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Abstract

Existing Internet protocols rely on cooperative behavior of end users. We present a control-

theoretic algorithm to counteract uncooperative users which change their congestion control

schemes to gain larger bandwidth. This algorithm rectifies uncooperative users; that is, forces

them to comply with their fair share, by adjusting the prices fed back to them. It is to be

implemented at the edge of the network (e.g. by ISPs), and can be used with any congestion

notification policy deployed by the network. Our design achieves a separation of time-scales

between the network congestion feedback loop and the price-adjustment loop, thus recovering

the fair allocation of bandwidth upon a fast transient phase.

1 Introduction

In a network which does not differentiate among users, the equilibrium rate for any user is primarily

decided by the congestion control being used [1]. With new software advancements, however,

“uncooperative” users can change their congestion control schemes to gain more than their fair

share of bandwidth, at the cost of cooperative users. This uncooperative behavior can lead to TCP

unfriendliness, congestion collapse [3], [4] and, to a traffic-based denial-of-service to cooperative

users [5], [6]. Detecting uncooperative users, and “rectifying” their flow rates to comply with

cooperative rates, and thus, improving quality of service for individual flows becomes an important

emerging problem in network management.
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Among rectification mechanisms proposed in the literature, the majority are “router-based”

that is, they modify the router algorithm to detect and limit uncooperative flows, e.g. Active

Queue Management (AQM) schemes or scheduling disciplines. In [3] and [4], the authors study

AQM schemes, and investigate the effect of uncooperative flows on network throughput and loss

rates. Flow Random Early Drop (FRED), a modified RED scheme, is proposed in [7] to detect

uncooperative users, and to limit their rates by increasing their packet drop probabilities. In [8],

the authors combine the BLUE queue management algorithm with a Bloom filter to detect and

rate-limit uncooperative flows. Several other rate-based schemes are surveyed in [9]. Scheduling

schemes, such as ack-spacing, have been suggested to manage uncooperative flows in [10].

More recently, edge-based price-adjustment mechanisms have been proposed in [11] and [12],

which manage uncooperative flows only at edge routers. A significant advantage of this approach

is that it does not require core network upgrades and can be implemented without performing

per flow management at routers. By estimating each flow’s incoming rate and using it to label

flow’s packet, the Core-Stateless Fair Queueing (CSFQ) algorithm in [11] computes the forwarding

probability from link fair rate estimation. However, this design only applies to network in which

all nodes implement Fair Queueing. In [12], the authors manage uncooperative flows by mapping

their utility function to a specified target network behavior at the edge. This study, however needs

to estimate the utility function to achieve this edge-based price adjustment, and is thus restricted

to a specific form of TCP.

In this paper, we develop an edge-based price-adjustment algorithm using tools from control

theory. Rather than address a specific protocol, we develop our design within the optimization

framework of Kelly [1], [2], [13], [14], [15], which is applicable to diverse types of networks, and

encompasses numerous protocols such as TCP Reno, TCP Vegas, FAST [16, 17] etc. Our algorithm

recovers the cooperative share of bandwidth prescribed in Kelly’s framework, with a new feedback

loop implemented at the edge router, and, hence, referred to as the “edge supervisor”. It detects

uncooperative users by comparing their sending rates with “audit” rates calculated according to

an ideal, cooperative, model, and increases their price feedback. Although in this design edge su-

pervisor does perform per flow management by this price adjustment loop, core routers, which are

in general more complex than edge routers, do not perform per flow management, and therefore

the implementation complexity is significantly reduced. Our algorithm is independent of conges-

tion notification policy deployed by the network, and thus, can be used with any Active Queue

Management scheme, as well as Drop Tail queueing.

We design the price adjustment loop to evolve in a faster time-scale than the existing price

feedback loop from the links, because, then, uncooperative flows are rectified during a fast transient

phase, after which stability and convergence properties of the desired cooperative network model

is recovered. Indeed, using tools from singular perturbations theory [18], [19, Chapter 11], we

prove that the fast and slow feedback loops, when combined, ensure convergence of the sending
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rates to their cooperative values. The type of convergence established is “semi-global” [19], which

means that any desired region of attraction can be achieved by increasing the feedback gain of the

price-adjustment loop.

The paper is organized as follows: Section 2 overviews Kelly’s primal and dual flow control

algorithms. Section 3 studies the primal algorithm and presents our price adjustment design for

uncooperative users. Section 4 extends this design to the dual algorithm. In Section 5, we implement

our price adjustment algorithms in NS-2 and evaluate their performance for various single and

multi-bottleneck topologies, for both marking and dropping congestion notification policies, and

with and without AQM schemes. In particular, we show that given a standard network behavior

like TCP-Friendliness, our algorithm forces uncooperative users to comply with their fair-share of

the bandwidth. Conclusions are given in Section 6.

Notation: We denote by R+ = (0,∞), and, by RN
+ vectors whose entries are in R+. Given a

function f (x), its positive projection is defined as

(f (x))+x :=

{

f (x) if x > 0, or x = 0 and f (x) ≥ 0

0 if x = 0 and f (x) < 0.

If x and f (x) are vectors, then (f (x))+x is interpreted in the component-wise sense.

2 Overview of Kelly’s primal and dual flow control algorithms

In Kelly’s framework [1], network flows are modeled as the interconnection of users and commu-

nication links as shown in Figure 1. Packets from each users (with sending rate xi) are routed

through the links with the aggregate link rate

y = Rfx (1)

where Rf is the forward routing matrix. Each link j has a fixed capacity cj , and based on its

congestion and queue size, a link price, pj is computed:

pj = hj (yj) , j = 1, · · · , L. (2)

The link price information is then sent back to each source with the aggregate source price,

q = Rbp. (3)

where Rb = RT
f , since the links only feed back price information to the users that utilize them.

3



Figure 1: Network flow control model.

Kelly formulated the flow control task as a static optimization, and dynamic stabilization,

problem. The static optimization problem computes the desired equilibrium by maximizing the

sum of the source utility functions Ui (xi), while complying with capacity constraints in the links:

max
x≥0

N∑

i=1

Ui (xi) subject to Rx
︸︷︷︸

y

≤ c. (4)

The dynamic problem is to design the source rate update law based on the aggregate price, and

the link price update law based on the aggregate rate, to guarantee stability of the equilibrium.

For this problem, Kelly introduced two dynamic algorithms: The Primal Algorithm consists of a

first order source update law, and a static penalty function for the link to keep the aggregate rate

below its capacity:

ẋi = κi

(
U ′

i (xi) − qi

)
, pj = hj (yj) . (5)

The penalty functions hl (yl) are designed to enforce the link capacity constraints yl ≤ cl, l =

1, · · · , L, i.e., to keep the aggregate rate yl below its capacity cl.

The Dual Algorithm consists of a static source update and a first order dynamic price update:

xi = U ′−1

i (qi) , ṗj = γj (yj − cj)
+

pj
(6)

From (6), the unique equilibrium for the dual control law is obtained from the equations

q∗i = U ′
i (x∗

i ) , i = 1, · · · , N (7)
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p∗l

{

= 0 if y∗l ≤ cl

≥ 0 if y∗l = cl

l = 1, · · · , L, (8)

which as shown in [1], correspond to the solution of the optimization problem (4), in which pl’s

play the role of Lagrange multipliers for the capacity constraints. For the primal control law (5),

the equilibrium obtained from

q∗i = U ′
i (x∗

i ) , i = 1, · · · , N (9)

p∗l = hl (y
∗
l ) l = 1, · · · , L, (10)

approximates the optimality condition (7)-(8) with the help of the penalty functions hl (yl). The

stability of these two algorithms and their extensions has been established in [2], [13], [20], [21],

[22], [14], [15], [17], [24].

3 Uncooperative users in Kelly’s primal algorithm

We now assume that some users, which we call “uncooperative”, use more aggressive utility func-

tions to increase their share of bandwidth; that is, instead of Ui (xi) in (5), they implement Ũi (xi):

ẋi = κi

(

Ũ ′
i (xi) − q̃i

)

. (11)

To rectify these uncooperative users, we propose that the supervisor at the edge of the network

(e.g., internet service providers) adjusts the price feedback from its nominal value qi to q̃i. An ideal

design of q̃i would be

q̃i = qi + Ũ ′
i (xi) − U ′

i (xi) , (12)

which replaces Ũ ′
i (xi) in (11) with the cooperative U ′

i (xi). However, this design is not imple-

mentable because Ũi (xi) is not known to the supervisor. Instead, in our design, we obtain an

estimate of Ũi (x) with the help of the cooperative reference model:

˙̂xi = κi

(
U ′

i (xi) − qi

)
, x̂i (0) = xi (0) . (13)

The x̂i thus calculated differs from xi by ei := x̂i − xi, which, from (11)-(13), is governed by

ėi = κi

(

q̃i − qi − Ũ ′
i (xi) + U ′

i (xi)
)

. (14)

This means that, if we design the price adjustment to be
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q̃i = qi − ρiei, (15)

with a sufficiently high gain ρi > 0, then the variable ei evolves in a faster time scale than xi,

and reaches the quasi-steady state ρiei ≈ −Ũ ′
i (xi) + U ′

i (xi). Thus, after a fast transient, our

design (13), (15) approximates the non-implementable scheme (12). For cooperative users, where

Ũi (xi) = Ui (xi), (13) and (15) yield q̃i = qi, which means that no price adjustment is applied.

Note that Ui in (13) is not necessarily the same for each user. This means that the supervisor can

intentionally set up different utility functions, and use this flexibility to only adjust high bandwidth

flows while leaving low bandwidth flows without rectification.

Figure 2: Price adjustment for uncooperative users in Kelly’s primal algorithm.

The algorithm (13), (15) is depicted with a block diagram in Figure 2. In implementation,

the edge router performs the price adjustment (15) every round trip time. The phrase ”fast time

scale” is used to indicate that when ρ is large in (15), the supervisor subsystem approaches its

quasi steady-state faster than the dynamics of the network. In Theorem 1 below, we use tools from

singular-perturbations theory [18], [19] to prove that (13), (15) achieves asymptotic stability of the

cooperative value x∗ in (9)-(10):

Theorem 1 Consider the network (1)-(3), where some users implement the uncooperative algo-

rithm (11), rather than (5). Suppose Ui (xi) : R+ → R are increasing and sufficiently smooth func-

tions, Ui
′′ (xi) < 0 ∀xi ∈ R+, and Ui (xi) → −∞ and Ũi (xi) → −∞ as xi → 0 for i = 1, · · · , N .

Then, the price adjustment algorithm (13), (15) ensures that, for any compact set Ω ⊂ RN
+ of initial

conditions x (0), there exists ρ∗i > 0 such that, if ρi > ρ∗i , then x (t) and x̂ (t) remain bounded, and

x (t) converges to the cooperative value x∗ in (9)-(10).
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The assumptions of Theorem 1 on the utility functions Ui (xi) are standard in the literature [1],

[14], [25]. In particular, the assumption Ui (xi) → −∞ as xi → 0 ensures that RN
+ is positively-

invariant, i.e., if x is initially in RN
+ , it will remain in RN

+ for all t ≥ 0. It is satisfied by commonly

used utility functions such as Ui (xi) = − ai

xi
(variant of TCP Reno) and Ui (xi) = ai log xi (TCP

Vegas) [14]. For others, such as Ui (xi) =
√

2

τi
tan−1

(
τixi√

2

)

(TCP Reno), we can modify Theorem 1

and prove stability by using positive projection functions as in [15]. It is reasonable to make the same

assumptions for Ũ ′
i (·) as for U ′

i (·), because cheating users would typically change the parameters of

the nominal utility functions, such as ai in TCP Vegas above. However, this assumption excludes

some traditional unresponsive flows referred to as UDP or CBR, in which, users send data at a

constant rate without acknowledging any feedback from the network. 2

Proof: To represent the algorithm (11), (13) and (15) in the standard singularly perturbed form

[18], [19], we let

ωi := ρiei (16)

εi =
1

ρi

(17)

and obtain:

ẋi = κi

(

Ũ ′
i (xi) − qi + ωi

)

. (18)

εiω̇i = −κi

(

ωi + Ũ ′
i (xi) − U ′

i (xi)
)

. (19)

An inspection of (18) and (19) shows that the equilibrium for xi is same as the cooperative x∗
i in

(9)-(10), and the equilibrium for ωi is

ω∗
i = −Ũ ′

i (x∗
i ) + U ′

i (x∗
i ) . (20)

To shift this equilibrium to 0, we define

̟i := ωi + Ũ ′
i (xi) − U ′

i (xi) (21)

and rewrite (18)- (19) as

ẋ = K
(
U ′ (x) − RT h (Rx) + ̟

)

ε ˙̟ =−K



̟ − ε
∂
(

Ũ ′ (x)−U ′ (x)
)

∂x

(
U ′ (x)−RT h (Rx)+̟

)




(22)
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where we use the vector notation x =
[

x1 x2 · · · xN

]T

, ̟ =
[

̟1 ̟2 · · · ̟N

]T

. K =

diag {κi} and ε = diag {εi} are diagonal matrixes of the source controller gains κi > 0 and εi > 0,

i = 1, · · · , N , and U ′ (x) ∈ RN is a vector whose ith component is the derivative U ′
i (xi) of the

utility function Ui (xi). Likewise, h (y) ∈ RL and Ũ ′ (x) ∈ RN consist of the penalty functions

hl (yl) and uncooperative utility functions Ũ ′
i (xi).

To prove asymptotic stability of (x,̟) = (x∗, 0) we use the Lyapunov function

V =

N∑

i=1

(− (Ui (xi) − Ui (x
∗
i )) + q∗i (xi − x∗

i ))

+

L∑

l=1

(
∫ yl

y∗

l

(hl (σ) − hl (y
∗
l )) dσ

)

+
1

2
̟T K−1̟

(23)

in which, the first and the second terms, are identical to the Lyapunov function used in [1, 15] for

the proof of the stability of Kelly’s Primal algorithm, while the third term is a quadratic Lyapunov

function for the dynamics of ̟ subsystem. This Lyapunov function is positive definite and radially

unbounded in RN
+ , and yields the derivative

V̇ ≤− f1 (x)T Kf1 (x) − ̟T ε−1̟ + ̟T
∂
(

Ũ ′ (x) − U ′ (x)
)

∂x
̟ + ̟T f2 (x) , (24)

where

f1 (x) := U ′ (x) − RTh (Rx) , (25)

f2 (x) :=
∂
(

Ũ ′ (x) − U ′ (x)
)

∂x

((
U ′ (x)−RTh (Rx)

)
+K

(
−U ′ (x)+RT h (Rx)

))
. (26)

We show in Lemma 1 below that, on any compact set of (x,̟) that includes (x∗, 0), we can

choose ε small enough to ensure V̇ is negative definite. The conclusion of Theorem 1 follows from

this lemma because, from x̂ (0) = x (0), we have ω (0) = 0 and, thus ̟ (0) = −Ũ ′ (x (0))+U ′ (x (0)),

which means that for any set Ω as in the statement of the theorem, we can find a corresponding

region of attraction in (x,̟) coordinates, which does not depend on ε. Since V is also independent

of ε, we can select a level set of V that encompasses this region of attraction, and design ε from

Lemma 1 to render V̇ negative definite in this level set. 2

Lemma 1: Let the assumptions of Theorem 1 hold, and let f1 (x) and f2 (x) be defined as in

(25)-(26). Then, for any compact set Λ of (x,̟) that includes (x∗, 0), there exists ε∗ > 0 such that

if εi ∈ (0, ε∗] for all i = 1, · · · , N , then V̇ (x) given in (24) is negative definite on Λ.
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Proof: We first claim that there exists a constant δ > 0 such that, for any compact set Λ of (x,̟)

that includes (x∗, 0),

f1 (x)T Kf1 (x) ≥ δ ‖x − x∗‖2 . (27)

To prove this we show that the Hessian of f1 (x)T Kf1 (x) is positive definite at x∗. To this end,

we note that

fT
1 (x) Kf1 (x) =

N∑

i=1

κif
i
1 (x)2

and use the chain rule for the second derivative of the function κi

(
f i
1 (·)

)2
:

∂2

(

κi

(
f i
1 (x)

)2
)

∂x2

∣
∣
∣
∣
∣
∣
x=x∗

= 2κif
i
1 (x∗)

∂2
(
f i
1 (x)

)

∂x2

∣
∣
∣
∣
∣
x=x∗

+ 2κi

(

∂
(
f i
1 (x)

)

∂x

)T (

∂
(
f i
1 (x)

)

∂x

)
∣
∣
∣
∣
∣
∣
x=x∗

.

Because f i
1 (x∗) = 0 and because

∂f1

∂x
(x∗) = U ′′ (x∗) − RT ∂h

∂ (Rx)

∣
∣
∣
∣
x=x∗

R ≤ U ′′ (x∗) < 0

we conclude

∂2

(

f1 (x)T Kf1 (x)
)

∂x2

∣
∣
∣
∣
∣
∣
x=x∗

= 2

N∑

i=1

κi

(

∂
(
f i
1 (x)

)

∂x

)T (

∂
(
f i
1 (x)

)

∂x

)
∣
∣
∣
∣
∣
∣
x=x∗

= 2

(
∂f1

∂x

∣
∣
∣
∣
x=x∗

)T

K

(
∂f1

∂x

∣
∣
∣
∣
x=x∗

)

> 0

which proves (27).

Next, we apply Young’s Inequality [26] to the term ̟Tf2 (x) in the right hand side of (24):

̟Tf2 (x) ≤ 1

λ
‖̟‖2 +

λ

4
‖f2 (x)‖2 , λ > 0,

and get

V̇ ≤− ̟T



ε−1 −
∂
(

Ũ ′ (x) − U ′ (x)
)

∂x
− 1

λ
IN×N



̟

− δ

(

‖x − x∗‖2 − λ

4δ
‖f2 (x)‖2

)

.

Because f2 (x) is zero at zero and continuously differentiable, we can select λ and ε∗ such that, for

all x ∈ Λ,
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λ

4
‖f2 (x)‖2 ≤ 1

2
‖x − x∗‖2

1

2ε∗
IN×N −

∂
(

Ũ ′ (x) − U ′ (x)
)

∂x
− 1

λ
IN×N ≥ 0

and obtain

V̇ ≤ − 1

2ε∗
̟T ̟ − δ

2
‖x − x∗‖2 ,

for any εi ∈ (0, ε∗], which concludes the proof. 2

In Theorem 1, we require that the edge supervisor set x̂ (0) equal to x (0). However, it is

not difficult to show that the proof holds true for small errors between x̂ (0) and x (0). Time

delays in the network are not considered in Theorem 1. We wish to emphasize, however, that the

high-gain component of our feedback design is limited to the local price adjustment loop, and not

the price feedback loop, which is subject to the network delays. Thus, our correction algorithm

can be combined with congestion control algorithms that are robust to time delays, such those in

[23, 24, 25].

In implementation, it may also be necessary to know how large the gain ρi must be selected.

While, in principle, such a value can be obtained from the calculation of ρ∗i in the proof, this value

may be conservative, and depends on the class of utility functions Ũi (·) employed by uncooperative

users. A more practical value can be obtained by monitoring whether the uncooperative rates

persists and by increasing the gain ρi accordingly. A further discussion on the choice of this gain

is given in Section VI.C.

4 Price adjustment for Kelly’s dual algorithm

We next study Kelly’s dual algorithm where uncooperative users implement, instead of (6),

xi = Ũ ′−1

i (q̃i) . (28)

We assume Ũ ′−1

i (s) ≥ U ′−1

i (s), ∀s ≥ 0, which means that the uncooperative sending rate is larger

than the cooperative rate. To counteract such uncooperative users, the supervisor must replace the

nominal price feedback qi with

q̃i = Ũ ′
i ◦ U ′−1

i (qi) , (29)

which, when substituted in (28), results in the cooperative rate (6). Because a direct solution of

(29) would require the knowledge of Ũ ′
i (·), which is not available to the supervisor, we propose the

dynamic algorithm
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q̃i = qi + ωi, (30)

ω̇i = ρi

(
xi − U ′−1

i (qi)
)
, ωi (0) = 0, ρi > 0, (31)

depicted in Figure 3. The equilibrium of (31) is achieved when

xi = U ′−1

i (qi) , (32)

which indeed coincides with the cooperative rate (6). We achieve asymptotic stability of this

equilibrium, again, by designing the adaptation gain ρi to be sufficiently high:

Figure 3: Price adjustment for uncooperative users in Kelly’s dual algorithm.

Theorem 2 Consider the network (1)-(3), (6) and (28), where Ui (xi) and Ũi (xi) are as in Theo-

rem 1, and Ũ ′−1

i (s) ≥ U ′−1

i (s), ∀s ∈ R+. Then, the price adjustment algorithm (28), (31), ensures

that, for any compact set Ω ⊂ RN
+ of initial conditions p (0), there exists ρ∗i > 0 such that, if ρi > ρ∗i ,

then p (t), x (t) and q̃ (t) remain bounded, and x (t) and p (t) converge to the cooperative values x∗

and p∗ in (7)-(8).

Proof: To represent the algorithm (28), (31) in the standard singularly perturbed form, we let

εi =
1

ρi

(33)

and obtain:

εω̇i = Ũ ′−1

i (qi + ωi) − U ′−1

i (qi) . (34)
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This means that the equilibrium for ωi satisfies

Ũ ′−1

i (q∗i + ω∗
i ) = U ′−1

i (q∗i ) (35)

which implies, from (28), that

x∗
i = Ũ ′−1

i (q∗i + ω∗
i ) = U ′−1

i (q∗i ) . (36)

We thus conclude from (8) that the equilibria for xi, qi and pj are the same as the cooperative x∗
i ,

q∗i and p∗j . To shift the equilibrium ω∗
i in (35) to 0, we define

̟i = ωi − Φi (qi) (37)

where

Φi (qi) = Ũ ′
i ◦ U ′−1

i (qi) − qi, (38)

and represent the system (11)-(15) and (34) as

ṗ = Γ
(

RU ′−1
(
RT p

)
+ ∆ (p,̟) − c

)+

p

ε ˙̟ =Ũ ′−1 (q + ̟ + Φ (q)) − U ′−1
(q)−ε

∂Φ (q)

∂q
RT Γ

(

RU ′−1
(
RT p

)
+∆ (p,̟)−c

)+

p
.

(39)

where p =
[

p1 p2 · · · pL

]T

, ̟ =
[

̟1 ̟2 · · · ̟N

]T

. Γ = diag {γj} is a diagonal matrix

of the source controller gains γj > 0, j = 1, · · · , L, U ′−1 (x) ∈ RN , Ũ ′−1
(x) ∈ RN and Φ (q) ∈ RN

are vector functions as in Theorem 1, and

∆ (p,̟) :=RŨ ′−1
(
RT p + ̟ + Φ

(
RT p

))
− RU ′−1 (

RT p
)

=RŨ ′−1
(
RT p + ̟ + Φ

(
RT p

))
− RŨ ′−1

(
RT p + Φ

(
RT p

))
.

(40)

To prove asymptotic stability of (p,̟) = (p∗, 0), we use the Lyapunov function

V =

L∑

i=1

1

2
γ−1

l (pl − p∗l )
2 +

1

2
̟T ̟ (41)

which has the first term same as in [15] for the stability of Kelly’s Dual algorithm and the second

term as a quadratic Lyapunov function for the ̟ subsystem. This Lyapunov function is positive

definite and radially unbounded in RN+L
+ , and yields the derivative
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V̇ ≤ (p − p∗)T R
(

U ′−1
(
RTp

)
+ ∆ (p,̟) − c

)+

p

− ̟T ε−1
(

U−1 (q) − Ũ ′−1
(
(q + ̟ + Φ (q))+

))

+ ̟T ∂Φ

∂q
RT Γ

(

RU ′−1 (
RT p

)
+ ∆ (p,̟) − c

)+

p

≤ (p − p∗)T R
(

U ′−1
(
RTp

)
− U ′−1

(
RT p∗

))

− ̟T ε−1
(

U−1 (q) − Ũ ′−1
(
(q + ̟ + Φ (q))+

))

+ (p − p∗)T R∆ (p,̟) + ̟T ∂Φ

∂q
RT Γ

(

RU ′−1
(
RT p

)
+∆ (p,̟)−c

)+

p

(42)

where the second inequality follows from the arguments in [24, Proof of Theorem 2]. When Rx∗ = c,

we show in Lemma 2 below that, on any compact set of (p,̟) that includes (p∗, 0), we can choose

ε small enough to ensure V̇ is negative definite. Then, the conclusion follows as in the proof of

Theorem 1. If Rx∗ = c does not hold, we can still establish asymptotic stability following the

arguments of [24, Proof of Theorem 5]. 2

Lemma 2: Let the assumptions of Theorem 2 hold, and suppose Rx∗ = c, that is all links are

bottlenecked. Then, for any compact set Λ of (p,̟) that includes (p∗, 0), there exists ε∗ > 0 such

that if εi ∈ (0, ε∗] for all i = 1, · · · , N , then V̇ (x) given in (42) is negative definite on Λ. 2

The proof of Lemma 2 is similar to that of Lemma 1 and, is omitted due to space limitations.

5 Implementation and Simulation Setup

We have implemented the uncooperative framework presented in this paper in the Network Sim-

ulator (NS-2). While we have studied both dynamic (Section III) and static (Section IV) users,

in simulations we implement the method of Section III because of the prevalence of TCP, which

is dynamic and can be modeled as in (11) (see [1]). We added an edge-based supervisor, which

adjusts the price feedback to the uncooperative users with the following algorithms

1. Let xi be the rate of uncooperative user i as in (11).

2. Define an “audit” rate, x̂i, which represents the cooperative rate computed as in (13).

3. Calculate the marking or dropping probability at the edge as pe
i = ρi(xi − x̂i)

+ , where

s+ = max(s, 0), and ρi is the gain in (15).

4. For each incoming packet mark/drop a packet with a probability pe
i .

The implementation of this feedback adjustment depends upon the congestion notification policy

deployed in the network. In our simulations we present the results with scenarios where marking

(ECN) and dropping are used as congestion notification policies. The framework presented in this
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paper is independent of the buffer management policy deployed in the network; that is, it works

with any Active Queue Management scheme as well as with simple Drop Tail queueing.

We note that, unlike the static link assumption in Section III, AQM and Drop-Tail in simulations

make use of queue length and, hence, are dynamic algorithms. An extension of the proof of dynamic-

source dynamic-link algorithms would be possible, but lengthy. The stability properties observed

in simulations in the next section are indeed consistent with those predicted by Theorem 1.

We present simulation results for both single and multi-bottleneck topologies, depicted in Figure

4 a) and b). All the access links are configured to have a capacity equal to four times that of

bottleneck links. The bottleneck links capacity and delay is fixed at 0.8Mbps and 20ms respectively

unless specifically stated. (However, for some results presented in the paper, we will relax these

configuration settings.) For all simulations reported in this paper, the simulation time is 150

seconds, and rate (or throughput) measurements are taken every 0.5 seconds. Each router has a

buffer equal to one bandwidth delay product. In setups where the bottleneck routers have Random

Early Drop (RED) buffer management policy deployed, the corresponding maximum and minimum

threshold are set at 0.8 × B and 0.3 × B where B is the total buffer length; the queue weight was

set to 0.002 and the maximum dropping probability to 0.1.
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Figure 4: Topologies used in simulations

The multi-bottleneck topology in Figure 4 b) shows one flow between source S1 and destination

D1. This flow traverses both the bottleneck links and henceforth in this paper we will call this a

long flow. The two flows between the source destination pairs [S2-D2] and [S3-D3] go over only one

bottleneck link and, therefore, in the rest of paper we refer to them as short flows.

We refer to flows, which under same operating conditions, get more rate than TCP as selfish

flows. This definition is also often commonly referred to as TCP-Friendliness. Since almost 90%

of the traffic carried on the Internet uses TCP, we chose TCP-Friendliness as our definition of

conformant flows. In this paper all transport protocols are rate based. Thus, all TCP-Friendly

schemes use equation based rate control scheme (TCP Friendly Rate Control - TFRC) presented

in [27] and all selfish schemes are variants of TFRC which have conservative decrease algorithms,

i.e. upon congestion they decrease more slowly than TCP. We would like to refer the reader to
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[12] for ways to generate selfish flows. In this paper we have also assumed that all the flows are

persistent flows, i.e. they have infinite data to transfer. However, we will also present the results

for the scenarios where we have both persistent and short web traffic competing for bandwidth.

6 Simulation Results

In this section we evaluate our algorithm for both single and multi-bottleneck topologies, with

various degree of flow multiplexing. We also test its robustness in the presence of mice like web

traffic and reverse path congestion.

6.1 AQM Based Network

In this section we assume that Active Queue Management (AQM) policies are deployed on the

bottleneck routers, and all routers have RED queues installed on them. Figure 5 shows the results

where two flows compete for bandwidth in a single bottleneck scenario. Among these flows, the

first is TCP-Friendly with U(x) = −1/x, while the other is uncooperative with the utility function

U(x) = −1/
√

x. If both competing flows were TCP-Friendly, they would have shared the bandwidth

equitably. However, Figure 5 a) shows that the uncooperative flow grabs a larger share of the band-

width. With our edge-based algorithm, in Figure 5 b) the two flows share the bottleneck bandwidth

equitably. Simulations with other uncooperative utility functions in the single-bottleneck scenario,

not presented here, yield similar results.
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Figure 5: Single-Bottleneck Topology: Equitable sharing of bandwidth enforced by the edge super-

visor.

The multi-bottleneck topology is shown in Figure 4 b) and has two bottleneck links. The TCP-

Friendly long-flow, which goes over both bottleneck links, competes for bandwidth against the two

uncooperative short-flows, which go over only one bottleneck link. Figure 6 a) shows the result

corresponding to the cooperative setup where both the long and short flows use TCP-Friendly rate

control scheme. Figure 6 b) shows the result for the setup where we replace the TCP-Friendly
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short flows with uncooperative rate control schemes with utility function U(x) = −1/
√

x. Once

again, we see that, the uncooperative flows get an unfair share of the bandwidth and almost force

a traffic volume based denial of service attack. When we employ our edge-based supervisor, with

ρ = 2.5 × 10−5, we recover the ideal bandwidth sharing of bottleneck links, as shown in Figure 6

a).
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Figure 6: Multi-Bottleneck scenario where (a) shows the ideal bandwidth sharing (b) shows the

aggravated unfair sharing in the presence of uncooperative flows and (c) shows the rectification of

uncooperative flows with our edge supervisor.

6.1.1 Background Traffic

In this section we will evaluate our framework in the presence of short web flows on a multi-

bottleneck topology. In this setup, there is one long TCP-Friendly flow, which competes for band-

width against one short uncooperative flow, on each bottleneck. HTTP sources are now added to

these persistent flows. Each http page sends a single packet request to the destination, which then

replies with a file of size which is exponentially distributed with 12 1Kb packets. After a source

completes this transfer it waits for a random time, which is exponentially distributed with a mean

of 1 second and then repeats the process.

Our results in Figure 7 show that these web traffic or mice flows take some fraction of the

bottleneck bandwidth while the persistent TCP and uncooperative flows compete for the remaining

bandwidth. Figure 7 a) shows the results where, in the presence of mice traffic, all the persistent

flows used a TCP-Friendly rate control scheme. This corresponds to the ideal bandwidth-sharing

scenario. The results shown in Figure 7 b) corresponds to the setup where the persistent short

flows, i.e. flows which go over only one bottleneck, use a selfish rate control scheme. We see that

the selfish flows take an unfair share of the bottleneck bandwidth. Thereupon, we introduce our

edge-based supervisor, with ρ = 10−4, to rectify the misbehaving persistent short selfish flows, and

recover the equitable rates as in Figure 7 c).
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Figure 7: Background Web Traffic: (a) ideal bandwidth sharing scenario (b) aggravated unfair

sharing in the presence of uncooperative flows and (c) rectification of uncooperative flows with our

edge-based supervisor.

6.1.2 Cross Traffic

We next evaluate our framework in the presence of reverse path congestion. For this case we

used a multi-bottleneck topology with one persistent TCP-Friendly flow traversing two bottleneck

links competing against selfish flows going over just one bottleneck. For creating reverse path

congestion, we added short TCP-Friendly flows on the reverse paths. Figure 8 a) shows the results

corresponding to the ideal case, i.e. all the flows used TCP-Friendly rate control schemes while

Figure 8 b) shows the results when the short flows on the forward path used an uncooperative rate

control scheme. We then added our edge based rectification agent and the corresponding results are

plotted in Figure 8 c) (with ρ = 4 × 10−5). We see that in the presence of edge-based supervisor,

the selfish flows are effectively managed.

Time in Seconds

R
a

te
 (

B
y
te

s
/s

e
c
)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20 40 60 80 100 120 140

TFRC Short Flow 2

TFRC Short Flow 1

TFRC Long Flow

Time in Seconds

R
a

te
 (

B
y
te

s
/s

e
c
)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20 40 60 80 100 120 140

TFRC Long Flow

Selfish Short Flow 2

Selfish Short Flow 1

Time in Seconds

R
a

te
 (

B
y
te

s
/s

e
c
)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20 40 60 80 100 120 140

Selfish Short Flow 2

Selfish Short Flow 1

TFRC Long Flow

(a) Ideal Sharing (b) Without Rectification (c) With Rectification

Figure 8: Reverse Path Congestion : (a) ideal bandwidth sharing scenario (b) aggravated unfair

sharing in the presence of uncooperative flows and (c) rectification of uncooperative flows with our

edge-based supervisor.

17



6.1.3 Higher Flow Multiplexing with Background Traffic and Reverse Path Conges-

tion

In the previous sections we have detailed the performance of our edge-based rectification algorithm

for various single and multi-bottleneck scenarios. However, to present the efficiency and the robust-

ness of our scheme we limited the number of competing flows to 3. In this section we will increase

the number of competing flows.

For the results presented in this section, the TFRC flows competed for bandwidth against selfish

flows on a multi-bottleneck topology (shown in Figure 4 b)). However, we increase the capacity

of the bottleneck links to 8Mbps and that of access links to 80Mbps. The links delays were not

changed and the bottleneck buffer was set to one bandwidth delay product. Finally, all the routers

have RED queue management schemes deployed on them. The RED queue configurations are

detailed in Section 5. For the edge-based rectification agent we set the ρ as 2.5 × 10−5.
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Figure 9: Higher flow multiplexing with background traffic and reverse path congestion in a multi-

bottleneck setup.

Figure 9 shows the results for the scenario where 5 TFRC flows compete for bandwidth against

selfish flows. Further, on each bottleneck there were 5 selfish short flows. To these persistent

flows, we also added short web transfers which occupied 10% of the bottleneck bandwidth. (The

details about how we generated these flows is provided in Section 6.1.1. On average, at any given

time, there were 10 short flows on each bottleneck.) For this simulation we also setup flows on

the reverse path. Specifically, on each bottleneck in the reverse path there were 5 flows competing

for bandwidth and thus creating congestion on the reverse path. For the results presented in this

section we plot the throughput of one flow from each group: TFRC Long flows or flows which go

over two bottleneck links, selfish short flows from Group 1 or flows which go over the first bottleneck

only; and, finally, the selfish short flows from Group 2 or flows which go over the last bottleneck

only.

Figure 9 a) shows the ideal sharing of the bottleneck when the short flows are also TCP-Friendly.
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Figure 9 b) shows that in the absence of any policing the uncooperative flows get more share of the

bandwidth at the expense of TFRC flows. With our rectification algorithm the fair share of the

TFRC flows is restored; see Figure 9 c).

6.1.4 ECN Enabled Network

We conclude this section with the results from a multi-bottleneck test case where the RED scheme

is configured to mark the packets (instead of dropping them). Once again, we used a setup where

one persistent TCP-Friendly flow competed for bandwidth against one short uncooperative flow.

Figure 10 a) shows the ideal bandwidth sharing while Figure 10 b) shows that in the presence of

uncooperative flows the resulting bandwidth sharing is unfair. When we introduced the edge-based

supervisor, with ρ = 10−4, the bandwidth is shared fairly.
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Figure 10: ECN Enabled Network: (a) ideal bandwidth sharing scenario (b) aggravated unfair

sharing in the presence of uncooperative flows and (c) rectification of uncooperative flows with our

edge supervisor.

6.2 Drop-tail Queues

In this section, we look at the alternative scenario, where we assume that the network operates with

Drop-Tail queues only. We extensively tested with various single and multi-bottleneck topologies

and with different kind of uncooperative schemes. Figure 11 a) shows the results with a single

bottleneck topology where one uncooperative and TCP-Friendly flows compete for bandwidth. As

the figure shows, the uncooperative flows gain an unfair share of the bottleneck bandwidth, which

are then corrected with our design. For this simulation the ρ was set to 3 × 10−5.

Figure 12 shows the results with a multi-bottleneck setup where one long TCP-Friendly flow is

sharing bandwidth with short uncooperative flows. Figure 12 a) shows the ideal bandwidth sharing

and Figure 12 b) shows the unfair sharing of the bottleneck in the presence of uncooperative flows.

Finally, in Figure 12 c) we present results with our rectification agent when ρ = 1.5 × 10−5.
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Figure 11: Drop tail queues and single bottleneck topology: rectification of uncooperative flows.
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Figure 12: Drop Tail Queues: (a) ideal bandwidth sharing scenario (b) aggravated unfair sharing

in the presence of uncooperative flows and (c) rectification of uncooperative flows with our edge

supervisor.

6.3 Effect of Gain ρ on Rectification of Selfish Users

The performance of our edge-based rectification algorithm depends on the gain ρ in equation (15).

As detailed below, simulation studies indicate that too small or too large values of this ρ may

deteriorate the performance. Indeed, Theorem 1 disallows small values of ρ because, otherwise,

the desired two-time-scale behavior is not achieved. Although Theorem 1 allows arbitrarily large

values for ρ, in practice, such high-gain leads to saturation of dropping or marking schemes, which

violate the ”small marking probability” approximation in Equation (3). We see in the following

simulations that large ρ might result in “over-penalization”, which means that uncooperative flows

receive even less than their fair share.

Consider the multi-bottleneck setup shown in Figure 4 b) with one long TFRC flow and one short

uncooperative flow on each bottleneck. In Figure 6 we presented simulations with ρ = 2.5 × 10−5.

In Figure 13 we compare this result with ρ = 10−5 (Figure 13 a)) and with ρ = 10−4 (Figure 13

c)).
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Figure 13: Effect of gain ρ on the steady rates of uncooperative and TFRC flows.

We note that a high value of ρ may result in over-penalization, and on the other hand, with

a very small value of ρ the selfish users are not sufficiently penalized and they continue to get

more share of the bottleneck link(s) at the expense of cooperative users. However, for intermediate

values, such as ρ = 2.5 × 10−5 in Figure 13 b), we recover the ideal shares for the uncooperative

and the cooperative users.

For all the results reported in this paper we have found that the ideal range of ρ lies between

the interval 10−4 to 10−5. We also extensively evaluated the edge-based rectification model for

different value of selfishness, i.e. users chose different values of U(x), and found observation on ρ

consistent with those reported above. A judicious choice of this gain, however, deserves further

investigation.

7 Conclusions

We have presented a price adjustment algorithm for both Kelly’s primal and dual network flow

control models, and tested it on the Network Simulator. This algorithm is to be implemented

at the edge of the network and, thus, does not require costly hardware upgrades in the entire

network. It is independent of congestion notification policy deployed by the network, and thus, can

be used with any Active Queue Management scheme, as well as Drop Tail queueing, which make

the algorithm not only of theoretical interest but also practical importance. Although a suitable

range for the gain ρ in our algorithm was determined by simulations, a judicious choice of this gain

deserves further investigation. An on-line adaptation for ρ may be possible, and is currently being

pursued by the authors.
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