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ABSTRACT
Achieving efficient and fair bandwidth allocation while min-
imizing packet loss and bottleneck queue in high bandwidth-
delay product networks has long been a daunting challenge.
Existing end-to-end congestion control (e.g., TCP) and tra-
ditional congestion notification schemes (e.g., TCP+AQM/
ECN) have significant limitations in achieving this goal.
While the XCP protocol addresses this challenge, it requires
multiple bits to encode the congestion-related information
exchanged between routers and end-hosts. Unfortunately,
there is no space in the IP header for these bits, and solv-
ing this problem involves a non-trivial and time-consuming
standardization process.

In this paper, we design and implement a simple, low-
complexity protocol, called Variable-structure congestion
Control Protocol (VCP), that leverages only the existing two
ECN bits for network congestion feedback, and yet achieves
comparable performance to XCP, i.e., high utilization, neg-
ligible packet loss rate, low persistent queue length, and rea-
sonable fairness. On the downside, VCP converges signifi-
cantly slower to a fair allocation than XCP. We evaluate the
performance of VCP using extensive ns2 simulations over a
wide range of network scenarios and find that it significantly
outperforms many recently-proposed TCP variants, such as
HSTCP, FAST, and CUBIC. To gain insight into the behav-
ior of VCP, we analyze a simplified fluid model and prove
its global stability for the case of a single bottleneck shared
by synchronous flows with identical round-trip times.

1. INTRODUCTION
The Additive-Increase-Multiplicative-Decrease (AIMD) [10]

congestion control algorithm employed by TCP [24] is known
to be ill-suited for high Bandwidth-Delay Product (BDP)
networks. With rapid advances in the deployment of very
high bandwidth links in the Internet, the need for a viable
replacement of TCP in such environments has become in-
creasingly important.

Several research efforts have proposed different approaches
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for this problem, each with their own strengths and limita-
tions. These can be broadly classified into two categories:
end-to-end and network feedback based approaches. Pure
end-to-end congestion control schemes such as HSTCP [14],
FAST [30], STCP [35], BIC/CUBIC [64, 57], and HTCP [43],
although being attractive short-term solutions (due to a
lesser deployment barrier), may not be suitable for the long-
term. For congestion control purpose, the end-to-end schemes
artificially introduce packet loss or queuing delay, which
should be avoided in the first place. Further, in high BDP
networks, using loss and/or delay as the only congestion
signal(s) poses fundamental limitations on achieving high
utilization and fairness while maintaining low bottleneck
queue length and minimizing congestion-induced packet loss
rate. HSTCP illustrates the limitations of loss-based ap-
proaches in high bandwidth optical links with very low bit-
error rates [14]. Similarly, it has been shown that delay-
based approaches are highly sensitive to delay variations [7],
a common case in today’s Internet.

To address some of the limitations of end-to-end con-
gestion control schemes, many researchers have proposed
the use of explicit network feedback. However, while tra-
ditional congestion notification feedback schemes such as
TCP+AQM/ECN proposals [17, 2, 41, 55] are successful
in reducing the loss rate and the queue size in the network,
they still fall short in achieving high utilization in high BDP
networks [23, 47, 34]. XCP [34] addresses this problem by
having routers estimate the fair rate and send this rate back
to the senders. Congestion control schemes that use explicit
rate feedback have also been proposed in the context of the
ATM Available Bit Rate (ABR) service [39, 9, 32, 26, 33].
However, these schemes are hard to deploy in today’s Inter-
net as they require a non-trivial number of bits to encode
the rate, bits which are not available in the IP header.

In this paper, we show that it is possible to approximate
XCP’s performance in high BDP networks by leveraging
only the two ECN bits (already present in the IP header)
to encode the congestion feedback. The crux of our algo-
rithm, called Variable-structure congestion Control Proto-
col (VCP), is to dynamically adapt the congestion control
policy as a function of the level of congestion in the network.
With VCP, each router computes a load factor [26], and uses
this factor to classify the level of congestion into three re-
gions: low-load, high-load and overload [27]. The router
encodes the level of congestion in the ECN bits. As with
ECN, the receiver echoes the congestion information back
to the sender via acknowledgement (ACK) packets. Based
on the load region reported by the network, the sender uses
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one of the following policies: Multiplicative Increase (MI) in
the low-load region, Additive Increase (AI) in the high-load
region, and Multiplicative Decrease (MD) in the overload
region. By using MI in the low-load region, flows can ex-
ponentially ramp up their bandwidth to improve network
utilization quickly. Once high utilization is attained, AIMD
provides long-term fairness amongst the competing flows.

Using extensive packet-level ns2 [50] simulations that cover
a wide range of network scenarios, we show that VCP can
approximate the performance of XCP by achieving high uti-
lization, negligible packet drop rate, low persistent queue
length and reasonable fairness. One limitation of VCP (as
is the case for other end-host based approaches including
TCP and its many variants) is that it converges significantly
slower to a fair allocation than XCP.

To better understand VCP, we analyze its stability and
fairness properties using a simplified fluid model that ap-
proximates VCP’s behavior. For the case of a single bottle-
neck link shared by flows with identical round-trip delays, we
prove that the model asymptotically achieves global stabil-
ity independent of the link capacity, the feedback delay and
the number of flows. For more general multiple-bottleneck
topologies, we show that the equilibrium rate allocation of
this model is max-min fair [4]. While this model may not
accurately reflect VCP’s dynamics, it does reinforce the sta-
bility and fairness properties that we observe in our simula-
tions and provides a good theoretical grounding for VCP.

From a practical point of view VCP has two advantages.
First, VCP does not require any modifications to the IP
header since it can reuse the two ECN bits in a way that is
compatible with the ECN proposal [55]. Second, it is a sim-
ple protocol with low algorithmic complexity. The complex-
ity of VCP’s end-host algorithm is similar to that of TCP.
The router algorithm maintains no per-flow state, and it has
very low computation complexity. We believe that these
benefits largely offset VCP’s limitation of having a much
slower fairness convergence speed than XCP.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the guidelines that motivate the design
of VCP and in Section 3, we provide a detailed description
of VCP. In Section 4, we evaluate the performance of VCP
using extensive simulations and compare with many other
recently-proposed TCP variants. In Section 5, we develop a
fluid model that approximates VCP’s behavior and charac-
terize its stability, fairness and convergence properties, with
the detailed proofs presented in our technical report [63].
Section 6 addresses concerns on the stability of VCP under
heterogeneous delays and the influence of switching between
MI, AI and MD on efficiency and fairness, and ???. We re-
view related work in Section 7 and summarize our findings
in Section 8.

2. FOUNDATIONS
In this section, we first review why XCP scales to high

BDP networks while TCP+AQM does not. Then, we present
two guidelines that form the basis of the VCP design.

2.1 Why XCP outperforms TCP+AQM?
There are two main reasons for why TCP does not scale

to high BDP networks. First, packet loss is a binary con-
gestion signal that conveys no information about the degree
of congestion. Second, due to stability reasons, relying only
on packet loss for congestion indication requires TCP to use

a conservative window increment policy and an aggressive
window decrement policy [24, 34]. In high BDP networks,
every loss event forces a TCP flow to perform an MD, fol-
lowed by the slow convergence of the AI algorithm to reach
high utilization. Since the time for each individual AIMD
epoch is proportional to the per-flow BDP, TCP flows re-
main in low utilization regions for prolonged periods of time
thereby resulting in poor link utilization. Using AQM/ECN
in conjunction with TCP does not solve this problem since
the (one-bit) ECN feedback, similar to a packet loss, is not
indicative of the degree of congestion either.

XCP addresses this problem by precisely measuring the
fair share of a flow at a router and providing explicit rate
feedback to end-hosts. One noteworthy aspect of XCP is the
decoupling of efficiency control and fairness control at each
router. XCP uses MIMD to control the flow aggregate and to
converge exponentially fast to any available bandwidth and
uses AIMD to fairly allocate the bandwidth among compet-
ing flows. As a consequence, XCP requires multiple bits in
the packet header to carry bandwidth allocation information
(∆cwnd) from network routers to end-hosts, and congestion
window (cwnd) and Round-Trip Time (RTT) information
(rtt) from the end-hosts to the network routers.

2.2 Design Guidelines for VCP
The main goal of our work is to develop a simple con-

gestion control mechanism that can scale to high BDP net-
works. By “simple” we mean an AQM-style approach where
routers merely provide feedback on the level of network con-
gestion, and end-hosts perform congestion control actions
using this feedback. Furthermore, to maintain the com-
patibility with the existing IP header format, we restrict
ourselves to using only two bits to encode the congestion in-
formation. To address these challenges, our solution builds
around two design guidelines:

#1, Decouple efficiency control & fairness control.

Like XCP, VCP decouples efficiency and fairness control.
However, unlike XCP where routers run the efficiency and
fairness control algorithms and then explicitly communicate
the fair rate to end-hosts, VCP routers compute only a con-
gestion level, and end-hosts run one of the two algorithms
as a function of the congestion level. More precisely, VCP
classifies the network utilization into different utilization re-
gions [27] and determines the controller that is suitable for
each region. Efficiency and fairness have different levels of
relative importance in different utilization regions. When
network utilization is low, the goal of VCP is to improve
efficiency more than fairness. On the other hand, when
utilization is high, VCP accords higher priority to fairness
than efficiency. By decoupling these two issues, end-hosts
have only a single objective in each region and thus need
to apply only one congestion response. For example, one
such choice of congestion response, which we use in VCP,
is to perform MI in low utilization regions for improving ef-
ficiency, and to apply AIMD in high utilization regions for
achieving fairness. The goal then is to switch between these
two congestion responses depending on the level of network
utilization.

#2, Use link load factor as the congestion signal.

XCP uses spare bandwidth (the difference between capac-
ity and demand) as a measure of the degree of congestion.
In VCP, we use load factor as the congestion signal, i.e., the
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Figure 1: The throughput dynamics of two flows of the

same RTT (80ms). They share one bottleneck with the

capacity bouncing between 10Mbps and 20Mbps. This

simple example unveils VCP’s potential to quickly track

changes in available bandwidth (with load-factor guided

MIMD) and thereafter achieve a fair bandwidth alloca-

tion (with AIMD).

relative ratio of demand and capacity [26].
While the load factor conveys less information than spare

bandwidth, the fact that the load factor is a scale-free pa-
rameter allows us to encode it using a small number of bits
without much loss of information. In comparison to binary
congestion signals such as loss and one-bit ECN, the load
factor conveys more information about the degree of net-
work congestion. In this paper, we show that a two-bit en-
coding of the load factor is sufficient to approximate XCP’s
performance, which demonstrates the significant marginal
performance gain of this one more bit ECN.

2.3 A Simple Illustration
In this subsection, we give a high level description of VCP

using a simple example. A detailed description of VCP is
presented in Section 3. Periodically, each router measures
the load factor for its output links and classifies the load
factor into three utilization regions: low-load, high-load or
overload. Each router encodes the utilization regions in the
two ECN bits in the IP header of each data packet. In turn,
the receiver sends back this information to the sender via
the ACK packets. Depending on this congestion informa-
tion, the sender applies different congestion responses. If
the router signals low-load, the sender increases its sending
rate using MI; if the router signals high-load, the sender in-
creases its sending rate using AI; otherwise, if the router
signals overload, the sender reduces its sending rate using
MD. The core of the VCP protocol is summarized by the
following greatly simplified pseudo code.

1) Each router periodically estimates a load factor, and
encodes this load factor into the data packets’ IP header.
This information is then sent back by the receiver to the
sender via ACK packets;

2) Based on the load factor it receives, each sender per-
forms one of the following control algorithms:

2.1) For low-load, performs MI;
2.2) For high-load, performs AI;
2.3) For overload, performs MD.

Figure 1 shows the throughput dynamics of two flows shar-
ing one bottleneck link. Clearly, VCP is successful in track-
ing the bandwidth changes by using MIMD, and achieving
fair allocation when the second flow arrives, by using AIMD.

The Internet, however, is much more complex than this
simplified example across many dimensions: the link capac-
ities and router buffer sizes are highly heterogeneous, the

RTT of flows may differ significantly, and the number of
flows is unknown and changes over time. We next describe
the details of the VCP protocol, which will be able to handle
more realistic environments.

3. THE VCP PROTOCOL
In this section, we provide a detailed description of VCP.

We begin by presenting three key issues that need to be
addressed in the design of VCP. Then, we describe how we
address each of these issues in turn.

3.1 Key Design Issues
To make VCP a practical approach for the Internet-like

environments with significant heterogeneity in link capaci-
ties, end-to-end RTTs, router buffer sizes and variable traffic
characteristics, we need to address the following three issues.

Load factor transition point: VCP separates the net-
work load condition into three regions: low-load, high-load
and overload. The load factor transition point in the VCP
senders represents the boundary between the low-load and
high-load regions, which is also the demarcation between ap-
plying MI and AI algorithms. The choice of the transition
point represents a trade-off between achieving high link uti-
lization and responsiveness to congestion. Achieving high
network utilization requires a high value for the transition
point. But this choice negatively impacts responsiveness to
congestion, which in turn affects the convergence time to
achieve fairness. Additionally, given that Internet traffic is
inherently bursty [44, 54], we require a reliable estimation
algorithm of the load factor at the VCP routers. We discuss
these issues regarding load factor in Section 3.2.

Setting of congestion control parameters: Using MI
for congestion control is often fraught with the danger of in-
stability due to its large variations over short time scales.
To maintain stability and avoid large queues at routers, we
need to make sure that the aggregate rate of the VCP flows
using MI does not overshoot the link capacity. Similarly, to
achieve fairness, we need to make sure that a flow enters the
AI phase before the link gets congested. In order to sat-
isfy these criteria, we need an appropriate choice of MI, AI
and MD parameters that can achieve high utilization while
maintaining stability, fairness and small persistent queues.
To better understand these issues, we first describe our pa-
rameter settings for a simplified network model, where all
flows have the same RTT and observe the same state of the
network load condition, i.e., all flows obtain synchronous
load factor feedback (Section 3.3). We then generalize our
parameter choice for flows with heterogeneous RTTs.

Heterogeneous RTTs: When flows have heterogeneous
RTTs, different flows can run different algorithms (i.e., MI,
AI, or MD) at a given time. This may lead to unpredictable
behavior. The RTT heterogeneity can have a significant
impact even when all flows run the same algorithm, if this
algorithm is MI. In this case, a flow with a lower RTT can
claim much more bandwidth than a flow with a higher RTT.
To address this problem, end-hosts need to adjust their MI
parameters according to their observed RTTs, as discussed
in Section 3.4.

We now discuss these three design issues in greater detail.

3.2 Load Factor Transition Point
Consider a simple scenario involving a fixed set of long-
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lived flows. The goal of VCP is to reach a steady state
where the system is near full utilization, and the flows use
AIMD for congestion control. To achieve this steady state,
the choice of the load factor transition point at the VCP
senders should satisfy three constraints:

• The transition point should be sufficiently high to en-
able the system to obtain high overall utilization;

• After the flows perform an MD from an overloaded
state, the MD step should force the system to always
enter the high-load state, not the low-load state;

• If the utilization is marginally lower than the transition
point, a single MI step should only lift the system into
the high-load state, but not the overload state.

Let β < 1 denote the MD factor, i.e., when using the MD
algorithm, the sender reduces the congestion window with
the factor β (as in Equation (4) in Section 3.3). The first
constraint requires a high transition point. This choice cou-
pled with the second condition leads to a high value of β.
However, a very high value of β is undesirable as it decreases
VCP’s response to congestion. For example, if the transi-
tion point is 95%, then β > 0.95, and it takes VCP about 14
RTTs to halve the congestion window. At the other end, if
we chose β = 0.5 (as in TCP [24]), the transition point can
be at most 50%, which reduces the overall network utiliza-
tion. To balance these conflicting requirements, we chose
β = 0.875, the same value used in the DECbit scheme [56].
Given β, we set the load factor transition point to 80%.
This gives us a “safety margin” of 7.5%, which allows the
system to operate in the AIMD mode in steady state. In
summary, we choose the following three ranges to encode
the load factor ρl (see Figure 2):

• Low-load region: ρ̂l = 80% when ρl ∈ [0%, 80%);

• High-load region: ρ̂l = 100% when ρl ∈ [80%, 100%);

• Overload region: ρ̂l > 100% when ρl ∈ [100%,∞).

Thus, the quantized load factor ρ̂l can be represented us-
ing a two-bit code ρ̂c

l , i.e., ρ̂c
l = (01)2, (10)2 and (11)2 for

ρ̂l = 80%, ρ̂l = 100% and ρ̂l > 100%, respectively. The
code (00)2 is reserved for ECN-unaware source hosts to sig-
nal “not-ECN-capable-transport” to ECN-capable routers,
which is needed for incremental deployment [55]. The en-
coded load factor is embedded in the two-bit ECN field in
the IP header.

Estimation of the load factor: Due to the bursty na-
ture of the Internet traffic, we need to estimate the load
factor over an appropriate time interval, tρ. When choos-
ing tρ we need to balance two conflicting requirements. On
one hand, tρ should be larger than the RTTs experienced by
most flows to factor out the burstiness induced by the flows’

responses to congestion. On the other hand, tρ should be
small enough to avoid queue buildup. Internet measure-
ments [53, 29] report that roughly 75%∼90% of flows have
RTTs less than 200 ms. Hence, we set tρ = 200ms. Dur-
ing every time interval tρ, each VCP router estimates a load
factor ρl for each of its output links l as [26, 33, 17, 2, 41]:

ρl =
λl + κq · q̃l

γl · Cl · tρ
. (1)

Here, λl is the amount of input traffic during the period
tρ, q̃l is the persistent queue length during this period, κq

controls how fast the persistent queue drains [17, 2] (we
set κq = 0.5), 1 γl is the target utilization [41] (set to a
value close to 1), and Cl is the link capacity. The input
traffic λl is measured using a packet counter. To measure
the persistent queue q̃l, we use a low-pass filter that samples
the instantaneous queue size, q(t), every tq, where tq ¿ tρ

(we chose tq = 10ms).

3.3 Congestion Control Parameter Setting
In this section, we discuss the choice of parameters used by

VCP to implement the MI/AI/MD algorithms. To simplify
the discussion, we consider a single link shared by flows,
whose RTTs are equal to the link load factor estimation
period, i.e., rtt = tρ. Hence, the flows have synchronous
feedback and their control intervals are also in sync with
the link load factor estimation. We will discuss the case of
heterogeneous RTTs in Section 3.4.

At any time t, a VCP sender performs one of the three
actions based on the value of the encoded load factor sent
by the network:

MI : cwnd(t + rtt) = cwnd(t)× ( 1 + ξ ) (2)

AI : cwnd(t + rtt) = cwnd(t) + α (3)

MD : cwnd(t + δt) = cwnd(t)× β (4)

where rtt = tρ, δt → 0+, ξ > 0, α > 0 and 0 < β < 1. Based
on the relationship between the choice of the load factor
transition point and the MD parameter β, we chose β =
0.875 (see Section 3.2). We use α = 1.0 as is in TCP [24].

Setting the MI parameter: The stability of VCP is
dictated by the MI parameter ξ. In network-based rate al-
location approaches like XCP, the rate increase of a flow at
any time is proportional to the spare capacity available in
the network [34]. Translating this into the VCP context, we
require the MI of the congestion window to be proportional
to 1 − ρ̂l where ρ̂l represents the current load factor. Dur-
ing the MI phase, the current sending rate of each flow is
proportional to the current load factor ρ̂l. Consequently, we
obtain

ξ(ρ̂) = κ · 1− ρ̂l

ρ̂l
, (5)

where κ is a constant that determines the stability of VCP
and controls the speed to converge toward full utilization.
Based on analyzing the stability properties of this algorithm
(see Theorem 1 in Section 5), we set κ = 0.25. Since end-
hosts only obtain feedback on the utilization region as op-
posed to the exact value of the load factor, they need to
1Note even though we explicitly take the router queue length
into account, VCP’s congestion measurement is essentially
a load-based, instead of queue-based, scheme. Adding the
queue length into the total amount of traffic only helps drain
the queue faster.
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make a conservative assumption that the network load is
near the transition point. Thus, the end-hosts use the value
of ξ(80%) = 0.0625 in the MI phase.

3.4 Handling RTT Heterogeneity with
Parameter Scaling

Until now, we have considered the case where competing
flows have the same RTT, and this RTT is also equal to the
load factor estimation interval, tρ. In this section, we relax
these assumptions by considering flows with heterogeneous
RTTs. To offset the impact of the RTT heterogeneity, we
need to scale the congestion control parameters used by the
end-hosts according to their RTTs.

Scaling the MI/AI parameters: Consider a flow with
a round trip time rtt, and assume that all the routers use the
same interval, tρ, to estimate the load factor on each link.
Let ξ and α represent the unscaled MI and AI parameters as
described in Section 3.3, where all flows have identical RTTs
(= tρ). To handle the case of flows with different RTTs, we
set the scaled MI/AI parameters ξs and αs as follows: 2

For MI : ξs ← (1 + ξ)
rtt
tρ − 1 , (6)

For AI : αs ← α · rtt

tρ
. (7)

An end-host uses the scaled parameters ξs and αs in (2)
and (3) to adjust the congestion window after each RTT.
The scaling of these parameters emulates the behavior of all
flows having an identical RTT, which is equal to tρ. The
net result is that over any time period, the window increase
under either MI or AI is independent of the flows’ RTTs.
Thus, unlike TCP, VCP flow’s throughput is not affected by
the RTT heterogeneity [42, 51, 15].

Handling MD: MD is an impulse-like operation that is
not affected by the length of the RTT. Hence, the value of
β in (4) needs not to be scaled with the RTT of the flow.
However, to avoid over reaction to the congestion signal, a
flow should perform an MD at most once during an estima-
tion interval tρ. Upon getting the first load factor feedback
that signals congestion (i.e., ρ̂c

l = (11)2), the sender imme-
diately reduces its congestion window cwnd using MD, and
then freezes the cwnd for a time period of tρ for a new load
factor to be generated at the routers. After this period, the
end-host runs AI for one RTT, which is the time needed to
obtain the new load factor.

Scaling for fair rate allocation: RTT-based parameter
scaling, as described above, only ensures that the congestion
windows of two flows with different RTTs converge to the
same value in steady state. However, this does not guarantee
fairness as the rate of the flow is still inversely proportional
to its RTT, i.e., rate = cwnd/rtt. To achieve fair rate
allocation, we need to add an additional scaling factor to the
AI algorithm. To illustrate why this is the case, consider the
simple AIMD control mechanism applied to two competing
flows where each flow i (= 1, 2) uses a separate AI parameter
αi but a common MD parameter β. At the end of the M -th
congestion epoch that includes n > 1 rounds of AI and one

2Equation (6) is the solution for 1 + ξ = (1 + ξs)
tρ
rtt where the

right-hand side is the MI amount of a flow with the RTT value
rtt, during a time interval tρ. Similarly, Equation (7) is obtained

by solving 1 + α = 1 +
tρ

rtt
αs.

round of MD in each epoch, we have

cwndi(M) = β · [ cwndi(M − 1) + n · αi ].

Eventually, each flow i achieves a congestion window that
is proportional to its AI parameter, αi. Indeed, the ratio of
the congestion windows of the two flows approaches α1/α2

for large values of M , and n > 1:

cwnd1(M)

cwnd2(M)
=

cwnd1(M − 1)/n + α1

cwnd2(M − 1)/n + α2

=
β · cwnd1(M − 2)/n + βα1 + α1

β · cwnd2(M − 2)/n + βα1 + α2

= · · · → α1

α2
.

Hence, to allocate bandwidth fairly among two flows, we
need to scale each flow’s AI parameter αi using its own RTT.
For this purpose, we use tρ as a common-base RTT for all the
flows. Thus, the new AI scaling parameter, αrate, becomes

For AI : αrate ← αs · rtt

tρ
= α · (rtt

tρ
)2. (8)

3.5 Protocol Description
Putting all the above-discussed building blocks together,

now we present the complete VCP protocol.

The router: The VCP router computes and encodes a
load factor based on the number of incoming packets and
the average queue for each output link. It tags the encoded
load factor ρ̂ l

p into the IP header of the outgoing data packet
if it is larger than the one, ρ̂ c

p , carried by the packet from
the upstream router. The VCP router also runs two priority
queues with the high priority queue for the ACK packets (to
minimize the feedback delay) and the low priority queue for
the data packets. The VCP router algorithm is described as
follows.

R.1) For each incoming packet p of size sp, update a
counter λl:

λl ← λl + sp // Count

R.2) When the queue sampling timer tq fires at time t:

q̃l ← a · q̃l + (1− a) · q(t) // Average

where a = 0.875; i.e., like RED, maintain a low-pass filtered
queue length q̃l using exponentially weighted moving average
(EWMA). We set tq = 10ms;

R.3) When the load factor measurement timer tρ fires:

ρl =
λl + κq · q̃l

γl · cl · tρ
// Measure

ρ̂c
l ← encode(ρl) // Encode

λl ← 0 // Reset

where κq = 0.5, tρ = 200ms, link target utilization γl = 0.98,
cl is the link capacity, and the encoding function is described
in Section 3.2;

R.4) For each dequeued data packet p that bears an en-
coded load factor ρ̂ c

p from upstream:

ρ̂ c
p ← max(ρ̂c

l , ρ̂ c
p ) // Tag
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Table 1: VCP Parameter Settings

Para Value Meaning

tρ 200 ms the link load factor measurement interval

tq 10 ms the link queue sampling interval

γl 0.98 the link target utilization

κq 0.5 how fast to drain the link steady queue

ξ 0.0625 the MI parameter

α 1.0 the AI parameter

β 0.875 the MD parameter

σmi 2.5 the MI scaling limiter

σai 10.0 the AI scaling limiter

The end hosts: The VCP receiver is the same as the
TCP Reno receiver, except that it copies the encoded two-
bit load factor ρ̂ c

p ECN from the data packet to its corre-
sponding ACK packet.

The VCP sender builds upon the TCP Reno sender. It
behaves like TCP Reno when packet loss happens. The
VCP sender initializes the encoded load factor ρ̂ c

p in the data
packet IP header to the smallest one, i.e, (00)2. It switches
its window-based control among MI/AI/MD according to
the encoded load factor ρ̂ c

p carried back by the ACK packet.
This switching is performed as follows.

S.1) For the low-/medium-load factors ρ̂ c
p = (00)2 or

(01)2, per ACK:

inc = (1.0 + ξ)
min( srtt

tρ
, σmi) − 1.0 // Scaling

cwnd ← cwnd + inc // MI

where ξ = 0.0625, srtt is the smoothed RTT measurement
in ms, tρ = 200ms, and the MI scaling limiter σmi = 2.5 (to
bound the bursty traffic introduced due to the MI scaling);

S.2) For the high-load factor ρ̂ c
p = (10)2, per ACK:

inc = α ·min((
srtt

tρ
)2 · w, σai) // Scaling

cwnd ← cwnd + inc / cwnd // AI

where α = 1.0, the AI scaling limiter σai = 10.0 (to bound
the bursty traffic introduced due to the AI scaling), and the
weight w is settable with a default value 1.0; (Section 4.5
has details on setting different weights for flows to achieve
weighted bandwidth sharing.)

S.3) For the overload factor ρ̂ c
p = (11)2, do the following

cut once, then firstly freeze cwnd for one tρ and secondly fol-
low S.2 for one srtt, regardless of the remaining load factor
feedbacks during these two time periods:

cwnd ← max(1.0, β · cwnd) // MD

where β = 0.875.

Table 1 summarizes the VCP router (upper part) and end-
host (lower part) parameters and their typical values.

4. PERFORMANCE EVALUATION
In this section, we use extensive ns2 simulations to evalu-

ate the performance of VCP for a wide range of network sce-
narios [18] including varying the link capacities in the range
[500Kbps, 5Gbps], round trip times in the range [1ms, 1.5s],

numbers of long-lived, FTP-like flows in the range [1, 1000],
and arrival rates of short-lived, web-like flows in the range
[1s−1, 1000s−1]. We always use two-way traffic with conges-
tion resulted in the reverse path. The bottleneck buffer size
is set to the bandwidth-delay product, or two packets per
flow, whichever is larger. The data packet size is 1000 bytes,
while the ACK packet is 40 bytes. All simulations are run
for at least 120s to ensure that the system has reached its
steady state. The average utilization statistics neglect the
first 20% of simulation time. For all the time-series graphs,
utilization and throughput are averaged over 500ms inter-
val, while queue length and congestion window are sampled
every 10ms. Throughout all the simulations in this paper,
we use the same set of parameter values listed in Table 1.
This suggests that VCP is robust in a large variety of envi-
ronments.

For comparison purpose, we also run simulations for other
schemes including TCP Reno [1], SACK [49], HSTCP [14],
STCP [35], FAST [30], BIC [64], CUBIC [57], HTCP [43],
and XCP [34], under the same network and traffic settings.
Except for XCP which has its own router algorithm, we
run RED [17] with ECN enabled in the bottleneck routers
for each of the above schemes (except REM [2] for FAST).
The protocol parameter settings of these schemes are those
recommended by their respective authors. The simulation
results demonstrate that, for a wide range of scenarios, VCP
achieves comparable performance to XCP, i.e., exponential
convergence to high utilization, negligible packet drop rate,
low persistent queue and reasonable fairness, except its sig-
nificantly slower fairness convergence speed than XCP. VCP
and XCP significantly outperforms the other eight schemes.

4.1 One Bottleneck
We first evaluate the performance of all the schemes for

the simple case of a single bottleneck link shared by multiple
flows. We study the effect of varying the link capacity, the
round-trip times, the number of flows on the performance of
VCP. The basic setting is a 150Mbps link with 80ms RTT
where the forward and reverse path each has 30 FTP flows.
We evaluate the impact of each network parameter in iso-
lation while retaining the others as the basic setting. Each
simulation result is averaged over five simulation runs with
random flow start times.

Varying Bottleneck Capacity: As illustrated in Fig-
ure 3, we observe that, among all the schemes, only VCP
and XCP achieve high utilization (> 90%) and no packet
drops across the whole range of bottleneck link capacities
varying from 500Kbps to 5Gbps. The utilization gap be-
tween VCP and XCP is at most 6% across the entire capac-
ity range. However, VCP maintains much lower persistent
bottleneck queue length (less than 20% bottleneck buffer
size, mostly below 2%) than XCP (10%∼ 47% buffer size).
This is because that the VCP router gives higher priority to
ACK packets than data packets, as described in Section 3.5.
We believe that XCP should be able to achieve the same
low-queue performance if it does the same.

For all the other schemes, as we scale the bottleneck ca-
pacity to beyond 200Mbps, the bottleneck utilization mostly
drops to around 70%∼ 80% (even less than 60% for HTCP
and FAST). When the capacity is below 5Mbps, all the
schemes result in higher than 4% packet loss rate.

Varying Feedback Delay: We fix the bottleneck capac-
ity at 150Mbps and vary the round-trip propagation delay
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Figure 3: One bottleneck with the capacity varying from 500Kbps to 5Gbps. Note the logarithmic scale of the x-axis.
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Figure 4: One bottleneck with the round-trip propagation delay ranging from 1ms to 1500ms.
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Figure 5: One bottleneck with the number of long-lived, FTP-like flows increasing from 1 to 1000.

from 1ms to 1.5s. As shown in Figure 4, we notice that,
in most cases, VCP’s bottleneck utilization is higher than
90%, and the average bottleneck queue is less than 2% buffer
size. We also observe that VCP’s RTT parameter scaling
is more sensitive to very low values of RTT (e.g., <5ms),
thereby causing the average queue length to grow to about
10%∼ 20% buffer size. For the RTT values larger than
800ms, VCP obtains lower utilization (80%∼ 90%) since the
link load factor measurement interval tρ = 200ms is much
less than the RTTs of the flows. As a result, the load condi-
tion measured in each tρ shows variations due to the bursty
nature of window-based control. This can be compensated
by increasing tρ; but the trade-off is that the link load mea-
surement will be less responsive causing the queue length to
grow. In all these cases of wide RTT variation, we did not
observe any packet drops in VCP.

Comparing to the other schemes, VCP’s performance is
comparable to XCP’s (lower utilization but also lower queue
length) and it performs significantly better than all the other
TCP variants, which achieve lower than 60% bottleneck uti-
lization when the RTT is higher than 400ms.

Varying The Number of Long-lived Flows: With an
increase in the number of forward FTP flows, we notice that
the traffic gets more bursty, as shown by the increasing trend
of the bottleneck average queue in Figure 5. However, even
when the network is very heavily multiplexed by more than
500 flows (i.e., the average per-flow BDP is no more than
3 packets), the 90-percentile queue is still less than 20% of
the buffer size. The average queue is consistently less than
5% buffer size across all the simulation cases.

For high per-flow BDP scenarios, where there is no more
than 10 flows on the forward path (i.e., the per-flow BDP is
150∼ 1500 packets), only VCP and XCP achieve higher than
90% bottleneck utilization. The other schemes’ bottleneck
utilization is only between 40% and 70%, far less than that
of VCP and XCP.

Varying Short-lived Traffic: To study VCP’s perfor-
mance in the presence of variability and burstiness in flow
arrivals, we add short-lived traffic into the network. These
flows arrive according to the Poisson process, with the aver-
age arrival rate varying from 1/ s to 1000/ s. Their transfer
size obeys the Pareto distribution with an average of 30
packets. As shown in Figure 6, VCP always maintains high
utilization (>95%) with small queue lengths (less than 3%
bottleneck buffer size) and no packet drops, similar to XCP
(which has higher queue lengths).

In summary, we note that across a wide range of network
configurations with a single bottleneck, VCP can achieve
high utilization, low persistent queue, and negligible packet
drops. VCP’s performance is comparable to XCP’s and is
significantly better than that of all the other schemes.

4.2 Multiple Bottlenecks
Next, we study the performance of VCP with a more com-

plex topology of multiple bottlenecks. For this purpose, we
use a typical parking-lot topology with seven links. There
are 30 long FTP flows traversing all the links in the forward
direction, and 30 long FTP flows in the reverse direction. In
addition, each individual link has 5 cross FTP flows travers-
ing in the forward direction. We run two sets of simulations
by varying link bandwidth and path RTT, respectively, in a
range of three to four orders of magnitudes.

Varying Bottleneck Capacity: First, we set all the
bottleneck links’ one-way propagation delay to 5ms. The
longest path’s round-trip propagation delay is 80ms. We
vary all the bottleneck links’ bandwidth from 500Kbps to
5Gbps. Figure 7 shows that, for all the cases, VCP performs
as good as in the single-bottleneck scenarios. It achieves
achieves at least 93% average bottleneck utilization (aver-
aged among all the seven bottlenecks), less than 5%-buffer-
size average queue length and no packet drops at all the
bottlenecks.
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Figure 6: One bottleneck with short-lived, web-like flows arriving/departing at a rate from 1/ s to 1000/ s.
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Figure 7: Seven bottlenecks with the capacity varying from 500Kbps to 5Gbps.
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Figure 8: Seven bottlenecks with the longest path’s round-trip propagation delay ranging from 1ms to 1000ms.

In comparison to XCP, one key difference is that VCP
penalizes flows that traverse more bottlenecks. For example,
when the bottlenecks’ capacity is 150Mbps, VCP allocates
??Mbps to each long flow that traverses all the seven bottle-
necks, and ??Mbps to each cross flow that passes one bottle-
neck; while all these flows get about ??Mbps under XCP. We
discuss the reason behind this in Section 5. The other TCP
variants exhibit similar behavior as VCP, except FAST.??

Varying Path RTT: Second, we fix all the bottlenecks’
bandwidth to 150Mbps and vary the longest path’s round-
trip propagation delay from 10ms to 1s. Again, VCP and
XCP outperform all the other schemes, as shown in Figure 8.
Comparing to XCP, VCP trades a few percent of bottleneck
utilization for lower bottleneck queue length. Both VCP
and XCP drop no packet for all the simulation cases.

In brief summary, the simulation results we obtain for the
multiple-bottleneck scenarios are consistent with the single-
bottleneck cases. VCP’s performance is close to XCP’s; both
significantly outperforms the other TCP variants.

4.3 RTT Fairness
TCP flows with different RTTs achieve bandwidth alloca-

tions that are proportional to 1/ rttz where 1 ≤ z ≤ 2 [42].
VCP alleviates this issue to some extent. Here we look at
the RTT-fairness of VCP and the other schemes. We have
30 FTP flows sharing a single 150Mbps bottleneck, with 30
FTP flows on the reverse path. Each forward flow i’s RTT
value rtti = 40+i∗rttdelta ms for i = 0, 1, ..., 29. We perform
eleven sets of simulations with rttdelta increasing from 0, 1,
2, ..., to 10 ms. When rttdelta = 0ms, all the flows’ RTTs
equal to 40ms; As rttdelta increases to 4ms, the RTTs are in
the range of [40ms, 156ms] with the RTT ratio of about 4;
When rttdelta = 10ms, the RTTs are in the range of [40ms,
330ms] with the RTT ratio of more than 8.

Figure 9 shows that, in terms of RTT fairness, XCP per-
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Figure 9: Jain’s fairness index under scenarios of one

bottleneck shared by flows with RTTs in the ranges from

[40ms, 40ms] to [40ms, 330ms].

forms the best by achieving Jain’s fairness index [28] 3 of 1.0
across tho whole set of simulations, closely followed by VCP
(0.94∼ 1.0) and CUBIC (0.94∼ 0.98). All the other seven
schemes fall short of distributing bandwidth fairly among
flows with heterogenous RTTs.4 Among the three RTT-fair
schemes, XCP’s average bottleneck utilization is 98% and
its 90-percentile bottleneck queue length is on average 30%
bottleneck buffer size. In contrast, VCP’s average bottle-
neck utilization is slightly less (94%) and the 90-percentile
bottleneck queue length is only 5% bottleneck buffer size,
while CUBIC achieves 88% average bottleneck utilization
and 10%-bottleneck-buffer-size 90-percentile queue.

The fairness discrepancy of VCP for large rttdelta cases
occurs due to the following reason. A flow with very high
RTT is bound to have high values for their MI and AI
parameters due to parameter scaling as described in Sec-
tion 3.4. To prevent sudden traffic bursts from such VCP
flows which can cause the bottleneck instantaneous queue to
increase substantially, we place bounds on the actual values

3It is defined by
(
∑N

i=1 xi)
2

N·∑N
i=1 x2

i
for flow rates xi, i ∈ [1, N ].

4It is debatable if we should allocate bandwidth equally re-
gardless of flow RTT. Here we assume we should do so. It is
easy to tailor VCP (by using (7) instead of (8) in Section 3.4)
to achieve bandwidth allocation proportional to RTT−1.
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Figure 10: VCP converges onto good fairness, high utilization and small queue. However, its fairness convergence

takes significantly longer time than XCP.
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Figure 11: VCP is robust against and responsive to sudden, considerable traffic demand changes, and at the same

time maintains low persistent bottleneck queue.
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Figure 12: VCP is able to differentiate bandwidth allocation among competing flows of heterogeneous RTTs. However,

the RTT heterogeneity limits the largest achievable wight.

of these parameters (see Section 3.5). These bounds restrict
the throughput of flows with very high RTTs.

4.4 Dynamics
All the previous simulations focus on comparing the steady-

state behavior of VCP and the other schemes. Now, we
investigate the short-term dynamics of VCP.

Convergence Behavior: To study the convergence be-
havior of VCP, we revert to the single bottleneck link with
a bandwidth of 45Mbps where we introduce 5 flows into the
system, one after another, with starting times separated by
100s. We also set the RTT values of the five flows to differ-
ent values. The reverse path has 5 flows that are always ac-
tive. Figure 10 illustrates that VCP reallocates bandwidth
to new flows whenever they come in without affecting its
high utilization or causing large instantaneous queue. How-
ever, VCP takes a much longer time than XCP to converge
to the fair allocation. We theoretically quantify the fair-
ness convergence speed for VCP in Theorem 4 in Section 5,
where we also show that VCP’s susb-linear fairness conver-
gence can be significantly improved to exponential speed
using a larger number (e.g., eight) of ECN bits.

Sudden Demand Change: We illustrate how VCP re-
acts to sudden changes in traffic demand using a simple sim-
ulation. Consider an initial setting of 50 forward FTP flows
with varying RTTs (uniformly chosen in the range [60ms,
160ms]) sharing a 200Mbps bottleneck link. There are 50
FTP flows on the reverse path. At t=80s, 150 new forward
FTP flows become active; then they leave at 160s. Figure 11
clearly shows that VCP can adapt sudden fluctuations in the
traffic demand. (The left figure draws the congestion win-
dow dynamics for four randomly chosen flows.) When the

new flows enter the system, the flows adjust their rates to
the new fair share while maintaining the link at high uti-
lization. At t=160s, when three-fourths of the flows depart
creating a sudden drop in the utilization, the system quickly
discovers this and ramps up to 95% utilization in about 5
seconds. Notice that during the adjustment period, the bot-
tleneck queue remains much lower than its full size. This
simulation shows that VCP is responsive to sudden, signifi-
cant decreases/increases in the available bandwidth. This is
no surprise because VCP switches to the MI mode which by
nature can track any bandwidth change in logarithmic time
(see Theorem 3 in Section 5).

4.5 Bandwidth Differentiation
The analysis in Section 3.4 shows that the steady state

bandwidth allocation of an AIMD scheme is proportional to
the AI parameter α, given the same MD parameter β. Thus,
by simply scaling αrate in Equation (8) with a weight ωi for
each flow i:

αi ← ωi · αrate = ωi · α · (rtt

tρ
)2, (9)

VCP can provide differentiated bandwidth to competing
flows that are on the same path.

Weighted Bandwidth Sharing: Figure 12 shows VCP’s
bandwidth differentiation capability. In our first simulation,
a 10Mbps bottleneck is shared by 3 FTP flows with different
RTTs: rtt1 = 60ms, rtt2 = 80ms, rtt3 = 100ms, and differ-
ent weights: ω1 = 3, ω2 = 2, ω3 = 1. They all start at 0s
but stop at 40s, 80s, and 120s, respectively. There are also
3 reverse FTP flows that are always on and all with weight
1. The left and middle figures in Figures 12 clearly demon-
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strate that the bottleneck bandwidth is distributed among
the three flows according to their specified weights without
introducing large queue in the bottleneck.

Achievable Weight Range: In our second set of sim-
ulations, we evaluate the range of weights achievable. We
have a bottleneck of capacity 100Mbps shared by 10 FTP
flows of heterogeneous RTT ranging from 60ms to 150ms
(rtti = 50 + 10 × i ms for i = 1, 2, . . . , 10). One flow has
a varying weight in [1, 20] while others have the same unit
weight. There are also 10 reverse FTP flows all with unit
weight. We simulate three cases with the weighted flow be-
ing flow #1 (60ms RTT), #5 (100ms RTT) and #10 (150ms
RTT), respectively. Each simulation runs for 150s. The
rightmost Figure 12 shows the achieved bandwidth ratio
between the weighted flow and the average of all the oth-
ers. The achieved weight range for flow #1 is [1.0, 20.4],
closely matching the specified wights, while flows #5 and
#10 achieve only [1.0, 15.2] and [1.0, 6.6], respectively, indi-
cating the influence of their larger RTTs. All these results
are achieved while the bottleneck is highly utilized with low
persistent queue.

The effect of RTT heterogeneity on the achievable weight
range is due to the following reason. Note the AI parameter
scaling in Equation (9) might introduce a significant amount
of bursty traffic within one RTT if rtt À tρ or ω is huge and
therefore cause packet losses. To limit this effect, similar to
the previous discussion in Section 4.3, we impose an upper
bound on αi such that the burstiness can be effectively ab-
sorbed by the router buffer. This upper bound causes the
large-RTT flows to receive a lower bandwidth share than
otherwise.

5. A FLUID MODEL
To obtain insight into the VCP protocol, in this section,

we analyze its stability, fairness, and convergence properties
using a simplified fluid model. We start our analysis by
considering a single bottleneck with infinite buffer traversed
by N flows that have the same RTT, T .

To make the analysis tractable, we use the following load-
factor guided algorithm to approximate the behavior of VCP
as defined by (2), (3), and (4) in Section 3.3:

ẇi(t) =
1

T
· [ wi(t) · ξ(ρ(t)) + α ] (10)

with the MI parameter

ξ(ρ(t)) = κ · 1− ρ(t)

ρ(t)
, (11)

where κ > 0 is the stability coefficient of the MI parameter.
In the remainder of this section we will refer to this model as
the MIAIMD model. This model makes three simplifications
comparing to the VCP protocol. First, it uses the exact load
factor value ρ(t), while VCP uses a quantized value of the
load factor. Second, in the MI and AI phases, VCP uses
either the multiplicative factor or the additive factor term,
but not both as the MIAIMD model does. Third, in the
overload region, VCP applies a constant MD parameter β
instead of ξ(ρ(t)).

As shown in Figure 13, the load factor ρ(t) received by the
source at a time t is computed based on the sender’s rate at
time t− T ,

ρ(t) =

∑N
i=1 wi(t− T )

γCT
, (12)

router ρ
ξ

tt−Tsource

destination

time

Figure 13: A simplified VCP model. The source sending

rate at time t − T is used by the router to calculate a

load factor ρ, which is echoed back from the destination

to the source at time t. Then the source adjusts its MI

parameter ξ(ρ(t)) based on the load factor ρ(t).

where wi(t) is the flow i’s congestion window at time t, C
is the link capacity, and 0 < γ ≤ 1 is the target link uti-
lization. We assume that wi(t) is a positive, continuous and
differentiable function, and T is a constant.

Since ξ(ρ(t)) is proportional to the available bandwidth,
the MIAIMD algorithm tracks the available bandwidth ex-
ponentially fast and thus achieves efficiency. It also con-
verges to fairness as we will show in Theorem 2. 5

Using (10) to sum over all N flows yields

ẇ(t) =
1

T
· [ w(t) · ξ(ρ(t)) + Nα ] (13)

where w(t) =
∑N

i=1 wi(t) is the sum of all the congestion
windows. This result, together with (11) and (12), leads to

ẇ(t) =
1

T
· {κ · w(t) · [ γCT

w(t− T )
− 1 ] + Nα } (14)

where w(t) > 0. We assume the initial condition w(t) = N
(i.e., wi(t) = 1), for all t ∈ [−T, 0]. In [63], we prove the
following global stability result.

Theorem 1. Under the model (10), (11) and (12) where
a single bottleneck is shared by a set of synchronous flows
with the same RTT, if κ ≤ 1

2
, then the delayed differential

equation (14) is globally asymptotically stable with a unique
equilibrium w∗ = γCT + N α

κ
, and all the flows have the

same steady-state rate r∗i = γC
N

+ α
κT

.

This result has two implications. First, the sufficient con-
dition κ ≤ 1

2
holds for any link capacity, any feedback delay,

and any number of flows. Furthermore, the global stability
result does not depend on the network parameters. Second,
this result is optimal in that at the equilibrium, the system
achieves all the design goals: high utilization, fairness, zero
steady-state queue length, and zero packet loss rate—this is
because we can always adjust γ such that the system stabi-
lizes at a steady-state utilization slightly less than 1.

Importance of γ: While (12) defines γ as the target

utilization, the actual utilization is w∗
CT

= γ + α
κP

where

P = CT
N

is the per-flow BDP. To achieve a certain target
utilization γ∗, γ should be treated as a control variable and
set to γ = γ∗ − α

κP
. To make this adjustment process au-

tomatic without even knowing α, κ and P , we vary γ at a
time scale that is much larger than one RTT, i.e.,

γ(t + Tγ) = γ(t) + sgn (γ∗ − γ̃∗(t)) · δγ (15)

where Tγ À T , sgn(·) is the sign function, γ̃∗(t) is a low-pass

5Theorem 2 actually proves the max-min fairness for a general
multiple-bottleneck topology. For a single link, max-min fairness
means each flow gets an equal share of the link capacity.
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filtered link utilization which is very easy to measure at the
router, and 0 < δγ ¿ γ∗ is a constant stepsize (set to 0.01).
This adjustment process will stop if and only if the target
utilization γ∗ has been achieved.

For the case of heterogeneous delays, suppose flow i’s RTT
is Ti, for all i ∈ [1, N ]. If we still have a unique equilibrium,
then it is straight-forward to show that the equilibrium win-
dow size w∗ = γCT̂h + N α

κ
where T̂h = N/

∑N
i=1

1
Ti

, which

is the harmonic average of all the RTTs, and flow i has a

steady-state rate r∗i = γC
N

T̂h
Ti

+ α
κ

1
Ti

.

Next, we consider a more general multiple-bottleneck net-
work topology. Let ρi(t) denote the maximal link load fac-
tor on flow i’s path Li that includes a subset of links, i.e.,
Li = { l | flow i traverses link l}. The MI parameter of flow
i is then

ξ(ρi(t)) = κ · [ 1

ρi(t)
− 1 ], (16)

where ρi(t) = maxl∈Li ρl(t), ρl(t) =
∑

i∈Il
wi(t−T )

γClT
, and the

subset of flows Il = { i | flow i traverses link l}. We prove
the following fairness result in [63].

Theorem 2. In a multiple-bottleneck topology where all
flows have the same round-trip time T , if there exists a
unique equilibrium, then the algorithm defined by (10) and
(16) allocates a set of max-min fair rates r∗i = α

κT (1− 1
maxl∈Li

ρ∗
l

)

where ρ∗l =
∑

i∈Il
w∗i

γCT
.

To better understand this result note that a flow’s sending
rate is determined by the most congested bottleneck link
on its path. Thus, the flows traversing the most congested
bottleneck links in the system will naturally experience the
lowest throughputs.

Having established the stability and fairness properties of
the MIAIMD model, we now turn our attention on the con-
vergence of the VCP protocol. The following two theorems,
proved in [63], give the convergence properties.

Theorem 3. The VCP protocol takes O(log C) RTTs to
claim (or release) a major part of any spare (or over-used)
capacity C.

Theorem 4. The VCP protocol takes O(P log ∆P ) RTTs
to converge onto fairness for any link, where P is the per-
flow bandwidth-delay product, and ∆P > 1 is the largest
congestion window difference between flows sharing that link.

Not surprisingly, due to the use of MI in the low-load
region, VCP converges exponentially fast to high utilization.
On the other hand, VCP’s convergence time to fairness is
similar to other AIMD-based protocols, such as TCP+AQM.
In contrast, explicit feedback schemes like XCP require only
O(log ∆P ) RTTs to converge to fairness. This is because
the end-host based AIMD algorithms improve fairness per
AIMD epoch, which includes O(P ) rounds of AI and one
round of MD, while the equivalent operation in XCP takes
only one RTT.

The comparison between the simulation results of VCP
and the analytical results of the MIAIMD model suggests
that the two differ most notably in terms of the fairness
model. While in the case of multiple bottleneck links, the
MIAIMD model achieves max-min fairness [4], VCP tends
to allocate more bandwidth to flows that traverse fewer bot-
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Figure 14: The sub-linear fairness convergence of the

VCP protocol (shown in Figure 10) can be improved sig-

nificantly if the load factor information is encoded with

8 ECN bits.

tleneck links (see Section 4.2). This is because VCP relies
on the quantized representation of the load factor instead of
the exact value.

Given a larger number of bits to encode the load factor
value ρ(t), within one AIMD epoch VCP will be able to do
multiple MD cuts with an adaptive MD parameter ξ(ρ(t)), as
oppose to the constant β, and thus can potentially improve
its fairness convergence speed. To demonstrate this we use
eight ECN bits to encode the value of the load factor (with
finer than 1% precision) and repeat the first simulation in
Section 4.4. Figure 14 shows that, comparing to the sub-
linear convergence speed in Figure 10, VCP now converges
onto fairness exponentially.

6. DISCUSSIONS
Since VCP switches between MI, AI, and MD algorithms

based on the load factor feedback, there are natural concerns
with respect to the impact of these switches on the system
stability, efficiency, and fairness, particularly in systems with
highly heterogeneous RTTs. We discuss these concerns as
well as VCP’s TCP-friendliness and incremental deployment
in this section.

6.1 Stability under Heterogeneous Delays
Although the MIAIMD model presented in Section 5 is

provably stable, it assumes synchronous feedback. To ac-
commodate heterogeneous delays, VCP scales the MI/AI
parameters such that flows with different RTTs act as if
they were having the same RTT. This scaling mechanism
is also essential to achieving fair bandwidth allocation, as
discussed in Section 3.4.

In normal circumstances, VCP makes a transition to MD
only from AI. However, even if VCP switches directly from
MD to MI, if the demand traffic at the router does not
change significantly, VCP will eventually slide back into AI.

Finally, to prevent the system from oscillating between
MI and MD, we set the load factor transition point ρ̂l to
80%, and set the MD parameter β to 0.875 > ρ̂l. This gives
us a safety margin of 7.5%.

The extensive simulation results presented in Section 4
suggest that VCP is indeed stable over a large variety of net-
work scenarios including per-flow bandwidths from 2Kbps to
100Mbps and RTTs from 1ms to 1.5s.

6.2 Influences of Mode Sliding
From an efficiency perspective, VCP’s goal is to bring and

maintain the system into the high utilization region. While
MI enables VCP to quickly reach the high link utilization,
VCP needs also to make sure that the system remains in this
state. The main mechanisms employed by VCP to achieve
this goal is the scaling of the MI/AI parameters for flows
with different RTTs. In addition to improving fairness, this
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Figure 15: The congestion window dynamics of

two flows with dramatically different RTTs (50ms vs.

500ms). Due to its longer delay, the larger-RTT flow al-

ways slides its mode later than the one with smaller RTT

(see the regions labeled as A and B). However, the ef-

fect of this asynchronous switching is accommodated by

VCP and does not prevent it from maintaining stability

and achieving efficiency and fairness.

scaling is essential to avoid oscillations. Otherwise, a flow
with a low RTT may apply MI several times during the
estimation interval, tρ, of the link load factor. Other mech-
anisms employed by VCP to maintain high efficiency include
choosing an appropriate value of the MD parameter to re-
main in the high utilization region, using a safety margin be-
tween MI and AI, and bounding the burstiness (Section 4.3).

As discussed in Section 3.4, there are two major concerns
with respect to fairness. First, a flow with a small RTT
probes the network faster than a flow with a large RTT.
Thus, the former may increase its bandwidth much faster
than the latter. Second, it will take longer for a large-RTT
flow to switch from MI to AI than a small-RTT flow. This
may give the large-RTT flow an unfair advantage. VCP ad-
dresses the first issue by using the RTT scaling mechanism
(see (6)-(7)). To address the second issue, VCP bounds the
MI gain, as discussed in Section 4.3. To illustrate the effec-
tiveness of limiting the MI gain, Figure 15 shows the con-
gestion window evolution for two flows with RTTs of 50ms
and 500ms, respectively, traversing a single 10Mbps link. At
time 12.06s, the 50ms-RTT flow switches from MI to AI. In
contrast, due to its larger RTT, the 500ms-RTT flow keeps
performing MI until time 12.37s. However, because VCP
limits the MI gain of the 500ms-RTT flow, the additional
bandwidth acquired by this flow during the 0.31s interval
is only marginal when compared to the bandwidth acquired
by the 50ms-RTT flow.

6.3 TCP-Friendliness
We define a VCP flow to be TCP-friendly with a compet-

ing TCP flow if the steady state throughput of the TCP flow
matches what it would when competing with a normal TCP
flow [51, 15]. However in high BDP networks, a VCP flow
should be able to leverage the additional bandwidth unused
by the TCP flows while not affecting the throughput of TCP
flows. Because VCP operates with AIMD in steady state, it
is straight-forward to tailor it to exhibit TCP-friendly be-
havior. At the end host, to match TCP’s AI parameter, we

need to change the VCP AI parameter to α = 3(1−β)
1+β

= 0.2

according to the TCP-friendly general AIMD formula [65].
At the router, when the encoded load factor ρ̂c

l = (11)2, we
need to replace the original deterministic ECN marking with
a probabilistic one similar to RED [17]. For TCP sources, in
accordance with the ECN proposal, the encoded load factors
(01)2 and (10)2 correspond to no congestion, while (11)2 to
congestion.

6.4 Incremental Deployment

If VCP is to be gradually deployed on the Internet, the
deployment could follow the similar path as CSFQ [58] and
XCP on an island-by-island basis. Therefore, even though
VCP looks simpler than XCP, the deployment cost is quite
similar, not much less. The deployment, however, will still
benefit from VCP’s simplicity: It does not need a new field
in the IP header; the needed two-bit space has been stan-
dardized for congestion control purposes by the current ECN
proposal and VCP uses it in a way that is a natural gener-
alization of ECN. From the end hosts perspective, VCP can
be made TCP-friendly, as described earlier. On the network
side, as we have shown, the VCP router is scalable in that it
does not keep any per-flow state and its algorithm complex-
ity is very low. This makes it deployable in high speed core
networks. The traffic inside an VCP island will immediately
enjoy VCP’s capability of maintaining high utilization, low
persistent queue and minimal packet drop. The cross traffic
that passes an VCP island between two border routers will
be mapped onto an VCP flow from the ingress router to the
egress router. These border routers do need to keep per-
VCP-flow state. However, since the VCP flow is aggregated
from the passing micro-flows, this will not cause scalability
problems.

7. RELATED WORK
This paper builds upon a great body of related work, par-

ticularly XCP [34], TCP [24, 1, 16, 49], AIMD [10, 28],
AQM [17, 2, 41] and ECN [55, 56]. Congestion control is
pioneered by TCP and AIMD. The research on AQM starts
from RED [17, 45], followed by Blue [13], REM [2], PI con-
troller [22], AVQ [20, 41], and CHOKe [52], etc. Below we
relate VCP to three categories of congestion control schemes
and a set of analytical results.

Explicit rate based schemes: XCP regulates source
sending rate with decoupled efficiency control and fairness
control and achieves excellent performance. ATM ABR ser-
vice (e.g., see [39, 9, 32, 26, 33]) previously proposes explicit
rate control. VCP learns from these schemes. In contrast,
VCP is primarily an end-host based protocol. This key dif-
ference brings new design challenges not faced by XCP (and
the ATM ABR schemes) and thus VCP is not just a “two-
bit” version of XCP. The idea of classifying network load
into different regions is originally presented in [27]. The link
load factor is suggested as a congestion signal in [26], based
on which VCP quantizes and encodes it for a more compact
representation for the degree of congestion. MaxNet [62]
uses the maximal congestion information among all the bot-
tlenecks to achieve max-min fairness. QuickStart [25] oc-
casionally uses several bits per packet to quickly ramp up
source sending rates. VCP is complementary to QuickStart
as it constantly uses two bits per packet.

Congestion notification based schemes: For high BDP
networks, according to [34], the performance gap between
XCP and TCP+RED/REM/AVQ/CSFQ [58] with one-bit
ECN support seems large. VCP generalizes one-bit ECN
and applies some ideas from these AQM schemes. For exam-
ple, RED’s queue-averaging idea, REM’s match-rate-clear-
buffer idea and AVQ’s virtual-capacity idea obviously find
themselves in VCP’s load factor calculation in Equation (1).
This paper demonstrates that the marginal performance gain
from one-bit to two-bit ECN feedback could be significant.
On the end-host side, two-bit ECN is also used to choose
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different decrease parameters for TCP in [12], which is very
different from the way VCP uses. GAIMD [65] and the bino-
mial control [3] generalize the AIMD algorithm, while VCP
goes even further to combine MIMD with AIMD.

Pure end-to-end schemes: Recently there have been
many studies on the end-to-end congestion control for high
BDP networks. HSTCP [14] extends the standard TCP
by adaptively setting the increase/decrease parameters ac-
cording to the congestion window size. H-TCP [43] em-
ploys an adaptive AIMD with its parameters set as func-
tions of the elapsed time since the last congestion event.
Adaptive TCP [37] also applies dynamic AIMD parameters
with respect to the changing network conditions. STCP [35]
changes to a fixed MIMD algorithm. FAST [30] uses queue-
ing delay, like TCP Vegas [6], instead of packet loss, as
its primary congestion signal and improves Vegas’ Additive-
Increase-Additive-Decrease policy with a proportional con-
troller. BIC [64, 57] adds a binary search phase into the
standard TCP to probe the available bandwidth in a log-
arithmic manner. LTCP [5] layers congestion control of
two scales for high speed, large RTT networks. TCP West-
wood [8] enhances the loss-based congestion detector using
more robust bandwidth estimation techniques. All these
end-to-end schemes do not need explicit feedback. There-
fore, it is hard for them to achieve both low persistent bottle-
neck queue length and almost zero congestion-caused packet
loss rate. VCP does need explicit two-bit ECN but is able
to maintain low queue and almost zero loss. The extensive
simulations in Section 4 show that, even with AQM/ECN
support from network, these schemes still can not achieve
similar performance as VCP in high BDP networks.

Analytical Results: The nonlinear optimization frame-
work [36, 46, 40] provides the above schemes a unified the-
oretic underpin and proposes a class of control algorithms.
The local stability of the algorithms when homogeneous de-
lay is present is considered by [31, 59] and then extended to
the case of heterogeneous delays by [48]. The local stability
of a modified algorithm for the case of heterogeneous delays
is proved by [67], which establishes a model that is similar
to what we show in Section 5. In contrast, a global stabil-
ity result is obtained in this paper for the case of a single
bottleneck with homogeneous delays. The global stability of
more general congestion controllers are considered by other
researchers, e.g., in [60, 11, 66].

8. SUMMARY AND FUTURE WORK
In this paper, we propose VCP, a simple, low-complexity

congestion control protocol for high BDP networks. Us-
ing extensive ns2 simulations, we show that VCP achieves
high utilization, reasonable fairness, low persistent bottle-
neck queue, and negligible packet loss rate. VCP achieves
all these desirable properties while requiring only two bits
to encode the network congestion information. Since it can
leverage the two ECN bits to carry this information, VCP
requires no changes of the IP header. In this respect, VCP
can be seen as an extension of the TCP+AQM/ECN pro-
posals that scales to high BDP networks.

To better understand the behavior of VCP, we propose
a fluid model, and use this model to analyze the efficiency,
fairness, and convergence properties of a simplified version of
VCP. Particularly, we prove that the model is globally stable
for the case of a single bottleneck link shared by long-lived

flows with identical RTTs.
As future work, it would be interesting to study if we can

design a pure end-to-end VCP without any explicit conges-
tion information from network. One possibility would be to
use packet loss to differentiate between overload and high-
load regions and to use RTT variation to differentiate be-
tween high-load and low-load regions. 6 While in this paper
we evaluate VCP through extensive simulations, ultimately,
only a real implementation and deployment will allow us to
asses the strengths and limitations of VCP.

The ns2 implementation and simulation code of VCP is
available at http://networks.ecse.rpi.edu/∼xiay.
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11. APPENDIX

11.1 Proof of Theorem 1
To analyze the stability of Equation (14), let y(t) = γCT

w(t)
,

then after some manipulation we obtain

ẏ(t) = k1 y(t) [1− y(t− T )− k2 y(t)] (17)

where k1 = κ
T

> 0, and k2 = Nα
κ γCT

> 0. We also have, for

all t > 0, y(t) ≥ 0 since w(t) > 0, and the initial condition
y(t) > 0 (since we assume w(t) = N < ∞) for t ∈ [−T, 0].

Observing that the trivial solution y(t) = 0 is not a stable
equilibrium of this equation, since any small perturbation
will move the system further off the origin, we therefore
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assume y(t) > 0, ∀t > 0. Physically, this assumption means
that, at any time, the congestion window w(t) is not infinite,
which generally holds in reality.

To prove this theorem, we first establish two lemmas, ap-
plying the techniques developed in [61, 38, 21], to which we
would like to give credit.

Lemma 1. If κ ≤ 1 − Nα
γCT

, then (17) has a unique equi-

librium y∗ = 1
1+k2

that is globally asymptotically stable.

Proof. Substituting x(t) = y(t)− y∗ in (17) we get

ẋ(t) = −k1 [ y∗ + x(t) ] [ x(t− T ) + k2 x(t) ] (18)

with a solution

y∗+ x(t) = [ y∗+ x(t0) ] · e−k1
∫ t−T

t0−T
[ x(τ)+k2 x(τ+T ) ] dτ

(19)

where t0 is a constant [38]. To show limt→+∞ x(t) = 0, we
treat separately the following two cases.

Case #1. If x(t) is not oscillatory, i.e., |x(t)| > 0 when t >
t1 for some t1 > 0. For x(t) > 0, when t > t1 + T , we have
ẋ(t) < 0 due to (17), which means x(t) is strictly decreasing
for all t > t1 + T . Because x(t) > 0, there exists a constant
c such that limt→+∞ x(t) = c and thus limt→+∞ ẋ(t) = 0.
We must have c = 0. Otherwise c > 0, then limt→+∞ ẋ(t) =
−c k1(y

∗ + c)(1 + k2) < 0 according to (17), resulting in a
contradiction. The same analysis applies to when x(t) < 0;

Case #2. If x(t) is oscillatory, i.e., there is a sequence
t′l > t2 for some t2 > 0, t′l → +∞ as l → +∞, such that
x(t′l) = 0 for all t′l. We firstly prove that x(t) is bounded
when t > t2. Obviously x(t) is lower bounded, since x(t) =
y(t)− y∗ > −y∗ as y(t) > 0. Now we show that x(t) is also
upper bounded. Let t3, t4 ∈ (t2,∞), t3 < t4 be any two
consecutive zeros of x(t) such that x(t) > 0 for t3 < t < t4.
( If x(t) < 0 we get an upper bound 0.) Because w(t) is
continuous and differentiable, so does x(t) = y(t) − y∗ =
γCT
w(t)

−y∗. Since x(t3) = x(t4) = 0, x(t) has a local maximum

in the interval (t3, t4). Denote it as x(tm) where t3 < tm <
t4, we have x(t) ≤ x(tm) for all t ∈ (t3, t4). We also have
ẋ(tm) = 0, which deduces x(tm − T ) + k2 x(tm) = 0 from
(18). Substituting this result, x(t) > −y∗, and y∗ = 1

1+k2

in (19) and setting t0 = tm − T , t = tm, we get

−k1

∫ t−T

t0−T

[ x(τ) + k2 x(τ + T ) ] dτ < k1T

and thus

x(t) ≤ x(tm) <
y∗(ek1T − 1)

1 + k2ek1T
(20)

for all t ∈ [t3, t4]. Repeating this process for all the consec-
utive zero pairs of x(t) in (t2,∞), we conclude that x(t) is
bounded for t > t2.

Since x(t) is continuous and bounded, denote

u = lim sup
t→+∞

x(t), v = − lim inf
t→+∞

x(t). (21)

Obviously we have

u ≥ −v. (22)

We now prove that u = v = 0 (therefore limt→+∞ x(t) = 0).
Let ε > 0 be an arbitrarily small constant such that, for all
t > t5 = t5(ε) > 0,

−v − ε < x(t) < u + ε. (23)

As per the definition of u, we can always find a local max-
imum x(tn) > u − ε for tn > t5 + T . Applying the same
technique used to derive (20) on tn, plus the left half of
(23), we get

u− ε < x(tn) <
y∗[ eφ(v+ε) − 1 ]

1 + k2eφ(v+ε)
(24)

where φ = k1(1 + k2)T = κ + Nα
γCT

> 0. Since (24) holds for
all ε > 0, we conclude

u ≤ y∗(eφv − 1)

1 + k2eφv
, (25)

where 0 < y∗ = 1
1+k2

< 1 and k2 > 0. Following similar

steps in deriving (25) on a local minimum generates

v ≤ y∗(1− e−φu)

1 + k2e−φu
. (26)

Now we discuss the following combinations of u and v and
show that the only possibility is u = v = 0, if φ ≤ 1.

i) If u < 0, then v < 0 according to (26), so −v > 0 > u,
violating (22);

ii) If u = 0, then v ≥ 0 from (22). We have v ≤ 0 as well
due to (26). Therefore v = 0;

iii) If u > 0, then v > 0 according to (25). From (26) we
have v < y∗ < 1. If φ ≤ 1, we get

1 + u < eφv ≤ ev < e1−e−φu ≤ e1−e−u

. (27)

However, for u > 0, we have

1 + u− e1−e−u

=

∫ u

0

∫ ζ

0

(1− e−η)e(1−e−η−η)dηdζ > 0

which is a conflict with (27).
To sum up, we must have u = v = 0 if φ ≤ 1, i.e.,

κ ≤ 1− Nα
γCT

, which deduces limt→+∞ x(t) = 0.

Next we turn to the second lemma.

Lemma 2. If κ < Nα
γCT

, then (17) has a unique equilibrium

y∗ = 1
1+k2

that is globally asymptotically stable.

Proof. Consider the following function [21]

V (t) = y(t)− y∗ log y(t) +
k1

2

∫ t

t−T

[ y(τ)− y∗]2 dτ. (28)

Again let x(t) = y(t)− y∗. Due to (17) and k1 > 0 we have

dV

dt
= ẏ(t) [1− y∗

y(t)
] +

k1

2
[ x2(t)− x2(t− T ) ]

=
ẏ(t) x(t)

y(t)
+

k1

2
[ x2(t)− x2(t− T ) ]

= −k1 x(t)[k2 x(t) + x(t− T )] +
k1

2
[ x2(t)− x2(t− T ) ]

= −k1

2
[ (2k2 − 1) x2(t) + x2(t− T ) + 2x(t)x(t− T ) ]

= −k1

2
{ 2(k2 − 1) x2(t) + [x(t) + x(t− T )]2 }

≤ −k1(k2 − 1) x2(t). (29)

Integrating this inequality over [0, t], we have

V (t) + k1(k2 − 1)

∫ t

0

x2(τ) dτ ≤ V (0) (30)
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where V (0) = y(0) − y∗ log y(0) + k1
2

∫ 0

−T
[ y(τ) − y∗]2 dτ is

bounded since y(t) is finite when t ∈ [−T, 0].
Note we have proved in Lemma 1 that x(t) is bounded for

all t > t2 for some t2 > 0. So does y(t) because y(t) = x(t)+
y∗. Thus V (t) is also bounded. If k2 > 1 (i.e., κ < Nα

γCT
),

we must have limt→+∞ x(t) = 0 since otherwise we obtain

k1(k2 − 1)
∫ t

0
x2(τ) dτ → +∞ as t → +∞, resulting in a

conflict with (30).

Now we are ready to prove the theorem. When κ ≤ 1
2
, we

always have at least one of the two inequalities, κ ≤ 1− Nα
γCT

and κ < Nα
γCT

, holds. We thus complete the proof using

the above two lemmas. The equilibrium of (14) is therefore
w∗ = γCT

y∗ = γCT + N α
κ
.

The steady-state load factor, due to (12), is ρ∗ = w∗
γCT

=

1+ Nα
κγCT

. Let (10) be 0, we obtain, for all i ∈ [1, N ], flow i’s

steady-state congestion window w∗i = γCT
N

+ α
κ
. Its steady-

state rate is thus r∗i =
w∗i
T

= γC
N

+ α
κT

. QED.

11.2 Proof of Theorem 2
Denote the aggregate rate at link l as Al =

∑
i∈Il

ri where

ri = wi
T

is the sending rate of flow i. The load factor, ac-

cording to (12), is thus ρl = Al
γCl

where Cl is link l’s capacity.

Define function [19]

g(ρl) =
α

κT (1− 1
ρl

)
(31)

which is strictly decreasing when ρl > 1. (Note ρl > 1 for
all l ∈ L according to Theorem 1.) Then, if we set ẇ(t) = 0
in (10) and consider (16), we have the equilibrium rate of
flow i as

ri =
α

κT (1− 1
maxl∈Li

ρl
)

= min
l∈Li

g(ρl)

≤ g(ρl) ∀l ∈ Li. (32)

Consider the subset of link(s) L∗m that has the highest
load factor ρ∗m = maxl∈L ρl among all the links:

L∗m = { l ∈ L | ρl = ρ∗m }, (33)

and the subset I∗m of flow(s) that traverse at least one link
in L∗m, i.e.,

I∗m = { i ∈ I |Li ∩ L∗m 6= φ }. (34)

So all the flows in I∗m have the same rate r∗m = g(ρ∗m) =
minl∈L g(ρl), which is the lowest rate allocation.

Suppose r∗m is not maximized, then there exists r̃i1 > r∗m
for i1 ∈ I∗m. If we pick one link l1 from Li1 ∩ L∗m 6= φ,
we have ρ̃l1 =

∑
i∈Il1

r̃i/Cl >
∑

i∈Il1
r∗m/Cl = ρ∗m. How-

ever, because g(ρl) is strictly decreasing, this leads to r̃i1 ≤
g(ρ̃l1) < g(ρ∗m) = r∗m, resulting in a conflict.

If there is no such r̃i1 > r∗m for i1 ∈ I∗m, we remove the sets
L∗m and I∗m from the network and reduce the capacity of the
remaining links (if any, otherwise we are done) by the sum of
the passing flows’ sending rates, then repeat the above pro-
cess until there is no link/flow left. The flow rates defined by
(32) thus solve a hierarchy of optimization problems within
each of them the minimal allocation is maximized—this is
the definition of max-min fairness. QED.

11.3 Proof of Theorem 3
We first consider the MI part of VCP in Section 3.3 when

there is bandwidth to claim. Due to the MI/AI parameter
scaling in Section 3.4 that handles RTT difference, we can
assume that flows have the same RTT. Suppose the flows
start from the unit aggregate rate r(0) = 1. At the end of
m rounds of MI, the aggregate rate

r(m) = r(0) · (1 + ξ)m

where ξ = 0.0625 as set in Section 3.3. Given any capacity
C > 1, to reach a major part (i.e., the load factor transition
point, ρ̂l = 80%) of it with MI, let r(m) = ρ0C, and then
we obtain

m =
log ρ̂lC

log(1 + ξ)
= O(log C). (35)

The same result also holds when the flows have to release
bandwidth with the MD algorithm of VCP. Now suppose
the initial aggregate rate r(0) = C > 1, to reach r(m) = 1
where r(m) = β · r(m− 1) = ... = βm · r(0), we get

m =
log C

log(1/β)
= O(log C) (36)

as well. QED.

11.4 Proof of Theorem 4
For fairness convergence speed we focus on the AIMD part

of VCP in Section 3.3. Consider any bottleneck of capacity
C shared by N flows of the same RTT value T . After an
MD that cuts the aggregate congestion window w from CT

to βCT , it takes (1−β)CT
Nα

rounds of AI (which we call an
epoch) to increase w from βCT to CT . Note during AI all
flows grow the same amount of congestion window; only MD
reduces the congestion window difference. For any two flows
i and j, at the m-th epoch, we have

∆wij(m) = β ·∆wij(m− 1) = ... = βm ·∆wij(0),

where ∆wij(m) = wi(m)−wj(m). To reach a small-enough
congestion window difference, e.g., ∆wij(m) = 1, then we
have

m =
log ∆wij(0)

log(1/β)
.

The total number of RTTs spent is

m · (1− β)CT

Nα
=

1− β

α log(1/β)
· P log ∆wij(0) (37)

where P = CT
N

is the per-flow BDP.
The fairness convergence time of a link l is obviously the

time needed for the two passing flows with the largest initial
congestion window difference to reach the fair allocation,
which is O(P log ∆P ), where ∆P = maxi,j∈Il ∆wij(0).

In contrast, XCP’s fairness convergence time is O(log ∆P ),
since it shuffles bandwidth in each round of AIMD control.
QED.
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