core network upgrades and can be implemented without performing
per flow management at routers. By estimating each flow’s incoming rate and using it to label
flow’s packet, the Core-Stateless Fair Queueing (CSFQ) algorithm in [11] computes the forwarding
probability from link fair rate estimation. However, this design only applies to network in which
all nodes implement Fair Queueing. In [12], the authors manage uncooperative flows by mapping
their utility function to a specified target network behavior at the edge. This study, however needs
to estimate the utility function to achieve this edge-based price adjustment, and is thus restricted
to a specific form of TCP.

In this paper, we develop an edge-based price-adjustment algorithm using tools from control
theory. Rather than address a specific protocol, we develop our design within the optimization
framework of Kelly [1], [2], [13], [14], [15], which is applicable to diverse types of networks, and
encompasses numerous protocols such as TCP Reno, TCP Vegas, FAST [16, 17] etc. Our algorithm
recovers the cooperative share of bandwidth prescribed in Kelly’s framework, with a new feedback
loop implemented at the edge router, and, hence, referred to as the “edge supervisor”. It detects
uncooperative users by comparing their sending rates with “audit” rates calculated according to
an ideal, cooperative, model, and increases their price feedback. Although in this design edge su-
pervisor does perform per flow management by this price adjustment loop, core routers, which are
in general more complex than edge routers, do not perform per flow management, and therefore
the implementation complexity is significantly reduced. Our algorithm is independent of conges-
tion notification policy deployed by the network, and thus, can be used with any Active Queue
Management scheme, as well as Drop Tail queueing.

We design the price adjustment loop to evolve in a faster time-scale than the existing price
feedback loop from the links, because, then, uncooperative flows are rectified during a fast transient
phase, after which stability and convergence properties of the desired cooperative network model
is recovered. Indeed, using tools from singular perturbations theory [18], [19, Chapter 11], we

prove that the fast and slow feedback loops, when combined, ensure convergence of the sending



rates to their cooperative values. The type of convergence established is “semi-global” [19], which
means that any desired region of attraction can be achieved by increasing the feedback gain of the
price-adjustment loop.

The paper is organized as follows: Section 2 overviews Kelly’s primal and dual flow control
algorithms. Section 3 studies the primal algorithm and presents our price adjustment design for
uncooperative users. Section 4 extends this design to the dual algorithm. In Section 5, we implement
our price adjustment algorithms in NS-2 and evaluate their performance for various single and
multi-bottleneck topologies, for both marking and dropping congestion notification policies, and
with and without AQM schemes. In particular, we show that given a standard network behavior
like TCP-Friendliness, our algorithm forces uncooperative users to comply with their fair-share of
the bandwidth. Conclusions are given in Section 6.

Notation: We denote by Ry = (0,00), and, by Rf vectors whose entries are in Ry. Given a

function f (x), its positive projection is defined as

(f(x));r:{ f(x) ifz>0, orz=0and f(z) >0

0 if r=0and f(x) <0.

If 2 and f (x) are vectors, then (f (z)); is interpreted in the component-wise sense.

2 Overview of Kelly’s primal and dual flow control algorithms

In Kelly’s framework [1], network flows are modeled as the interconnection of users and commu-
nication links as shown in Figure 1. Packets from each users (with sending rate z;) are routed
through the links with the aggregate link rate

y=Ryx (1)

where Ry is the forward routing matrix. Each link j has a fixed capacity c;, and based on its

congestion and queue size, a link price, p; is computed:

The link price information is then sent back to each source with the aggregate source price,

q = Ryp. (3)

where Ry = R?, since the links only feed back price information to the users that utilize them.
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Figure 1: Network flow control model.

Kelly formulated the flow control task as a static optimization, and dynamic stabilization,
problem. The static optimization problem computes the desired equilibrium by maximizing the

sum of the source utility functions U; (z;), while complying with capacity constraints in the links:

N
oy ; < ec.
max 1 Ui (x;) subject to Rz, <c (4)
i= y

The dynamic problem is to design the source rate update law based on the aggregate price, and
the link price update law based on the aggregate rate, to guarantee stability of the equilibrium.
For this problem, Kelly introduced two dynamic algorithms: The Primal Algorithm consists of a
first order source update law, and a static penalty function for the link to keep the aggregate rate

below its capacity:

&= ki (Uj (x:) — @), pj = hy(y;) (5)
The penalty functions h; (y;) are designed to enforce the link capacity constraints y; < ¢, | =

1,---, L, ie., to keep the aggregate rate y; below its capacity c;.

The Dual Algorithm consists of a static source update and a first order dynamic price update:

vi = U @), 05 = (W5 — <)y, o

From (6), the unique equilibrium for the dual control law is obtained from the equations

%*ZUZ(@): i=1,--- N (7)



=0 ifyf <
p? ' yl = l:17 7L7 (8)
>0 ify =q

which as shown in [1], correspond to the solution of the optimization problem (4), in which p;’s

play the role of Lagrange multipliers for the capacity constraints. For the primal control law (5),

the equilibrium obtained from

qz*:Uz,(x;k)? i=1,--- N (9)

approximates the optimality condition (7)-(8) with the help of the penalty functions h; (y;). The
stability of these two algorithms and their extensions has been established in [2], [13], [20], [21],
22], [14], [15], [17], [24]

3 Uncooperative users in Kelly’s primal algorithm

We now assume that some users, which we call “uncooperative”, use more aggressive utility func-

tions to increase their share of bandwidth; that is, instead of U; (z;) in (5), they implement U; (z;):

To rectify these uncooperative users, we propose that the supervisor at the edge of the network

(e.g., internet service providers) adjusts the price feedback from its nominal value ¢; to ¢;. An ideal

design of ¢; would be

G = q + U] (xi) = U] (z;) , (12)

which replaces U/ (z;) in (11) with the cooperative U/ (z;). However, this design is not imple-
mentable because U; (x;) is not known to the supervisor. Instead, in our design, we obtain an

estimate of U; () with the help of the cooperative reference model:

The #; thus calculated differs from z; by e; := &; — x;, which, from (11)-(13), is governed by

éi = K ((iz' — i — U] (x:) + U] (%’)) . (14)

This means that, if we design the price adjustment to be



4 = ¢ — pi€;, (15)

with a sufficiently high gain p; > 0, then the variable e; evolves in a faster time scale than z;,
and reaches the quasi-steady state p;e; ~ —UZ’ (x;) + U! (z;). Thus, after a fast transient, our
design (13), (15) approximates the non-implementable scheme (12). For cooperative users, where
Ui (x;) = U (), (13) and (15) yield ¢; = ¢;, which means that no price adjustment is applied.
Note that U; in (13) is not necessarily the same for each user. This means that the supervisor can
intentionally set up different utility functions, and use this flexibility to only adjust high bandwidth

flows while leaving low bandwidth flows without rectification.
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Figure 2: Price adjustment for uncooperative users in Kelly’s primal algorithm.

The algorithm (13), (15) is depicted with a block diagram in Figure 2. In implementation,
the edge router performs the price adjustment (15) every round trip time. The phrase ”fast time
scale” is used to indicate that when p is large in (15), the supervisor subsystem approaches its
quasi steady-state faster than the dynamics of the network. In Theorem 1 below, we use tools from
singular-perturbations theory [18], [19] to prove that (13), (15) achieves asymptotic stability of the

cooperative value z* in (9)-(10):

Theorem 1 Consider the network (1)-(3), where some users implement the uncooperative algo-
rithm (11), rather than (5). Suppose U; (x;) : Ry — R are increasing and sufficiently smooth func-
tions, U;" (z;) < 0 Va; € Ry, and U; (x;) — —oco and U; (x;) > —o0 as x; — 0 fori=1,--- N.
Then, the price adjustment algorithm (13), (15) ensures that, for any compact set Q C Rﬂy of initial
conditions x (0), there exists pf > 0 such that, if p; > p, then x (t) and & (t) remain bounded, and

x (t) converges to the cooperative value x* in (9)-(10).



The assumptions of Theorem 1 on the utility functions U; (x;) are standard in the literature [1],
[14], [25]. In particular, the assumption U; (z;) — —oo as x; — 0 ensures that RY is positively-
invariant, i.e., if x is initially in Rf , it will remain in Rf for all ¢ > 0. It is satisfied by commonly
used utility functions such as U; (z;) = —2* (variant of TCP Reno) and U; (z;) = a;logz; (TCP
Vegas) [14]. For others, such as U; (x;) = Tif tan™! (%) (TCP Reno), we can modify Theorem 1
and prove stability by using positive projection functions as in [15]. It is reasonable to make the same
assumptions for ﬁl’ (+) as for U/ (-), because cheating users would typically change the parameters of
the nominal utility functions, such as a; in TCP Vegas above. However, this assumption excludes
some traditional unresponsive flows referred to as UDP or CBR, in which, users send data at a

constant rate without acknowledging any feedback from the network. O

Proof: To represent the algorithm (11), (13) and (15) in the standard singularly perturbed form
[18], [19], we let

w; = pie; (16)
1
E; = — 17
Pi (17)
and obtain:
Ti = K; <ﬁ,/ (z:) — qi + Wi) . (18)
EiW; = —K; <wi + ﬁz/ (:EZ) — Uz/ (l‘l)> . (19)

An inspection of (18) and (19) shows that the equilibrium for x; is same as the cooperative z} in

(9)-(10), and the equilibrium for w; is

wi = ~Uj (a}) + U} (7). (20)

To shift this equilibrium to 0, we define

@i = w; + U] (v;) — U} () (21)

and rewrite (18)- (19) as

i =K (U (z) - R"h(Rz) + w)

oU" (x)-U" (x
eto=—K|w— EM(U' ()-RTh (Rx)+w



where we use the vector notation z = [ 1 T2 -+ TN ]T, w = [ w wy - WN ]T. K =
diag {k;} and ¢ = diag {e;} are diagonal matrixes of the source controller gains x; > 0 and ¢; > 0,
i=1,---,N, and U'(z) € RV is a vector whose ith component is the derivative U/ (x;) of the
utility function U; (2;). Likewise, h(y) € RY and U’ (z) € RN consist of the penalty functions
hy () and uncooperative utility functions U/ (z;).

To prove asymptotic stability of (z,w) = (z*,0) we use the Lyapunov function

N
V= Z (= (Ui (i) — Ui (z7)) + q; (v — x7))
Zzl 2l 1 (23)
+Y ( [ o)~ <y7>>da> Lotk
=1 U

in which, the first and the second terms, are identical to the Lyapunov function used in [1, 15] for
the proof of the stability of Kelly’s Primal algorithm, while the third term is a quadratic Lyapunov
function for the dynamics of w subsystem. This Lyapunov function is positive definite and radially

unbounded in Rf , and yields the derivative

V<-Ff (a:)TKfl (x)—wTE o+ @’ o w+w! fo (z), (24)
where
fi () :=U"(x) — R"h(Rx), (25)
0 (ﬁ, (@) - (33)) ! T ! T (26)
fo(z) = (U’ (#)-R" h (Rz))+K (U’ (z+R" h(Rx))) .

ox

We show in Lemma 1 below that, on any compact set of (x,w) that includes (z*,0), we can
choose ¢ small enough to ensure V is negative definite. The conclusion of Theorem 1 follows from
this lemma because, from & (0) = z (0), we have w (0) = 0 and, thus w (0) = —U"’ (= (0))+ U’ (z (0)),
which means that for any set 2 as in the statement of the theorem, we can find a corresponding
region of attraction in (x,w) coordinates, which does not depend on e. Since V' is also independent
of e, we can select a level set of V that encompasses this region of attraction, and design e from

Lemma 1 to render V negative definite in this level set. O

Lemma 1: Let the assumptions of Theorem 1 hold, and let f; (z) and fo (z) be defined as in
(25)-(26). Then, for any compact set A of (x,w) that includes (z*,0), there exists ¢* > 0 such that
if ; € (0,e*] for all i = 1,--- , N, then V (z) given in (24) is negative definite on A.



Proof: We first claim that there exists a constant 6 > 0 such that, for any compact set A of (x, w)

that includes (x*,0),

fi (@) Kfi(2) 2 6|z — . (27)
To prove this we show that the Hessian of f; (x)” K f1 () is positive definite at 2*. To this end,

we note that

f Kfl Z"izfl

and use the chain rule for the second derivative of the function r; (f} ())2

o(fi)\ (0(fi(x)

0 (s (1 (2))°)

0x?

0% (fi (x))

*

T=Z

Because fi (z*) = 0 and because

on
ox

(33'*) _ U// (33‘*) _ RT

we conclude

which proves (27).
Next, we apply Young’s Inequality [26] to the term w? f5 () in the right hand side of (24):

1 A
2T ha(@) < 3wl + 1R @I, A>0,
and get

B <51 (U w-v@) iINxN) _

A
=5 (o1 - 1R GIP).

Because fa (x) is zero at zero and continuously differentiable, we can select A and £* such that, for
all x € A,



A 2 1 * (12
Z < Z
2 @I < & e a7
L 8(U’(az) —U’(az)) o
2*N><N_ O — JINXN Z
and obtain
V<-— L wlw— = ||z —z*|?
- 2e* 2 ’
for any ¢; € (0,e*], which concludes the proof. O

In Theorem 1, we require that the edge supervisor set z (0) equal to = (0). However, it is
not difficult to show that the proof holds true for small errors between (0) and z (0). Time
delays in the network are not considered in Theorem 1. We wish to emphasize, however, that the
high-gain component of our feedback design is limited to the local price adjustment loop, and not
the price feedback loop, which is subject to the network delays. Thus, our correction algorithm
can be combined with congestion control algorithms that are robust to time delays, such those in
[23, 24, 25].

In implementation, it may also be necessary to know how large the gain p; must be selected.
While, in principle, such a value can be obtained from the calculation of p; in the proof, this value
may be conservative, and depends on the class of utility functions U; (+) employed by uncooperative
users. A more practical value can be obtained by monitoring whether the uncooperative rates
persists and by increasing the gain p; accordingly. A further discussion on the choice of this gain

is given in Section VI.C.

4 Price adjustment for Kelly’s dual algorithm

We next study Kelly’s dual algorithm where uncooperative users implement, instead of (6),

5 =07 (). (28)

We assume U~ (s) > U/ 7" (s), Vs > 0, which means that the uncooperative sending rate is larger
than the cooperative rate. To counteract such uncooperative users, the supervisor must replace the

nominal price feedback ¢; with

G =UloU ™ (¢:), (29)

which, when substituted in (28), results in the cooperative rate (6). Because a direct solution of
(29) would require the knowledge of [72’ (+), which is not available to the supervisor, we propose the

dynamic algorithm

10



Gi = qi + wi, (30)

u'),' = P5 (xz - U'/_l (qz)) ) Wi (0) = 07 pi > 07 (31)

(2

depicted in Figure 3. The equilibrium of (31) is achieved when

zi = U (i), (32)

which indeed coincides with the cooperative rate (6). We achieve asymptotic stability of this

equilibrium, again, by designing the adaptation gain p; to be sufficiently high:
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Figure 3: Price adjustment for uncooperative users in Kelly’s dual algorithm.

Theorem 2 Consider the network (1)-(3), (6) and (28), where U; (x;) and U; (z;) are as in Theo-
rem 1, and U/~" (s) > U7 (s), Vs € Ry. Then, the price adjustment algorithm (28), (31), ensures
that, for any compact set ) C Rﬂ\rf of initial conditions p (0), there exists p; > 0 such that, if p; > p},

then p(t), = (t) and G (t) remain bounded, and xz (t) and p (t) converge to the cooperative values x*
and p* in (7)-(8).

Proof: To represent the algorithm (28), (31) in the standard singularly perturbed form, we let

1
Ei = — 33
Pi (33)
and obtain:
cw; = ﬁi/_l (qi + wi) — Ui/_l (qz) . (34)

11



This means that the equilibrium for w; satisfies

U (g +wp) =U"(q) (35)

which implies, from (28), that

o =U" (g +w)) =U" g). (36)

We thus conclude from (8) that the equilibria for z;, ¢; and p; are the same as the cooperative 7,

g; and pj. To shift the equilibrium w; in (35) to 0, we define

)

w; = wi — P; (¢i) (37)

where

®; (¢;) = U o U (@) — ai, (38)

and represent the system (11)-(15) and (34) as

p=T (RU’_1 (RTp) +A(p,w) —c>+

b 39
e =U" (g+w+2(q) - U " (g) 58%;(]) RTF<RU’_1 (RTp)+A (p, w)—c>+ )

P
T T

where p = [pl Py - DL } , W= { wy wy -+ WN } . I' = diag {;} is a diagonal matrix

of the source controller gains v; > 0, j = L, U (z) e RV, o (r) € RN and @ (¢q) € RY

are vector functions as in Theorem 1, and

A(p,w) :=RU (RTp+w + @ (RTp)) — RU'™" (R"p)

=RU'' (RTp+w+® (R"p)) — RU" (R"p+ @ (R"p)). 10
To prove asymptotic stability of (p,w) = (p*,0), we use the Lyapunov function
L1 1
V= ; §7l 24 @ @ (41)

which has the first term same as in [15] for the stability of Kelly’s Dual algorithm and the second
term as a quadratic Lyapunov function for the w subsystem. This Lyapunov function is positive

definite and radially unbounded in Rf +L and yields the derivative

12



V<(p-p)'R (U’_l (R"p) + A (p,w) — C>:

— e (U @) - 0 (g = @ (a)))
+ ng—fRTr (RU"1 (R"p) + A (p,w) - C>;
< (p B p*)TR <U/—1 (RTp) . U/—l (RTp*)>
—@Te™! (U—1 (@) -0 ((g+w+® (q))*))
+(p— )T RA (p,w) + wTaa_i)RTI(RU/—lﬁTp)_i_A (p, w)—C>:

where the second inequality follows from the arguments in [24, Proof of Theorem 2]. When Rz* = ¢,

(42)

we show in Lemma 2 below that, on any compact set of (p,w) that includes (p*,0), we can choose
¢ small enough to ensure V is negative definite. Then, the conclusion follows as in the proof of
Theorem 1. If Rzx* = ¢ does not hold, we can still establish asymptotic stability following the
arguments of [24, Proof of Theorem 5. O
Lemma 2: Let the assumptions of Theorem 2 hold, and suppose Rx* = ¢, that is all links are
bottlenecked. Then, for any compact set A of (p,w) that includes (p*,0), there exists e* > 0 such
that if &; € (0,*] for all i = 1,--- , N, then V (z) given in (42) is negative definite on A. O

The proof of Lemma 2 is similar to that of Lemma 1 and, is omitted due to space limitations.

5 Implementation and Simulation Setup

We have implemented the uncooperative framework presented in this paper in the Network Sim-
ulator (NS-2). While we have studied both dynamic (Section III) and static (Section IV) users,
in simulations we implement the method of Section III because of the prevalence of TCP, which
is dynamic and can be modeled as in (11) (see [1]). We added an edge-based supervisor, which

adjusts the price feedback to the uncooperative users with the following algorithms

1. Let x; be the rate of uncooperative user i as in (11).

2. Define an “audit” rate, Z;, which represents the cooperative rate computed as in (13).

_l’_

3. Calculate the marking or dropping probability at the edge as p§ = p;(z; — &;)" , where

st = max(s,0), and p; is the gain in (15).
4. For each incoming packet mark/drop a packet with a probability pf.

The implementation of this feedback adjustment depends upon the congestion notification policy
deployed in the network. In our simulations we present the results with scenarios where marking

(ECN) and dropping are used as congestion notification policies. The framework presented in this

13



paper is independent of the buffer management policy deployed in the network; that is, it works
with any Active Queue Management scheme as well as with simple Drop Tail queueing.

We note that, unlike the static link assumption in Section III, AQM and Drop-Tail in simulations
make use of queue length and, hence, are dynamic algorithms. An extension of the proof of dynamic-
source dynamic-link algorithms would be possible, but lengthy. The stability properties observed
in simulations in the next section are indeed consistent with those predicted by Theorem 1.

We present simulation results for both single and multi-bottleneck topologies, depicted in Figure
4 a) and b). All the access links are configured to have a capacity equal to four times that of
bottleneck links. The bottleneck links capacity and delay is fixed at 0.8Mbps and 20ms respectively
unless specifically stated. (However, for some results presented in the paper, we will relax these
configuration settings.) For all simulations reported in this paper, the simulation time is 150
seconds, and rate (or throughput) measurements are taken every 0.5 seconds. Each router has a
buffer equal to one bandwidth delay product. In setups where the bottleneck routers have Random
Early Drop (RED) buffer management policy deployed, the corresponding maximum and minimum
threshold are set at 0.8 x B and 0.3 x B where B is the total buffer length; the queue weight was
set to 0.002 and the maximum dropping probability to 0.1.
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Figure 4: Topologies used in simulations

The multi-bottleneck topology in Figure 4 b) shows one flow between source S1 and destination
D1. This flow traverses both the bottleneck links and henceforth in this paper we will call this a
long flow. The two flows between the source destination pairs [S2-D2] and [S3-D3] go over only one
bottleneck link and, therefore, in the rest of paper we refer to them as short flows.

We refer to flows, which under same operating conditions, get more rate than TCP as selfish
flows. This definition is also often commonly referred to as TCP-Friendliness. Since almost 90%
of the traffic carried on the Internet uses TCP, we chose TCP-Friendliness as our definition of
conformant flows. In this paper all transport protocols are rate based. Thus, all TCP-Friendly
schemes use equation based rate control scheme (TCP Friendly Rate Control - TFRC) presented
in [27] and all selfish schemes are variants of TFRC which have conservative decrease algorithms,

i.e. upon congestion they decrease more slowly than TCP. We would like to refer the reader to
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[12] for ways to generate selfish flows. In this paper we have also assumed that all the flows are
persistent flows, i.e. they have infinite data to transfer. However, we will also present the results

for the scenarios where we have both persistent and short web traffic competing for bandwidth.

6 Simulation Results

In this section we evaluate our algorithm for both single and multi-bottleneck topologies, with
various degree of flow multiplexing. We also test its robustness in the presence of mice like web

traffic and reverse path congestion.

6.1 AQM Based Network

In this section we assume that Active Queue Management (AQM) policies are deployed on the
bottleneck routers, and all routers have RED queues installed on them. Figure 5 shows the results
where two flows compete for bandwidth in a single bottleneck scenario. Among these flows, the
first is TCP-Friendly with U(x) = —1/2, while the other is uncooperative with the utility function
U(x) = —1/y/x. If both competing flows were TCP-Friendly, they would have shared the bandwidth
equitably. However, Figure 5 a) shows that the uncooperative flow grabs a larger share of the band-
width. With our edge-based algorithm, in Figure 5 b) the two flows share the bottleneck bandwidth
equitably. Simulations with other uncooperative utility functions in the single-bottleneck scenario,

not presented here, yield similar results.
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Figure 5: Single-Bottleneck Topology: Equitable sharing of bandwidth enforced by the edge super-

visor.

The multi-bottleneck topology is shown in Figure 4 b) and has two bottleneck links. The TCP-
Friendly long-flow, which goes over both bottleneck links, competes for bandwidth against the two
uncooperative short-flows, which go over only one bottleneck link. Figure 6 a) shows the result
corresponding to the cooperative setup where both the long and short flows use TCP-Friendly rate

control scheme. Figure 6 b) shows the result for the setup where we replace the TCP-Friendly
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short flows with uncooperative rate control schemes with utility function U(z) = —1/y/z. Once
again, we see that, the uncooperative flows get an unfair share of the bandwidth and almost force
a traffic volume based denial of service attack. When we employ our edge-based supervisor, with

p = 2.5 x 107°, we recover the ideal bandwidth sharing of bottleneck links, as shown in Figure 6

a).
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Figure 6: Multi-Bottleneck scenario where (a) shows the ideal bandwidth sharing (b) shows the
aggravated unfair sharing in the presence of uncooperative flows and (c) shows the rectification of

uncooperative flows with our edge supervisor.

6.1.1 Background Traffic

In this section we will evaluate our framework in the presence of short web flows on a multi-
bottleneck topology. In this setup, there is one long TCP-Friendly flow, which competes for band-
width against one short uncooperative flow, on each bottleneck. HTTP sources are now added to
these persistent flows. Each http page sends a single packet request to the destination, which then
replies with a file of size which is exponentially distributed with 12 1Kb packets. After a source
completes this transfer it waits for a random time, which is exponentially distributed with a mean
of 1 second and then repeats the process.

Our results in Figure 7 show that these web traffic or mice flows take some fraction of the
bottleneck bandwidth while the persistent TCP and uncooperative flows compete for the remaining
bandwidth. Figure 7 a) shows the results where, in the presence of mice traffic, all the persistent
flows used a TCP-Friendly rate control scheme. This corresponds to the ideal bandwidth-sharing
scenario. The results shown in Figure 7 b) corresponds to the setup where the persistent short
flows, i.e. flows which go over only one bottleneck, use a selfish rate control scheme. We see that
the selfish flows take an unfair share of the bottleneck bandwidth. Thereupon, we introduce our
edge-based supervisor, with p = 107, to rectify the misbehaving persistent short selfish flows, and

recover the equitable rates as in Figure 7 c).
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Figure 7: Background Web Traffic: (a) ideal bandwidth sharing scenario (b) aggravated unfair

sharing in the presence of uncooperative flows and (c) rectification of uncooperative flows with our

edge-based supervisor.

6.1.2 Cross Traffic

We next evaluate our framework in the presence of reverse path congestion.

For this case we

used a multi-bottleneck topology with one persistent TCP-Friendly flow traversing two bottleneck

links competing against selfish flows going over just one bottleneck. For creating reverse path

congestion, we added short TCP-Friendly flows on the reverse paths. Figure 8 a) shows the results

corresponding to the ideal case, i.e. all the flows used TCP-Friendly rate control schemes while

Figure 8 b) shows the results when the short flows on the forward path used an uncooperative rate

control scheme. We then added our edge based rectification agent and the corresponding results are

plotted in Figure 8 ¢) (with p = 4 x 107°). We see that in the presence of edge-based supervisor,

the selfish flows are effectively managed.
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6.1.3 Higher Flow Multiplexing with Background Traffic and Reverse Path Conges-

tion

In the previous sections we have detailed the performance of our edge-based rectification algorithm
for various single and multi-bottleneck scenarios. However, to present the efficiency and the robust-
ness of our scheme we limited the number of competing flows to 3. In this section we will increase
the number of competing flows.

For the results presented in this section, the TFRC flows competed for bandwidth against selfish
flows on a multi-bottleneck topology (shown in Figure 4 b)). However, we increase the capacity
of the bottleneck links to 8Mbps and that of access links to 80Mbps. The links delays were not
changed and the bottleneck buffer was set to one bandwidth delay product. Finally, all the routers
have RED queue management schemes deployed on them. The RED queue configurations are

detailed in Section 5. For the edge-based rectification agent we set the p as 2.5 x 107°.
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Figure 9: Higher flow multiplexing with background traffic and reverse path congestion in a multi-

bottleneck setup.

Figure 9 shows the results for the scenario where 5 TFRC flows compete for bandwidth against
selfish flows. Further, on each bottleneck there were 5 selfish short flows. To these persistent
flows, we also added short web transfers which occupied 10% of the bottleneck bandwidth. (The
details about how we generated these flows is provided in Section 6.1.1. On average, at any given
time, there were 10 short flows on each bottleneck.) For this simulation we also setup flows on
the reverse path. Specifically, on each bottleneck in the reverse path there were 5 flows competing
for bandwidth and thus creating congestion on the reverse path. For the results presented in this
section we plot the throughput of one flow from each group: TFRC Long flows or flows which go
over two bottleneck links, selfish short flows from Group 1 or flows which go over the first bottleneck
only; and, finally, the selfish short flows from Group 2 or flows which go over the last bottleneck
only.

Figure 9 a) shows the ideal sharing of the bottleneck when the short flows are also TCP-Friendly.
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Figure 9 b) shows that in the absence of any policing the uncooperative flows get more share of the
bandwidth at the expense of TFRC flows. With our rectification algorithm the fair share of the
TFRC flows is restored; see Figure 9 c).

6.1.4 ECN Enabled Network

We conclude this section with the results from a multi-bottleneck test case where the RED scheme
is configured to mark the packets (instead of dropping them). Once again, we used a setup where
one persistent TCP-Friendly flow competed for bandwidth against one short uncooperative flow.
Figure 10 a) shows the ideal bandwidth sharing while Figure 10 b) shows that in the presence of
uncooperative flows the resulting bandwidth sharing is unfair. When we introduced the edge-based

supervisor, with p = 1074, the bandwidth is shared fairly.
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Figure 10: ECN Enabled Network: (a) ideal bandwidth sharing scenario (b) aggravated unfair
sharing in the presence of uncooperative flows and (c) rectification of uncooperative flows with our

edge supervisor.

6.2 Drop-tail Queues

In this section, we look at the alternative scenario, where we assume that the network operates with
Drop-Tail queues only. We extensively tested with various single and multi-bottleneck topologies
and with different kind of uncooperative schemes. Figure 11 a) shows the results with a single
bottleneck topology where one uncooperative and TCP-Friendly flows compete for bandwidth. As
the figure shows, the uncooperative flows gain an unfair share of the bottleneck bandwidth, which
are then corrected with our design. For this simulation the p was set to 3 x 107°.

Figure 12 shows the results with a multi-bottleneck setup where one long TCP-Friendly flow is
sharing bandwidth with short uncooperative flows. Figure 12 a) shows the ideal bandwidth sharing
and Figure 12 b) shows the unfair sharing of the bottleneck in the presence of uncooperative flows.

Finally, in Figure 12 c) we present results with our rectification agent when p = 1.5 x 1075.
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Figure 11: Drop tail queues and single bottleneck topology: rectification of uncooperative flows.
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Figure 12: Drop Tail Queues: (a) ideal bandwidth sharing scenario (b) aggravated unfair sharing

in the presence of uncooperative flows and (c) rectification of uncooperative flows with our edge

SUpervisor.

6.3 Effect of Gain p on Rectification of Selfish Users

The performance of our edge-based rectification algorithm depends on the gain p in equation (15).
As detailed below, simulation studies indicate that too small or too large values of this p may
deteriorate the performance. Indeed, Theorem 1 disallows small values of p because, otherwise,
the desired two-time-scale behavior is not achieved. Although Theorem 1 allows arbitrarily large
values for p, in practice, such high-gain leads to saturation of dropping or marking schemes, which
violate the ”small marking probability” approximation in Equation (3). We see in the following
simulations that large p might result in “over-penalization”, which means that uncooperative flows
receive even less than their fair share.

Consider the multi-bottleneck setup shown in Figure 4 b) with one long TFRC flow and one short
uncooperative flow on each bottleneck. In Figure 6 we presented simulations with p = 2.5 x 107°.

In Figure 13 we compare this result with p = 107° (Figure 13 a)) and with p = 10~* (Figure 13

c)).
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Figure 13: Effect of gain p on the steady rates of uncooperative and TFRC flows.

We note that a high value of p may result in over-penalization, and on the other hand, with
a very small value of p the selfish users are not sufficiently penalized and they continue to get
more share of the bottleneck link(s) at the expense of cooperative users. However, for intermediate
values, such as p = 2.5 x 1079 in Figure 13 b), we recover the ideal shares for the uncooperative
and the cooperative users.

For all the results reported in this paper we have found that the ideal range of p lies between
the interval 104 to 107°. We also extensively evaluated the edge-based rectification model for
different value of selfishness, i.e. users chose different values of U(z), and found observation on p
consistent with those reported above. A judicious choice of this gain, however, deserves further

investigation.

7 Conclusions

We have presented a price adjustment algorithm for both Kelly’s primal and dual network flow
control models, and tested it on the Network Simulator. This algorithm is to be implemented
at the edge of the network and, thus, does not require costly hardware upgrades in the entire
network. It is independent of congestion notification policy deployed by the network, and thus, can
be used with any Active Queue Management scheme, as well as Drop Tail queueing, which make
the algorithm not only of theoretical interest but also practical importance. Although a suitable
range for the gain p in our algorithm was determined by simulations, a judicious choice of this gain
deserves further investigation. An on-line adaptation for p may be possible, and is currently being

pursued by the authors.
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