
NOVEL PLACEMENT OF CONGESTION CONTROL
FUNCTIONS IN THE INTERNET

By

Kartikeya Chandrayana

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer and Systems Engineering

Approved by the
Examining Committee:

Prof. Shivkumar Kalyanaraman, Thesis Adviser

Prof. Christopher D. Carothers, Member

Prof. Koushik Kar, Member

Prof. Biplab Sikdar, Member

Prof. John T. Wen, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2004
(For Graduation May 2004)

NOVEL PLACEMENT OF CONGESTION CONTROL
FUNCTIONS IN THE INTERNET

By

Kartikeya Chandrayana

An Abstract of a Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer and Systems Engineering

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Prof. Shivkumar Kalyanaraman, Thesis Adviser

Prof. Christopher D. Carothers, Member

Prof. Koushik Kar, Member

Prof. Biplab Sikdar, Member

Prof. John T. Wen, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2004
(For Graduation May 2004)

c© Copyright 2004

by

Kartikeya Chandrayana

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . ix

ACKNOWLEDGMENT . xiii

ABSTRACT . xiv

1. Introduction . 1

1.1 A Macroscopic view of Congestion Control: Solutions for Preventing
Congestion Collapse in the Internet 2

1.1.1 End System Based Approaches 3

1.1.2 Network Based Approaches 5

1.1.3 Summary . 6

1.2 A Microscopic View of Congestion Control: Fairness, Congestion Re-
sponse Conformance and Management of Bottleneck Queues in the
Internet . 7

1.2.1 Fairness . 7

1.2.2 Congestion Response Conformance 9

1.2.3 Managing Bottleneck Queues 10

1.2.4 Summary . 12

1.3 Contribution of this Thesis . 13

1.3.1 Randomized TCP: An End-System Based Solution for Im-
proving Fairness in a Network of Drop Tail Queues 14

1.3.2 Uncooperative Congestion Control: Edge-Based Re-marking
for Providing Fairness and Congestion Response Conformance
in the Internet . 15

1.3.3 virtual AQM (vAQM): An End-or-Edge Based Solution to
Manage Bottleneck Queues . 17

1.4 Organization of the Thesis . 18

2. Background . 20

2.1 End System Based Mechanisms for Preventing Congestion Collapse . 21

2.1.1 TCP and its Variants: Congestion Avoidance and Control . . 21

2.1.2 TCP and Drop Tail Queues 23

2.1.3 Rate Based Proposals for End-System Based Congestion Control 24

iii

2.1.4 TCP Pacing: Solution For Reducing Burstiness of TCP 25

2.2 Network Based Mechanisms for Congestion Avoidance 27

2.3 Fairness . 29

2.3.1 Oblivious Schemes for Providing Fairness in the Network . . . 31

2.3.2 Non-Oblivious Schemes for Providing Fairness in the Network 32

2.4 Congestion Response Conformance in the Network 35

2.4.1 End-System Based Schemes for Congestion Response Confor-
mance in the Network . 36

2.4.2 Network Based Schemes for Congestion Response Conformance
in the Network . 37

2.5 Optimization: Flow Control, Fairness and TCP Compatibility 37

2.6 Managing Bottleneck Queues in the Network 40

3. Randomized TCP: End System Based Mechanism for Improving Fairness
in a Network of Drop Tail Queues . 43

3.1 Introduction . 43

3.2 Randomized TCP . 44

3.3 Randomized TCP Pseudo-code . 46

3.4 Analytical Characterization of Increase Parameter for Randomized
TCP . 47

3.5 Analytical Characterization of Reduction of Synchronization with
Randomized TCP . 49

3.6 Queueing Analysis to Show Reduction in Burst Losses with Random-
ized TCP . 51

3.7 TCP-Friendliness of Randomized TCP 53

3.8 Implementation and Simulation Setup 55

3.9 Implementation on the Linux Kernel 56

3.10 Parameter Tuning . 57

3.10.1 Different Bottleneck Bandwidth 57

3.10.2 Different Buffer Sizes . 58

3.10.3 Different RTT . 60

3.11 Throughput, Loss, Timeouts, Fairness and Latency 61

3.11.1 Bulk Data Transfer . 61

3.11.1.1 Same RTT . 61

3.11.1.2 Different RTT . 62

iv

3.11.2 Short Web Like Transfers . 63

3.11.3 Interaction of Randomized TCP with TCP Reno 64

3.11.4 Summary . 66

3.12 Bias Against Long Flows, Phase Effects, Synchronization and Burst
Losses . 67

3.12.1 Bias Against Long Flows . 67

3.12.1.1 Single Bottleneck . 67

3.12.1.2 Multiple Bottleneck 70

3.12.2 Phase Effects . 73

3.12.3 Synchronization . 75

3.12.3.1 Synchronization in Bulk Data Transfer 75

3.12.3.2 Synchronization with Short Web Transfers 78

3.12.4 Burst Losses . 79

3.12.5 Summary . 80

3.13 Binomial Congestion Control Algorithms 81

3.14 Conclusions . 82

4. Selfish Flows: Characterization and Performance on Drop Tail Queues . . . 85

4.1 Introduction . 85

4.2 Classes of Selfish Flows . 86

4.3 Selfish Rate Control Schemes and their Utility Functions 88

4.4 Aggressive Rate Control Scheme: Control Parameters are Time De-
pendent . 91

4.4.1 Modifying the decrease parameter β 92

4.4.1.1 Global Stability . 95

4.4.2 Modifying the Window Scaling Parameters, k, l 95

4.4.2.1 Global Stability . 96

4.5 Selfish Flows and Drop Tail Queues 97

4.6 Summary . 99

5. Uncooperative Flow Control: An Edge-Based Re-marking Framework for
Congestion Response Conformance in the Network 101

5.1 Introduction . 101

5.2 Network Model, Definitions and Assumptions 105

5.3 Motivation . 107

v

5.4 Impact of Uncooperative Flows on Existing Buffer Management Al-
gorithms . 109

5.4.1 Uncooperative Flows and AQM Schemes 110

5.4.2 Uncooperative Flows and Drop-Tail Queues 113

5.5 Re-marking Framework for Managing Non-Conformant Users 116

5.6 Implementation . 123

5.6.1 Estimating the Utility Function 124

5.6.2 Estimating the Loss Rate . 125

5.7 Simulation Results . 126

5.7.1 Evaluation of Edge Based Re-Marking Framework on an ECN
Enabled Network . 128

5.7.1.1 Single Bottleneck . 128

5.7.1.2 Multi Bottleneck Topology 129

5.7.1.3 Background Traffic 131

5.7.1.4 Cross Traffic . 133

5.7.2 Evaluation of Edge Based Re-Marking Framework on a Non
ECN Capable Network . 133

5.7.2.1 Single Bottleneck . 134

5.7.2.2 Multi-Bottleneck . 134

5.7.2.3 Background Traffic 135

5.7.2.4 Cross Traffic . 137

5.7.3 Estimating the Utility Function 138

5.7.4 Sensitivity Analysis of Framework 140

5.7.4.1 Effect of Inaccurate RTT Estimate 140

5.7.4.2 Effect of Inaccurate Utility Function Estimate 141

5.8 Differentiated Services . 142

5.9 Summary . 144

6. virtual AQM: Managing Bottleneck Queues from Network Edge 147

6.1 Introduction . 148

6.2 vAQM: virtual AQM . 149

6.2.1 vAVQ: virtual AVQ . 151

6.2.2 Estimating Path Capacity and Demand 152

6.3 Results . 154

6.3.1 Single Bottleneck Topology 156

6.3.2 Multi-Bottleneck Topology . 162

vi

6.4 Discussion . 165

6.5 Conclusions and Future Work . 168

7. Conclusions and Future Work . 172

vii

LIST OF TABLES

3.1 Comparison of Throughput (in pkts/sec), losses and timeouts for TCP
Reno Vs (Paced, Random). 65

3.2 Bias Against Large RTT Flows in a Single Bottleneck (2Mbps) Topol-
ogy: The ideal % share of the bottleneck for the long flow is 43% and
that for short flow is 57%. Drop Tail queues show a bias against large
RTT flows with both TCP Reno and TCP New Reno. However, Ran-
domized TCP removes this bias, moreover even a single Randomized
TCP improves the fair sharing of the bottleneck. The results show
that RED also removes the bias. Thus, Randomized TCP has similar
performance gains as RED. 68

3.3 Bias Against Large RTT Flows in a Single Bottleneck (3Mbps) Topol-
ogy: The ideal % share of the bottleneck for the long flow is 43% and
that for short flow is 57%. Drop Tail queues show a bias against large
RTT flows with both TCP Reno and TCP New Reno. However, Ran-
domized TCP removes this bias, moreover even a single Randomized
TCP improves the fair sharing of the bottleneck. The results show
that RED also removes the bias. Thus, Randomized TCP has similar
performance gains as RED. 70

3.4 Comparison of Throughput (in Kbps) for different configuration of com-
peting 5 Long flows (RTT=80ms) and 5 Short Flows (RTT=60ms) . . . 71

3.5 Bias Against Large RTT Flow in a Multi-Bottleneck Topology: Drop
Tail queues’ bias against large RTT flows with both TCP Reno and
TCP New Reno persist. However, Randomized TCP removes this bias.
Moreover presence of a single Randomized TCP flow at each bottleneck
improves the fair sharing of the network. Once again, RED also removes
the bias but Randomized TCP has similar performance gains. 72

3.6 Comparison of Covariance Coefficient of Congestion Window for two
flows for TCP Reno, Paced and Randomized. (Value around 0 is Good.) 76

3.7 Comparison of Covariance Coefficient of CongestionWindows for 3 flows
for TCP Reno, Paced and Randomized. (Value around 0 is Good.) . . . 77

3.8 Comparison of average number of burst losses in Reno and Randomized
TCP (RTCP). 80

5.1 Performance of AQM Schemes: Comparison of throughput (pack-
ets/sec) of Different AQM Schemes on a multi-bottleneck topology with
10 flows on each bottleneck. 112

viii

5.2 Cross Traffic (Dropping): Comparison of throughput (packets/sec)
for network with DropTail and RED queues with and without re-marking.137

6.1 vAVQ: Performance on a Single Bottleneck Topology 158

6.2 vAVQ: Performance on a Multi-Bottleneck Topology 163

ix

LIST OF FIGURES

3.1 Packet Sent Times with Randomized TCP 53

3.2 Topology used in the simulation. 55

3.3 Loss Rate, Throughput and Timeouts for 50 flows as a function of ran-
domization interval, for different values of bottleneck bandwidth. 58

3.4 Loss Rate, Throughput and Timeouts for 30 flows as a function of ran-
domization interval, for different values of bottleneck buffer size. 59

3.5 Loss Rate, Throughput and Timeouts for 30, 50 flows as a function of
randomization interval, for varying RTT. The RTT varies from 80ms-
120ms, the bottleneck bandwidth is 4Mbps and the buffer size is 25
packets. 60

3.6 Loss Rate, Throughput, Timeouts and fairness with Bulk Data transfer
, each flow having same RTT. 62

3.7 Throughput, Fairness, Loss Rates and Timeouts for a set of flows where
each flow has a different RTT. 64

3.8 Latencies for Reno, Paced and Randomized for short and moderate Web
like Workloads . 65

3.9 Multi Bottleneck Topology used in the simulation. 71

3.10 Single bottleneck Simulation Setup to show phase effects with Reno and
Drop Tail Gateways. 74

3.11 Phase Effects . 75

3.12 Multiple bottleneck Simulation Setup to show phase effects with Reno
and Drop Tail Gateways. 76

3.13 10 flows Covar. coeff. of Congestion Window for (a) Reno, Paced &
Randomized (b) Reno & Randomized, (c) Paced & Randomized 77

3.14 Covar. coeff. of Congestion Window for (a) Reno & Randomized, (b)
Paced & Randomized . 78

3.15 Covariance coefficients for Paced and Randomized TCP for a transfer
of 2500 packets. (Value around 0 is good.) 80

3.16 Performance of Binomial Congestion Control Algorithms with Random-
ization . 83

x

4.1 Classification of Selfish Behavior in the Network. Our region of interest
is the Selfish Responsive Flows. 87

4.2 Topologies used in the Simulations. 97

4.3 Single Bottleneck: Throughputs (in pkts/sec) for two competing
flows, one is TCP while the other is Mis-behaving (k=0,l=0.5) 98

4.4 Multi Bottleneck: Throughputs (in pkts/sec) for 2 competing flows
on a network of Drop Tail queues. One flow is TCP while the other is
Misbehaving (k=0,l=0.5). 98

5.1 Mapping a uncooperative user to a conformant space. 102

5.2 Model for managing Uncooperative users at Network Edge 104

5.3 Example 1: Two competing set of flows through one bottleneck. 107

5.4 Example 2: Three competing set of flows through two bottlenecks. . . . 108

5.5 Topologies used in the Simulations. 110

5.6 Multi Bottleneck: Throughput of long TCP-Friendly flows and short
uncooperative flows (k=0,l=0.5) flows with different buffer management
schemes. 114

5.7 Performance of Drop-Tail Queueing: Throughputs (in pkts/sec)
for two competing flows on a multi-bottleneck setup, long flow is TCP
Friendly while the short flows are uncooperative. 115

5.8 Single Bottleneck (Marking): Throughputs (in pkts/sec) for two
competing flows, one is TCP Friendly while the other is non-conformant
with and without Re-Marking. 127

5.9 Single Bottleneck (Marking): Throughputs (in pkts/sec) for ten
competing flows, where seven flows are TCP Friendly while three are
non-conformant (k=0, l=0.5) with and without Re-Marking. 127

5.10 Single Bottleneck (Marking): Throughputs (in pkts/sec) for three
competing flows, where one flow is TCP Friendly while the other two
are non-conformant with (k=0, l=0.5) and (k=0, l=0.2) resp., with and
without Re-Marking. 128

5.11 Multi Bottleneck (Marking): Throughputs for 2, 10 competing flows.130

5.12 Background Traffic (Marking): Throughputs (in pkts/sec) for two
competing flows in a single bottleneck topology, where one flow is TCP
Friendly while the other is Non-Conformant with (k=0, l=0.5). Also
there is web-traffic in the background. 131

xi

5.13 Background Traffic (Marking): Throughputs (in pkts/sec) for 10
competing flows in a single bottleneck topology, where 7 flows are TCP
Friendly while the other 3 are Non-Conformant with (k=0, l=0.5) with
20% noise. 132

5.14 Background Traffic (Marking):Throughputs (in pkts/sec) for 10
competing flows in a single bottleneck topology, where 7 flows are TCP
Friendly while the other 3 are Non-Conformant with (k=0, l=0.5) with
65% noise. 132

5.15 Cross Traffic (Marking): Throughputs (in pkts/sec) for 10 compet-
ing flows in a multi-bottleneck topology, where on each bottleneck there
are 5 TCP Friendly flows and 5 Non-Conformant with (k=0, l=0.5),
with two-way traffic. 133

5.16 Single Bottleneck (Dropping): Throughputs (in pkts/sec) for 2
competing flows on a network of DropTail and RED queues with and
without Re-Marking. One flow is TCP Friendly while the other is Non-
Conformant (k=0,l=0.5). 135

5.17 Multi Bottleneck (Dropping): Throughputs (in pkts/sec) for 2 com-
peting flows on a network of DropTail and RED queues with and with-
out Re-Marking. One flow is TCP Friendly while the other is Non-
Conformant (k=0,l=0.5). 136

5.18 Background Traffic (Dropping):Throughputs (in pkts/sec) for 10
competing flows in a single bottleneck topology, where 7 flows are TCP
Friendly while the other 3 are Non-Conformant with (k=0, l=0.5) with
65% noise. 136

5.19 Estimation of Utility Function for 2 competing flows in a single
bottleneck topology, where one flow is TCP Friendly flow while other is
Non-Conformant with (k=0, l=0.5). 139

5.20 Exponent Value Vs Sample Size: As the Sample Size increases estima-
tion gets better. Even Smaller samples give good estimates. Motivates
use of RLS. 139

5.21 Inaccurate RTT Estimates: Throughputs (in pkts/sec) for 2 com-
peting flows in a single-bottleneck topology, where one flow is TCP
Friendly flow while other is Non-Conformant with (k=0, l=0.5), when
network has inaccurate RTT estimates. 141

xii

5.22 Inaccurate Utility Function Estimates, 20% Estimation Errors:
Throughputs for 2 competing flows in a single-bottleneck topology,
where one flow is TCP Friendly flow while other is Non-Conformant
with (k=0, l=0.5), when network has inaccurate estimates of source’s
utility function. 143

5.23 Inaccurate Utility Function Estimates, 5% Estimation Errors:
Throughputs (in pkts/sec) for 2 competing flows in a single-bottleneck
topology, where one flow is TCP Friendly flow while other is Non-
Conformant with (k=0, l=0.5), when network has inaccurate estimates
of source’s utility function. 144

5.24 Differentiated Services . 144

6.1 Most Congested Router . 150

6.2 The model for vAVQ . 152

6.3 Topologies used in the Simulations. 155

6.4 Demand Estimation in a Single Bottleneck scenario. 156

6.5 Demand Estimation in a Single Bottleneck scenario when the estimate’s
lower bound is 50% of Link Capacity. This bounding then gives us a
better estimate of Demand. 157

6.6 Instantaneous Queue Length Evolution in a Single Bottleneck 159

6.7 Instantaneous Queue Length for vAVQ with almost perfect Demand
estimate . 160

6.8 vAVQ: Evolution of Virtual Queue at Network Edge 160

6.9 AVQ: Instantaneous Queue Length evolution when the virtual buffer
length is 25% of actual router queue. 161

6.10 Multi-Bottleneck: Instantaneous Queue Length evolution at the first
Bottleneck . 170

6.11 Multi-Bottleneck: Instantaneous Queue Length evolution at the second
Bottleneck . 171

xiii

ACKNOWLEDGMENT

Foremost, I would like to thank my adviser Prof. Shivkumar Kalyanaraman. He has

been very patient with me, allowing me to work in different areas of networking. I

am deeply indebted to him for consistently reminding me of my priorities and often

correcting my drift. His continuous guidance and infinite wisdom are primarily the

reasons behind the successful completion of this work.

I would also like to thank my committee members, specifically Prof. Christo-

pher Carothers, Prof. Koushik Kar, Prof. Biplab Sikdar and Prof. John T. Wen

for their guidance, insightful comments and encouragement. I would especially like

to thank Prof. Biplab Sikdar, part-mentor and part-friend who has been eminently

accessible for anything at any time of the day.

This thesis would not have been possible without the generous help received

from my friends. Satish Raghunath has been my man friday for all systems and

programming related problems, which I had in abundance. I will always cherish the

endless discussions I had with him on a variety of subjects including some critical

and valuable assessment of my research. During the past couple of years, Omesh

Tickoo has been there for various discussions and critical reviews over coffee, at all

time after daylight. I cannot thank him enough.

Sthanu, Omesh, Anand, Manoj and Alex Newman need a special mention as

they have helped me at various points in time with some of the research presented

in this thesis. I would also like to express my gratitude to Jagoron, Omesh and

Ayesha for taking good care of me in the past three years, especially while I wrote

my candidacy and thesis documents. I would also like to thank all my colleagues in

the Networks Lab for tolerating all my idiosyncrasies and musical tastes.

Finally, I would like to thank my family for coping up with all my mood

swings and frequent lack of communication. They have taught me important and

good things in life including the value of education.

xiv

ABSTRACT

Over the years the Internet has become a critical part of modern world. Prudent

congestion control mechanisms have been primarily responsible for the stability and

robustness of the Internet. However, these lessons about the necessity of congestion

control mechanisms were learnt after a series of failures in the formative years of the

Internet. As a result of these failures, considerable research efforts have been spent

at understanding congestion control and many solutions to avoid and control con-

gestion in the Internet have been proposed. Of the proposed solutions, end-system

based congestion avoidance and control is now an integral part of the most widely

used transport protocol, TCP. However, subsequent research which provided com-

plementary network based solutions for managing congestion are yet to be deployed

on the Internet, for a variety of reasons.

In this thesis we re-evaluate the function placement of the building blocks

of the Internet congestion control architecture. Specifically, we attempt to bridge

the gap between the deployment costs and desirable congestion control features.

Towards this end, this thesis proposes a series of deployable end-and-edge based

solutions which combine almost all the beneficial properties of existing congestion

control solutions. An essential step for achieving such deployable solution lies in de-

coupling the congestion control tasks from their placement in the network. As such,

this thesis proposes end-and-edge based architectures which help us de-construct

AQM schemes, thus disassociating congestion control tasks from their placement.

In this thesis we proposes an end-system based solution, Randomized TCP,

which can alleviate the network and end-to-end performance degradations which

arise out of use of TCP on simple FIFO queueing. Uncooperative Congestion Con-

trol is a proposed network-based architecture which de-couples management of selfish

behavior of flows in the Internet from router based AQM policies. Specifically, this

framework helps prevent traffic volume based denial of service, enforces congestion

response conformance and provides an architecture for implementing simple differ-

entiated services. Finally, this thesis also proposes virtual AQM an end-or-edge

xv

based solution for managing bottleneck queues in the Internet. The virtual AQM

framework can help us send early congestion indications and also reduce steady state

queue size and latency.

xvi

CHAPTER 1

Introduction

Over the years as the Internet has evolved TCP has formed the backbone of its

stability. However, a decade ago the present Internet suffered from a severe conges-

tion control problem which was called the “Internet meltdown”. To prevent such a

situation Jacobson [49] proposed the congestion avoidance and control mechanisms

for TCP which has subsequently become the de-facto transport protocol for the

Internet.

However as the application needs changed newer rate control schemes were

proposed. As such we now have an Internet which operates with a spectrum of

congestion control schemes, even though TCP remains the most widely used trans-

port protocol. In [35] the authors have argued that these new congestion control

schemes can lead to a new congestion collapse and pose the problem of congestion re-

sponse conformance (wherein selfish schemes get an unfavorable share of bandwidth

in comparison to TCP).

Though end-system based congestion control mechanisms have helped prevent

Internet meltdown they are not sufficient to provide good service under all circum-

stances. Specifically, network and end-user performance may degrade in presence of

Drop Tail queues and different rate control schemes [39, 37, 4, 17, 18, 19, 60]. Also

end system based solutions constrain the choices of flow control protocols which

might be available to any application. Towards addressing these issue, network (or

router) based schemes like Active Queue Management (AQM) have been proposed

to complement the end-system based congestion control schemes. Thus, together

with end-system based congestion avoidance and control schemes, AQM form the

building blocks of the Internet congestion control architecture.

However these AQM proposals are beset with configuration problems [31, 28,

60, 22, 20] and also require significant upgrade of the network (i.e. each bottleneck

must have the AQM enabled) which is not only expensive but also infeasible. Lack

of deployment of ECN (Explicit Congestion Notification) is another reason which

1

2

holds back the deployment of AQM schemes. Further, providers do not want to drop

a packet unless the network is congested and this further hampers the deployment

of AQM proposals. As a result of these implementation drawbacks and deployment

considerations, the Internet still operates with Drop Tail queues.

Considering that AQM schemes are still to be widely deployed on the Internet,

presence of different congestion control schemes and ubiquity of Drop Tail queueing

in the Internet, in this thesis we re-evaluate the function placement of building

blocks of congestion control. In particular, we in this thesis we explore deployable

end system and network based solutions which combine all beneficial properties of

both end-and-network based congestion control building blocks. In other words, we

propose end-and-edge based solutions to emulate the beneficial properties of AQM

over network of Drop Tail queues, while allowing end users the flexibility to choose

their congestion control schemes. In summary, in this thesis we argue that almost

all tasks involving Internet congestion control can be done at the network edge or

end-system without any support from the core of the network.

In the following sections we first present the various end-and-network based

solutions for preventing congestion collapse in the Internet and their current deploy-

ment status in the Internet. Thereafter we present our end-and-edge based proposals

for managing congestion in the Internet. While we keep a holistic view of congestion

control architectures, in this chapter we will focus on smaller issues which arise out

of management of congestion in the Internet. In particular, we will discuss issues re-

lated to management of bottleneck queue lengths, fairness and congestion response

conformance (or protection of TCP flows from malicious users) in the Internet.

1.1 A Macroscopic view of Congestion Control: Solutions

for Preventing Congestion Collapse in the Internet

The Internet protocol architecture is based on a connectionless end-to-end

packet service using the IP protocol. The advantages of its connectionless design,

flexibility and robustness have been amply demonstrated. However, these advan-

tages are not without cost: careful design is required to provide good service under

heavy load. In fact, lack of attention to the dynamics of packet forwarding can

3

result in severe service degradation or ”Internet meltdown”.

As a result of this meltdown considerable research has been done on Internet

dynamics and many solutions have been suggested to avoid it. These proposals can

be broadly classified into two categories a) end-system based solutions, e.g. TCP

and other congestion control schemes and b) network based solution. In this section

we briefly discuss these proposals, their advantages and disadvantages and their

current deployment in the Internet.

1.1.1 End System Based Approaches

The end-system based solutions consists of source or receiver based congestion

control schemes. These schemes try to avoid congestion in the Internet by cutting

down their transmission rate, whenever congestion is detected. The original fix for

the congestion collapse (or Internet meltdown) proposed by Jacobson in 1988 [49]

is one such scheme. In particular, Jacobson proposed the congestion avoidance and

control features in TCP and since then TCP has been the mainstay of the Internet.

These end-system based solutions can operate with and without network sup-

port. In absence of network support the network employs simple queuing at the

routers in which the packets are admitted till the queue has space. This queuing

policy is called Drop Tail. Though simple to implement, Drop Tail queue do not

try to manage congestion in the network, in fact it is left to the end-system based

application.

Though TCP has served the Internet community well it is known to suffer

from a number of phenomena which limits its effectiveness when operated over a

network of Drop Tail queues. The main problem which degrades TCP and network

performance are: synchronization of congestion windows (or correspondingly the

loss instances) causing alternate overloading and under-loading of the bottleneck

[70, 86, 101]; phase effects wherein a certain section of flows face recurrent losses

[38]; unfairness to flows with higher RTTs [32]; bias against bursty traffic [39] ;

delays and losses due to the bursty nature of TCP traffic [101, 4].

The tail-drop discipline allows queues to maintain a full status for long periods

of time. This is because Drop Tail signals congestion only when the queue has

4

become full. If the queue is full, an arriving burst will cause multiple packets (from

same or different flows) to be dropped causing global synchronization [39]. This

synchronization can be attributed to two reasons: (1) the sliding window flow control

of the TCP, which produces bursts of packets and (2) the Drop Tail queue at the

bottleneck, which drops all packets when the buffer is full [45]. Synchronization of

windows and loss events for flows sharing common links causes alternating periods

of overload and under-load thereby leading to inefficient resource utilization. In

some situations Drop Tail queuing allows a single connection or a few flows to

monopolize queue space, preventing other connections from getting room in the

queue. This ”lock-out” phenomenon is often the result of synchronization [39, 14]

and full queues.

Phase effects refer to conditions where in the bandwidth-delay product of the

path of a flow is not an integral multiple of the packet size [38]. Phase effects cause

a specific section of competing flows to experience recurrent drops causing unfair

distribution of bandwidth and increased latency. Phase effects are manifested in

the network preferentially dropping packets from a specific subset of flows thereby

reducing their throughput.

Drop Tail queues suffer from a problem called, ”full queues”, which implies

that Drop Tail queuing maintains sustained long or full queues. The sliding window

protocol of TCP and the persistent full queues often results in burst losses. These

burst losses causes Drop Tail queues to differentiate against TCP like schemes [39]. It

has been widely shown that TCP can recover well from a single packet loss but with

burst losses it often times out [89]. Consequently, these burst losses also increase

the delays. It has also been reported that these burst losses are the primary reason

for the bias against flows with longer RTT [3].

Drop Tail queues also do not protect flows. As noted earlier because of syn-

chronization Drop Tail queues can let some flows monopolize the buffer space. Also,

given that there are various congestion control schemes in the network, by not dif-

ferentiating amongst flows, Drop Tail queues allow aggressive sources to get more

bandwidth. Flows which do not react to congestion indications will push the re-

sponsive flows out of the queue and will always take up bandwidth worth their

5

transmission rate [60, 17, 18]. Thus by introducing burst losses and by not pro-

tecting flows, Drop Tail queues aggravate the problem of unfair equilibrium rate

allocations in the network.

1.1.2 Network Based Approaches

Though the end-system based congestion avoidance and control mechanisms

are necessary and powerful, they are not sufficient to provide good service under all

circumstances. Primarily, there is a limit to how much control that can be accom-

plished from the end of the network. Specifically, these problems were highlighted

in the previous section and can be chiefly attributed to the full queues and lock-out

behavior of the Drop Tail queues. Thus some mechanisms are needed in the routers

to complement the endpoint congestion control and avoidance mechanisms.

Active Queue Management (AQM) was suggested as a pro-active way of man-

aging queue at the bottleneck router. The pro-activeness was defined to be able to

drop few packets before the queue gets full thereby signaling sources to cut their

rates on account of impending congestion. This in turn help solved the problem of

full queues. The solution to the full queues problem implied that there would be

space in the queue to enque packets which consequently solved the lock-out problem

of Drop Tail queues and avoid burst losses.

Random Early Drop (or RED) [39] was one such AQM proposal wherein the

authors suggested to probabilistically drop packet when the queue size gets above a

certain threshold. This probabilistic dropping distributed losses over time thus mak-

ing them appear independent. It also introduced randomization at the bottleneck

which in turn broke synchronization amongst flows and improved network perfor-

mance. Also, by sending early congestion signal (by dropping a packet before the

queue actually gets full) helped manage queues efficiently and also provided space

to accommodate bursts. Thus RED avoids burst losses, synchronization, reduces

the bias against long RTT flows and prevents timeouts.

However it’s been almost a decade since the RED was proposed and the Inter-

net continues to operates with Drop Tail queues. This can be explained by absence

of concrete guidelines to set RED, requirement of significant network upgrade and

6

lack of deployment of ECN. Studies have shown that if not properly configured the

performance of TCP with RED queues may be even worse than that with Drop Tail

queues. Specifically, in [67, 22] the authors show that the probability of consecutive

drops increases with RED queues. Though there have been some studies on how

to configure RED these works attempt to configure only one or a set of parameters

and as such have not found much favor with the network operators [20, 46]. Besides

RED there have been other AQM proposals which have fewer parameters to con-

figure and crisper guidelines for setting them [57, 7, 28, 91, 90, 29]. But in-spite of

numerous AQM propositions the network still operates with Drop Tail queues and

consequently the problems of TCP and Drop Tail queues exist to this day.

1.1.3 Summary

The policies outlined for preventing congestion collapse require either end-

system support in form of congestion control scheme or router based schemes like

AQMs. However there is a limit to the control which can be achieved by using the

end-point congestion schemes. In absence of network control we have seen that the

flows are subjected to burst losses and can get synchronized which in turn limits the

effectiveness of TCP. Further, end-point congestion control scheme do not protect

flows, on the contrary they allow some flows to monopolize the buffer space.

Network control for preventing congestion collapse was envisioned in form of

Active Queue Management. RED was one such proposal which absorbed bursts by

probabilistically enqueing packets. This introduced randomness at the bottleneck

and helped avoid synchronization of flows. However RED’s performance is highly

sensitive to its parameter configuration, so much so that at times the performance

of Drop Tail queues might be better than RED queues [13]. This problem is further

compounded by the lack of guidelines for setting these parameters. Moreover, all

AQM proposals including RED require deployment at all (bottleneck) routers in the

network which not only require extensive network upgrade but is also expensive. As

a result of these concerns, the network still operates with Drop Tail queues.

To summarize, due to configuration, implementation and deployment problems

with AQM the Internet continues to operates with Drop Tail queues. As a result,

7

the problems of bursts losses, flow synchronization, bias against flows with longer

RTT and manipulation of buffer space by selfish and unresponsive flows persist.

These problems in turn limit the effectiveness of TCP and degrade the performance

of the network.

1.2 A Microscopic View of Congestion Control: Fairness,

Congestion Response Conformance and Management of

Bottleneck Queues in the Internet

1.2.1 Fairness

Fairness can be defined in a number of ways but its essence in each of these

definitions is that it is some measure of the distribution of the allocated rate amongst

users. Fairness is related not only to the network but also to the end-system’s

congestion control scheme. Often the end-system’s objective is to be fair to the

other competing user’s while the network’s objective is that it does not arbitrarily

penalize or differentiate amongst various competing user.

Traditionally, the Internet has relied on the ”end-to-end” congestion control

model like TCP (or alternate transport protocols) where end users choose a rate

control scheme, and the network merely drops or marks packets during congestion

as a method to convey the penalty or price [53, 56, 62]. One implication of this

model is that end-systems are free to choose any rate control scheme (which in

the Kelly’s framework [53] means that they can pick any desired utility function).

Kelly, Low etal have shown that a particular class of fairness is associated with every

utility function. Thus, by choosing different utility functions varying equilibrium

rate distributions or fairness criteria can be achieved. The end users, therefore might

willfully seek to guard and increase their interests and choose the utility function

which best suits their application, thus promoting selfish behavior in the network.

The network on the other hand seldom differentiates between flows. It drops

(or marks) packets obliviously, i.e. drops packets whenever there is no space in the

router queue or if the router queue length crosses a certain threshold. Drop Tail

queuing, RED and many of RED’s variants can be classified as oblivious queuing

8

disciplines. This oblivious dropping coupled with the flexibility of end system to

chose a rate control scheme makes the problem of providing fair rate allocations

to all users hard. The “fair” equilibrium allocations in an oblivious network there-

fore depend upon the utility functions chosen freely by users. These equilibrium

allocations, though fair under Kelly’s framework, might be unfair from network

perspective.

Moreover the fair rate allocation problem is further compounded by the fact

that there is no single definition of fairness. The two most common definitions

of fairness are max-min [13, 69] and proportional fairness [53]. In max-min fairness

criteria the objective is to maximize the minimum unsatisfied rate allocations. Thus

given the same network conditions, two competing flows should get equal share of

the bottleneck. On the other hand, in proportional fairness the rate allocations are

in proportion to the network resources being used. But all the same, a more general

definition of fairness, (p,α) fairness is defined in [69]. Thus irrespective of user’s rate

control schemes it is for the network provider to decide the criteria for allocating

resources amongst users.

Over the years equal allocations and Max-Min fairness [69] have formed the

network’s view of fair allocations. As such, AQM schemes and schedulers deployed

at every bottleneck have been used to enforce conformance with these definitions,

by penalizing misbehaving users [64, 30, 77, 60, 87, 94]. For example, CHOKe [77]

tries to enforce Max-Min fairness [69] across the network. Similarly fair queuing and

it’s variant have also been used to provide Max-Min fairness.

However, recent efforts in pricing based rate distribution infrastructure implies

that the providers might differentiate amongst users on the basis of their willingness

to pay. This is in direct contrast with equal and max-min allocation strategies. As a

result of differentiation on willingness to pay, proportional fairness and it’s variants

are becoming popular with network providers. However, none of the current AQM

proposals attempt to provide end-to-end proportionally fair rate distribution, at

best they can provide max-min fair equilibrium rate allocation. Thus to summarize,

any arbitrary fairness objective cannot be achieved by AQM schemes though they

could be arrived at by use of schedulers throughout the network.

9

1.2.2 Congestion Response Conformance

The congestion control scheme in TCP has been the focus of numerous studies

and consequently gone through lots of changes. These changes were also motivated

by varying needs of the applications using the Internet. As such, even though

TCP remains the most widely used protocol, we have now a spectrum of congestion

control schemes. In [35] the authors show that absence of end-to-end congestion

control schemes or presence of selfish users could not only lead to TCP being beaten

down but also may even result in congestion collapse.

This thus represents the problem of congestion response conformance. In ab-

sence of compliance to a set of protocols, for example TCP, we might be faced

with the problem of TCP flows being singled out and gets rates which are (signif-

icantly) less than their fair share. This problem is further highlighted in presence

of unresponsive flows. (Flows which do not cut down their rates upon receipt of

congestion indication are called unresponsive flows.) These unresponsive flows can

shut-out TCP because on occurrence of congestion, TCP will cut its rate and the

unresponsive flows will step in to take the available bandwidth. A similar problem

is posed by responsive selfish flows (i.e. flows who react to congestion indication but

are selfish as compared to TCP) in the network. Specifically, these flows could have

a rate increase policy which is faster than TCP and some flows could have a rate

decrease policy slower than that of TCP.

Given that TCP is the most widely used transport protocol, Floyd etal pro-

posed the guidelines for managing and designing new congestion control schemes

such that they were friendly to TCP. A flow is deemed TCP-Friendly if its sending

rate does not exceed that of a conformant TCP flow in same circumstances. This

TCP-Friendly definition can further be loosened to the following relationship be-

tween the sending rate, x, and loss rate, p: x ∝ 1√
p
. This TCP Friendliness can also

be understood as congestion response conformance, as all flows try to be conformant

to TCP.

TCP-Friendliness is the criteria not only for safeguarding TCP flows but also

for enforcing some kind of fairness in the network. (TCP-Friendliness ensures Min-

imum Potential Delay Fairness across the network [56].) Further, we could easily

10

expand TCP Friendliness definition to encompass a larger range of rate control

scheme which can be done by relaxing the relationship between the sending and

loss rates. However, enforcing TCP Friendliness on the network remains a challeng-

ing question. In [35] the authors argue that router-based mechanisms are needed

to administer TCP-Friendliness. Other than these router based schemes, another

way of enforcing TCP Friendliness could be design of end-point congestion control

algorithms which are TCP-Friendly.

In [9, 99, 51, 84] authors have proposed a general class of TCP-Friendly con-

gestion control schemes. Though these proposals are encouraging they solve only

a part of the TCP-Friendliness problem because the end-users may willfully choose

to ignore these TCP-Friendly guidelines. As such it becomes imperative to have

router-based mechanisms for enforcing TCP-Friendliness. In [35] the authors point

out using per-flow scheduling or pricing mechanisms for enforcing TCP-Friendliness.

However, till date to the best of our knowledge, no such per-flow scheduling or pric-

ing mechanisms have been proposed or deployed to achieve TCP-friendliness on the

network.

1.2.3 Managing Bottleneck Queues

It is a widely held belief that buffers at bottleneck routers increase the net-

work throughput and utilization. However, this is not entirely true, especially when

the network operates with bursty and responsive congestion control schemes. The

purpose of a bottleneck buffer is to absorb transient increases in input traffic or in

other words bursts. A large buffer, delays congestion indication and falsely forces

congestion control schemes to believe that network is not bottlenecked. As a result,

the congestion control schemes keep increasing their windows. However, since the

bottleneck buffers are finite, after certain size they overflow thus causing huge reduc-

tions in congestion windows. This forces big oscillations in congestion window which

makes the transport protocol unsuitable for a variety of applications - especially the

ones which have strict timing requirements like multi-media services. Sometimes

these buffer overflows also cause multiple packets of a particular flow to be dropped

thus forcing it into timeouts. Therefore, a delay in reporting in the congestion state

11

on account of large bottleneck queues can have harmful effects on network and more

importantly end-to-end performance.

The discussion in the previous section has consistently illustrated that the cur-

rent Internet operates with Drop Tail queues. Also, there have been many studies

which show that TCP’s performance degrades on a network of Drop Tail queues.

This is because Drop Tail queues often maintain very large queues and this problem

in networking is commonly referred to as full queues. In other words, Drop Tail

queue operate will near full queues which results in burst losses, frequent timeouts

and synchronization of congestion windows. Moreover, the synchronization of con-

gestion windows (and by implication losses) causes the network to oscillate between

very high and low network utilization. As a result, either the bottleneck queue is

full or nearly empty. These queue fluctuations induce window oscillations and in-

crease the delay jitter making TCP and Drop Tail queues unsuitable for a variety

of applications.

Removing the problem of full-queues, which exists with Drop Tail queues,

has been one of the main motivations for the AQM design. RED tries to proac-

tively manage queues by dropping (or marking) a packet before the queue actually

overflows. This proactive management of bottleneck queues helps RED avoid the

problem of full queues and results in significant improvements in both network and

end-to-end performances. However, as we mentioned above RED suffers from many

configuration problems. One of the biggest drawbacks of RED is that when it is not

properly configured it’s performance becomes even worse than Drop Tail queues.

This is because, under some circumstances, RED consistently operates with full-

queues thus bringing back all the ills associated with full queues.

Newer AQM proposals have realized the significant disadvantages of operating

will full queues and as a result focus on managing near zero steady state queues.

The most popular proposals in this direction are Random Early Marking (REM)

[7] and Adaptive Virtual Queue [57]. Both these schemes try to match the input

demand to the output capacity (in this case the capacity of bottlenecked link) and in

the process maintain almost no steady state queue. The key to the success of these

algorithms is their radical approach to detect congestion. For example, both these

12

proposals rely on mis-match between input and output rate for detecting congestion

as against using bottleneck queue lengths (which was used by RED and it’s variants).

As a result, these schemes are able to maintain near zero queues without sacrificing

network utilization or throughput.

However, despite these interesting advances in AQM design and proactive

management of bottleneck queues the network continues to operate with Drop Tail

queues. Once again, the main reason against the deployment of AQM schemes has

been the requirement of significant network upgrade. Moreover the current network

design has led to the placement of very fast and expensive routers in the network core

while simpler and slower routers are maintained at the network edge. As a result

of this design, network providers do not want to add any new functionality to the

network core. Therefore, on account of the lack of deployment of AQM schemes, the

Drop Tail queues are ubiquitous in the network and the problem due to full queues

persist.

1.2.4 Summary

From the above discussion it follows that congestion control functionalities

such as fairness and congestion response conformance are very closely related and im-

portantly are tightly coupled with network based architectures. Congestion response

conformance guarantees a certain kind of fairness, for example TCP-Friendliness will

result in a minimum potential delay fairness across the network [56]. Similarly any

fairness definition can always be translated to another congestion response confor-

mance.

Traditionally Max-Min fairness has formed the network’s definition of fairness.

This definition aims to provide equal allocations to different flows. However TCP

allocates rate in proportion to the the round-trip times (RTT) of the flows and loss

rate. This then stands in contradiction to the network’s traditional fairness goals.

Thus AQM and scheduling disciplines which enforce Max-Min fairness do nothing

to enforce TCP-Friendliness.

Also these different schemes for providing network-wide fairness have their

own drawbacks:

13

• We would need AQM or scheduler support throughout the network. This

implies that we will have to make changes in the core.

• TCP-Friendly criteria constrains the choice of end-point congestion control

schemes for users. This might also infringe with the requirements of different

protocols as these needs might not always be satisfied with TCP.

• Both AQM/Schedulers and TCP-Friendliness cannot provide a broad range of

fairness criteria in the network.

Management of bottleneck queues has also been a network based task and

requires presence of active queue management module at the physical router. More-

over, Drop Tail queues do not manage the bottleneck queues resulting in consistent

near full queues.

1.3 Contribution of this Thesis

The goal of this research is to re-evaluate the function placement of congestion

control building blocks in the Internet. Over the years we have typically associated

congestion avoidance tasks such as managing bottleneck queues, reducing congestion

window synchronization, phase effects, burst losses etc with AQM design. Also,

the AQM functionality scope has been broadened to include management of selfish

flows in the Internet and to provide congestion response conformance (e.g. TCP

Friendliness). However for a variety of reasons these AQM schemes are not deployed

on the Internet.

In this thesis we show that the placement congestion avoidance tasks can

be de-coupled from it’s functionality. In other words, we show that we can de-

construct AQM schemes and move all it’s functionalities to end-system and network

edges. This ability to de-couple congestion control tasks from it’s placement gives

us architectures which are easier to manage and more importantly are deployable.

This thesis proposes three end-and-edge based congestion avoidance archi-

tectures which together emulate almost all the beneficial properties of the AQM

schemes. Specifically, we propose and end-system based architecture called Ran-

domized TCP which disassociates the task of introducing randomization from AQM

14

schemes. This, then allows us to prevent synchronization of congestion windows,

reduce phase effects and burst losses and improve network utilization from the end-

system. We also propose an edge-based architecture called Uncooperative Conges-

tion Control which can manage selfish flows and provide congestion response confor-

mance. This framework shows that management of selfish flows need not be coupled

with AQM design but can be viewed as an end-based policing question. Finally, the

thesis proposes a framework called virtual AQM to manage bottleneck queues lengths

from network edges. This functionality allows us to proactively manage bottleneck

queues while letting bottleneck use simple Drop Tail queueing. In summary, this

thesis shows, that on a network of Drop Tail queues, through some simple end-and-

edge based architectures we can emulate almost all beneficial properties of AQM

schemes.

1.3.1 Randomized TCP: An End-System Based Solution for Improving

Fairness in a Network of Drop Tail Queues

In this thesis we look at an end-based solution to some of the problems of TCP

and Drop Tail queues. Specifically, we propose to introduce randomization into the

network by randomizing the sending times of packets in TCP and other similar

window based transport protocols. For TCP we call this solution, Randomized

TCP. In Randomized TCP, instead of sending back to back packets, the packet

sending times are randomized. In particular, successive packets of a window are

sent after an interval of RTT (1 + x)/cwnd, where cwnd is the congestion window

in packets and x is a random number drawn from an Uniform distribution on [-1,1].

This solution is distributed, can be implemented at the end systems and thus is very

attractive from an implementation perspective.

Our results show that Randomized TCP reduces phase effects and synchroniza-

tion. We also analytically show that Randomized TCP reduces the synchronization

of flows which then results in overall performance improvements. Randomized TCP

also substantially reduces burst losses and removes the bias against longer RTT

flows. In addition, the benefits of randomization can be reaped even when it is

partially deployed. Randomized TCP performs better than or as well as TCP Reno,

15

independent of the capacity and buffer size at the bottleneck and for both short and

long flows. The performance improvements can be seen in throughput, fairness, loss

rates, timeouts and latency of the flows. In summary our proposal can emulate the

beneficial effects of RED in a distributed manner without the complexities and un-

favorable aspects of parameter tuning of RED. However, unlike RED, Randomized

TCP does not proactively manage queues or in other words do congestion avoidance.

As a result it only emulates the beneficial properties of RED which accrue out of

introduction of randomization at a bottleneck in the network. Finally, through Ran-

domized TCP we show that we can de-couple the task of introducing randomization

at the bottleneck to reduce synchronization, phase effects etc from AQM design and

instead use end-to-end congestion control schemes.

Randomized TCP is an end-based solution for improving fairness in the net-

work and reducing the phenomena which limit the effectiveness of TCP when op-

erating with Drop Tail queues. However, it requires a presence of Randomized flow

at every bottleneck to break the synchronization at that router and improve net-

work performance. Since Randomized TCP is end-system based solution it might

not proliferate the network well enough to improve network performance. Moreover

end-based systems do not protect flows and neither perform congestion avoidance.

To remedy these problems we would need to monitor flows inside the network and

by implication need AQM. In the next section we outline a network based solution

in order to improve network performance in presence of selfish flows.

1.3.2 Uncooperative Congestion Control: Edge-Based Re-marking for

Providing Fairness and Congestion Response Conformance in the

Internet

One of the aims of this research is to look at effects of selfishness of users

in a network; specifically, to study in what ways and to what extent a selfish user

can deliberately degrade the performance of other users (in the network) in order

to improve his performance. First, we will look at ways to define mis-behavior

of users and then follow up with analyzing the effect of selfishness on equilibrium

rate distribution in a network. The next objective is to suggest scalable ways to

16

identify the mis-behaving users in the network. We will also evaluate the stateless

architectures as a means of identifying and penalizing selfish users. Towards this end

we suggest an optimization model for managing the selfish behavior in the Internet.

Ultimately, the aim of this thesis is to come up with a deployable architecture which

will enable network providers to restrict and manage the selfish behavior in their

network.

From the earlier discussion it follows that end-system congestion control schemes

are not sufficient to provide fairness and congestion response conformance in the

network and need some form of network support. However, AQM schemes can not

provide a broad range of fairness objective in the network and by implication cannot

enforce congestion response conformance. This is because most of them are oblivious

to the competing flows and thus impose same penalties on all sources. We illustrate

this with the help of some simulation scenarios. Using these results we first classify

flows according to their response to congestion indication. From this classification

we then define conformance and selfish behavior. We then explore the selfish be-

havior of protocols, specifically we derive the conditions under which new selfish

protocols can be obtained while keeping the network stable. Through these defini-

tions of selfishness and conformance we show that rate allocations in the network

can be unfair and more importantly do not always comply with TCP-Friendliness

or any other congestion response conformance objective. This unfair sharing of the

bottleneck is then our motivating factor for studying ways to achieve conformance

and fairness in the network.

In this thesis we look at “fairness” from the network’s perspective (rather

than the end user’s perspective) and focus on managing the distribution of rate

allocations. We achieve this by transparently managing the effective range of user’s

utility functions. More specifically, users may choose arbitrary utility functions,

but the edge of the network can re-map these utility functions into a target range

of utility functions. Interestingly this re-mapping is a simple consequence of the

duality framework of Low et. al. [62] and can be easily implemented at the edge of

the network. Internal routers of the network function as usual, i.e. they may mark,

or drop packets using any AQM scheme (including drop-tail policy). Broadly this

17

thesis also suggests that management of mis-behaving or non-conformant flows need

not be coupled with AQM design, and can be simply viewed as an edge network based

policing question. Our mechanisms may also be thought of as a new class of “traffic

conditioning” techniques [12], where the “conditioning” is achieved by manipulation

of the feedback stream rather than manipulation of the packet stream.

The re-marking framework presented in this thesis can also be extended to

provide service differentiation. Rather than mapping utility function the utility

function of the sources to a single objective utility function, we could instead map it

to a range of target utility functions and thereby differentiate between flows. This

solution is attractive because it can be achieved irrespective of the congestion control

scheme employed by the user and works independently of AQM scheme deployed on

the network. Moreover, it can work with Drop-Tail queues also.

1.3.3 virtual AQM (vAQM): An End-or-Edge Based Solution to Manage

Bottleneck Queues

In this thesis we present an abstract framework for managing bottleneck queues

from the network edge or end system. We conjecture that for any flow, through end-

to-end probes, we can identify the capacity of the congested link and use it to control

the rate of the flow. Further, we can group flows according to the path they take in

the network, find the congested link on that path and run an AQM at the network

edge (ingress) to limit the rate of these flows. Moreover, any AQM schemes can be

run at the edge to limit the rate of the flows (to the corresponding bottleneck). In

this thesis we refer to this framework as virtual AQM (vAQM) and in this thesis we

outline a specific algorithm, virtual AVQ (vAVQ), which uses AVQ like properties to

limit the rate of the flows at the network edge. The main advantage of this model

is that the underlying network can still use Drop Tail queuing while allowing us to

manage queues from network edges.

We define a stream as a group of flows where every flow (in the group) has

the same ingress and egress router and has the same route (between the ingress and

egress routers). Further, the route between the ingress and egress router is called a

path. For each path we define the minimum link capacity as path capacity, C, and

18

the maximum demand (on the path) as path demand, D. End-to-end packet probing

methods derived from packet pair and packet-train models are used to estimate the

path capacity and available (or effective) capacity. The path demand can then be

calculated as the difference between the path capacity and the effective capacity.

For a network we also define a desired utilization factor called γ, such that

0 < γ < 1. The vAVQ algorithm uses this utilization factor to construct a virtual

path capacity which is defined as γC. The aim of the vAVQ scheme is then to match

the estimated demand to this virtual path capacity. The vAVQ algorithm maintains

a shadow (or virtual) buffer similar to AVQ. For every incoming packet, the buffer

length counter for the shadow buffer is increased and whenever the virtual buffer

overflows a packet is marked in the actual router queue. Also, the virtual buffer

is drained in a process similar to that of AVQ using the path capacity and the

path demand estimates. Since, the network utilization factor, γ, is less than 1 at

steady state the total input (on the path) will always be less than the bottleneck

link capacity leading to near zero queues.

We have evaluated the vAVQ framework for both single and multi-bottleneck

scenarios. Our initial results suggest that the proposed framework can significantly

reduce bottleneck queue lengths without compromising on link utilization or fairness.

However, the model presented in this thesis is sensitive to errors in estimation and

the size of the virtual buffer. These errors becomes especially important in a multi-

bottleneck scenario. Moreover, in a multi-bottleneck setup, the path capacity and

demand estimates may not correspond to the same physical bottleneck. As a result,

the gains with vAVQ in a multi-bottleneck scenarios is less than that in a single

bottleneck setup. However, we believe that this is an area of research which has not

been explored before and needs to be investigated further as it could lead to novel,

interesting and deployable queue management algorithms.

1.4 Organization of the Thesis

This thesis looks at the question of improving fairness and congestion re-

sponse conformance in the network through use of end-system and network based

algorithms. In Chapter 2 we review the existing work on congestion control and

19

AQM. Chapter 3 first outlines the problems with Drop Tail queues and TCP and

then presents an end-system based algorithm, called Randomized TCP, for emulat-

ing AQM behavior on a network of Drop Tail Gateways. In Chapters 4 and 5 we

study the impact of selfish behavior on the network. We first define selfish behavior

in Chapter 4 and outline ways in which selfish rate control schemes can be gener-

ated. Then, we use these selfish schemes use to show that Randomized TCP and

other end system based schemes are insufficient to provide a fair service to all users

in the network. In Chapter 5 we present an edge system based re-marking frame-

work for managing selfish flows in the network and providing congestion response

conformance. Chapter 6 introduces virtual AQM, an abstract framework for man-

aging bottleneck queues from the network edge. Finally in Chapter 7 we present

the conclusions and the future work.

CHAPTER 2

Background

In this chapter we review the need of congestion control in the Internet and its

objectives. Thereupon we will discuss the end-system based proposals for congestion

control (e.g. TCP and its variants) as well as network based proposals i.e. AQM.

This discussion on congestion control brings us to the question of how resources are

shared between users, i.e. the problem of fairness. For these purposes we first review

the definitions of fairness and then the various schemes for achieving fairness in the

network. Finally we discuss the question of protocol compliance and flow control

optimization framework.

The rest of the chapter is organized as follows:

• We begin with a review of end point schemes in Section 2.1 for congestion

avoidance and control. In particular we review sliding window based protocols

like TCP and it’s variants in Section 2.1.1 and it’s performance on a network

of Drop Tail queues in Section 2.1.2, rate based proposals in Section 2.1.3 and

finally we discuss Paced TCP a flow control proposals which is hybrid of rate

and window based schemes in Section 2.1.4.

• In Section 2.2 we survey the network based mechanisms for preventing con-

gestion collapse.

• Section 2.3 reviews the distribution of rates in a network or in other words, fair-

ness. Section 2.3.1 and 2.3.2 discuss the oblivious and non-oblivious network

based proposals for achieving fair rate distribution in the network, respectively.

• Congestion Response Conformance and mechanisms for achieving it are dis-

cussed in Section 2.4 and 2.4.2 respectively.

• Finally in Section 2.5 we review the optimization framework proposed for

flow control. Also within the context of flow optimization we also review the

definition of fairness and protocol compliance.

20

21

2.1 End System Based Mechanisms for Preventing Conges-

tion Collapse

In 1980s lack of attention to the dynamics of packet forwarding on the Internet

resulted in severe service degradation or congestion collapse. Since this congestion

collapse considerable research has been done on Internet dynamics and many solu-

tions have been suggested to avoid it. The original fix for congestion collapse was

provided by Van Jacobson in 1988 as some modifications to TCP [49]. Ever since,

TCP has been the backbone of the modern Internet.

2.1.1 TCP and its Variants: Congestion Avoidance and Control

TCP is a sliding window based transport protocol where the window is in-

creased upon successful reception of acknowledgments (Ack). This ensures that

TCP gradually probes and takes all the available bandwidth. However, this prob-

ing will result in a situation where the sender’s sending rate exceeds the network

capacity and at that point the network will drop the excess packets. These packet

losses are construed as sign of congestion by the TCP and it reacts to it by cutting

its rate (or decreasing window).

In TCP, the sender maintains a congestion window, cwnd which represents

the number of packets outstanding in the network, i.e. packets which have not

been acknowledged. Upon setup of a connection the cwnd is set to 1 and TCP

sends out one packet. Subsequently on receipt of every acknowledgments TCP

sends an extra packet into the network. This window increase phase is called Slow

Start and is characterized by the exponential increase in window size. However this

window increase will soon exhaust the network’s capacity and excess packet(s) will

be dropped. When TCP detects this packet loss (in Slow Start) it is construed as

the end of the Slow Start and the TCP re-transmits the lost packets and halves

its congestion window. Thereafter it enters the congestion avoidance phase where

the window increase is much slower (as compared to Slow Start). In congestion

avoidance phase TCP puts an extra packet only when a window worth of packets

have been acknowledged. Thus during congestion avoidance the window increase is

linear.

22

Jacobson proposed that in the event of loss, a timer at TCP sender will timeout

while waiting for the Ack. On the expiry of this timer TCP will retransmit the lost

packet and halves the congestion window, cwnd and stores it in a variable called

ssthresh. TCP then resets its cwnd to 2 and does a Slow Start till its cwnd is equal

to ssthresh, thereupon it enters the Congestion Avoidance phase.

This reaction of TCP to congestion was found to be severe in most cases

and as such there were proposals to remedy these significant window cuts. Fast

Retransmit and Recovery (FRR) was proposed as a means to eliminate timeouts for

retransmitting a packet [92]. In FRR, when the receiver gets out of order packets it

sends out duplicate Acks for the first in sequence packet. When the sender receives

three duplicate Acks, it detects that a packet is lost and it retransmits the first

in sequence packet. It also sets the ssthresh to half of the cwnd value and then

resets the cwnd to ssthresh + 3. There after for every duplicate Ack it receives it

increments the congestion window by 1. Also, if the number of outstanding packets

in the network is less than the congestion window, the sender sends new packets in to

the network. Finally when the sender receives the Ack for the retransmitted packet

it resets it cwnd to ssthresh and continues in the Congestion Avoidance phase. Thus

FRR prevents TCP into timing out for every lost packet.

There have been other proposals to optimize the TCP and the most notable

amongst those has been TCP SACK. Selective Acknowledgment (SACK) is a strat-

egy wherein the receiver can inform the sender about all segments that have arrived

successfully, so the sender needs to retransmit only the segments that have actually

been lost.

Another proposal which merits mention is TCP Vegas [15]. Unlike other TCP

proposals which use packet loss or marking as a congestion notification TCP Vegas

uses queueing delays to decipher congestion. TCP Vegas relies on the fact that dur-

ing congestion the queues will build up at the bottlenecks and as such the queueing

delay will increase. This increase in queueing delay is construed as a sign of conges-

tion and TCP Vegas decreases its window by one packet, otherwise it increases its

window linearly. Since the window increase and decrease in TCP Vegas is small it

is most likely to converge to the optimal bandwidth.

23

2.1.2 TCP and Drop Tail Queues

TCP and other similar congestion control schemes result in bursty traffic.

This burstiness can be attributed to three main reasons. One, when the window is

increased the last two packets are sent back to back. Two, in presence of congestion

on the reverse path the Acks arrive back to back and as such the packets sent are

back to back. And finally, when an Ack for a retransmitted packet arrives it might

result in release of a previously stalled window which might in turn lead to back to

back transmissions. In order to improve the performance of the network buffers are

provided at the links to absorb these bursts.

The traditional technique for managing buffers at routers has been to set a

maximum length (in terms of packets) for the buffer, accept packets for the buffer

until the maximum length is reached, then reject (drop) subsequent incoming packets

until the queue decreases (because a packet from the queue has been transmitted).

This technique is known as ”Drop Tail”, since the packet that arrived most recently

(i.e., the one on the tail of the queue) is dropped when the buffer is full.

However this simplistic buffer management has many problems which limit

the effectiveness of end-to-end congestion control algorithms. Drop Tail queueing

in some situations allows a single connection or a few flows to monopolize queue

space, preventing other connections from getting room in the queue. This ”lock-out”

phenomenon is often the result of synchronization or other timing effects [39, 14].

The Drop Tail discipline allows queues to maintain a full (or, almost full)

status for long periods of time, since Drop Tail signals congestion (via a packet

drop) only when the queue has become full. It is important to reduce the steady-

state queue size, and this is perhaps queue management’s most important goal.

However, this does not take into account the critical role that packet bursts play in

Internet performance. If the queue is full or almost full, an arriving burst will cause

multiple packets to be dropped. This can result in a global synchronization of flows

throttling back, followed by a sustained period of lowered link utilization, reducing

overall throughput [39]. Further these burst losses and phase effects also cause a

bias against longer round trip time flows [39, 37].

Phase effects refer to conditions where in the bandwidth-delay product of the

24

path of a flow is not an integral multiple of the packet size [37]. Phase effects cause

a specific section of competing flows to experience recurrent drops causing unfair

distribution of bandwidth and increased latency. Phase effects are manifested in

the network preferentially dropping packets from a specific subset of flows thereby

reducing their throughput.

Another drawback of Drop Tail queues is that they don’t protect flows, i.e.

it allows for a section of flows to monopolize the entire bandwidth [14]. This is

especially important in the current Internet where the end system has a flexibility

of choosing its congestion control scheme. This then raises the question of unfair

sharing of the bottlenecks as the aggressive flows might corner a larger share of the

bandwidth.

2.1.3 Rate Based Proposals for End-System Based Congestion Control

Traditionally flow control algorithm were envisioned on sliding window proto-

col. However these sliding window protocols resulted in bursty traffic which brought

with it host of other problems. Also there were lot of algorithms for which TCP’s

rate cut was considered too drastic and they needed smoother rate control protocol.

For these purposes rate based flow control protocol were proposed [48, 82, 40, 83].

In this section we will review some of these proposals.

Jacobs [48] presents a scheme that uses the congestion control mechanisms

of TCP, however, without retransmitting lost packets. In his scheme, the sender

maintains a transmission window that is advanced based on the acknowledgments

of the receiver, which are sent for each received packet. The sender then uses the

window to calculate the appropriate transmission rate. Rejaie et al. present in

[82] an adaptation scheme called Rate Adaptation Protocol (RAP). Just as with

TCP, every packet sent is acknowledged by the receivers and these acknowledgment

the sender estimates the round trip delay. If no losses are detected, the sender

periodically increase its transmission rate additively as a function of the estimated

round trip delay. Upon detection of a loss the rate is reduced by half in a similar

manner to TCP. However, this approach as well as the one presented in [48] do not

consider the cases of severe losses that might lead to long recovery periods for TCP

25

connections. Hence, the fairness of such an approach is not always guaranteed.

In [73] the authors proposed a analytical model for calculating the average

goodput of a TCP connection. Using this model Padhye et al. [40] present a scheme

in which the sender estimates the round trip delay and losses based on the receiver’s

acknowledgments. In the case of losses, the sender restricts its transmission rate

to the equivalent TCP rate calculated using TCP’s throughput formula proposed

in [73] otherwise the transmission rate is doubled. While the scheme behaves in

a TCP-friendly manner during loss phases, its increase behavior during underload

situations is rather arbitrary. Specifically, it might result in severe unfairness as

the adapting end system might increase its transmission rate much faster than a

competing TCP connection.

TCP Emulation At Receivers (TEAR) [83] is a combination of window and

rate based congestion control. It features a TCP-like window emulation algorithm at

the receivers, but the window is not used to directly control transmission. Instead,

the average window size is calculated and transformed into a smoothed sending rate,

which is used by the sender to space out data packets.

2.1.4 TCP Pacing: Solution For Reducing Burstiness of TCP

Sliding window based protocols like TCP often send packets in burst. As

such the performance of sliding window protocols suffers on a network of Drop Tail

queues. On the contrary, rate based schemes send out packets at regular intervals

thus avoiding burst transmissions. However, since rate based schemes loosely observe

the packet conservation principle they at times can be less responsive to network

congestion. TCP Pacing [101] is a hybrid approach between window based schemes

and rate based schemes. In pacing, packets to be sent in a window are spaced by

∆ = RTT/cwnd. This spacing of packets avoids back to back transmissions and

hence removes the burstiness of TCP.

Pacing was first suggested in [101] as a correction for the compression of acks

due to cross traffic. Since then the concept of pacing has been applied to slow-start,

after a packet loss and after an idling time in case of web traffic [8, 75, 43, 6, 96]. In

order to speed up web connections the authors in [75] suggest using pacing during the

26

slow start as means for Ack clocking. Similar results have been reported in [6] where

the authors show that performance of slow start can be improved by use of pacing.

Pacing has also been suggested for improving TCP performance with asymmetry

[8] and on high bandwidth delay product links [78]. In [78] the authors evaluate

pacing over the entire lifetime of TCP as a means for reducing queueing bottlenecks

in wireless, high bandwidth delay networks. In [43] the authors have proposed a

fast web protocol, WebTP which uses pacing during congestion avoidance phase.

Rate Based Pacing has been suggested in [96] to improve startup after idling.

Slow-start restart occurs when bursty data is periodically sent over a TCP connec-

tion. TCP depends on ACK clocking for flow control. Idle periods in the connec-

tion cause this clocking mechanism to break down. In [96] the authors propose a

rate-based pacing (RBP), an intermediate approach to data transmission after an

idle period. RBP paces outgoing packets at a certain rate until the ACK clock is

restarted. Thus RBP attempts to provide a compromise between the extremes of

sending back-to-back bursts and restarting with slow start.

In [4] the authors have done an exhaustive study of pacing with different

operating characteristics. They show that with long flows pacing removes synchro-

nization, improves fairness over TCP Reno and achieves the same throughput as

TCP Reno. Through simulations they show that Pacing gets synchronized during

the slow start, but in the congestion avoidance phase it has a de-synchronizing ef-

fects leading to slightly higher throughput. Even in presence of flows (sufficiently

long) with different round-trip times pacing was shown to increase fairness with the

same throughput as of TCP Reno. However, in presence of short flows the authors

show that Pacing gets synchronized causing larger latencies. They contend that by

evenly spacing the packets, pacing delays the congestion point, thus allowing the

sources to ramp up rates, and finally on onset of congestion causing synchronized

drops. This results in lower throughput and higher latencies. Also, the authors

show that when Paced TCP is competing against TCP Reno it gets beaten down.

A modified version of pacing is also evaluated in [52]. In [52] the spacing in-

terval is defined as RTT
cwnd+V

, where V is the tunable parameter, which controls the

aggressiveness of the pacing. However, the effect of this scheme on the synchro-

27

nization of flows, phase-effects, bias against long RTT flows etc is not investigated.

They observe that with bulk data transfer the modified pacing shows results similar

to TCP Reno. However, for a web-like load model , the modified paced TCP ex-

hibits lower packet loss than TCP and also the average transfer latencies are lower.

However the proposal [52] do not discuss the parameter setting for V and it’s effect

on the pacing scheme. Also, they do not consider the case where TCP Reno and

Paced TCP are multiplexed on the same link.

2.2 Network Based Mechanisms for Congestion Avoidance

From the discussion in previous section it is clear that the TCP congestion

avoidance mechanisms, while necessary and powerful, are not sufficient to provide

good service in all circumstances. However, there is a limit to how much control

can be accomplished from the edges of the network. Some mechanisms are needed

in the routers to complement the endpoint congestion avoidance mechanisms.

Active Queue Management (AQM) was proposed to complement the end-

system based congestion avoidance mechanism. The AQM proposal involved a

proactive management of the bottleneck queue. Specifically it was proposed that

by dropping some packets before the queue gets full is an early enough indication

for the sources of impending congestion. As such these sources will react to these

packet losses by cutting down their rates and as a result the queue build up at the

routers won’t be large. This in turn implied that burst losses and synchronization

of loss events could be avoided.

By keeping the average queue size small AQM will provide greater capacity to

absorb naturally occurring bursts without dropping packets. Also the small queue

size reduces the delays seen by flows. This is particularly important for interactive

applications such as short Web transfers, Telnet traffic, or interactive audio-video

sessions. AQM can also prevent synchronization of loss events by ensuring that

there will almost always be a buffer available for an incoming packet. For the same

reason, active queue management can prevent a router bias against low bandwidth

but highly bursty flows.

Random Early Drop (RED) [39] was the first significant AQM proposal which

28

advocated enqueing packets probabilistically. RED achieves this by comparing the

time averaged value of queue length to a threshold and then probabilistically de-

ciding whether to enque the packet or not. Further the probability of enqueing a

packet decreases as the average queue length increases. Thus, if the queue has been

mostly empty in the recent past, RED won’t tend to drop packets. On the other

hand, if the queue has recently been relatively full, indicating persistent congestion,

newly arriving packets are more likely to be dropped.

RED operates with 5 control parameters and they are: the two thresholds, the

minimum threshold minth and the maximum threshold maxth, the queue averaging

parameter wq, the length of the buffer, B and the maximum dropping probabil-

ity, maxp. When the average queue is in between the two thresholds packets are

enqueued probabilistically, where the dropping probability increases linearly as a

function of maxp and the average queue length (the dropping probability is 0 at

minth and maxp at maxth). However if the average queue crosses the maximum

threshold all incoming packets are dropped.

Though RED solves many problems of drop tail queues it is not without its

share of problems. The biggest concern with RED is it’s configuration. RED has

5 operational control parameters and there are no fixed guidelines for tuning them.

Further it has been shown that if RED is not properly configured can result in

performance degradation, so much so that it is even worse than Drop Tail queues

[67, 22]. Though recently there have been some proposals for configuring RED

they are limited by the ability to configuring only a set of these control parameters

[20, 46]. Thus in absence of strict guidelines RED has not found much favor with

network operators.

Besides the problem of configurations, RED also does not protect flows [60].

When hit with a mixture of responsive and unresponsive sources, RED allows unfair

bandwidth sharing. This is because RED enforces equal loss rates on each flow,

irrespective of their bandwidth. As such if there are flows which do not respond to

congestion then they will eventually corner bandwidth worth their sending rates and

in the process beat down TCP or other responsive flows. A similar situation can be

expected if there are flows who are more aggressive than TCP but are responsive.

29

Given these deficiencies with RED there have been several other AQM pro-

posals which attempt to solve some of these problems [60, 57, 7, 28, 91, 90, 29]. The

notable mentions amongst these schemes are Adaptive Virtual Queue (AVQ) [57]

and Random Exponential Marking (REM) [7]. AVQ uses a virtual queue to enque

packets in the network and the size of the virtual queue depends on the arrival rate

of the traffic and the utilization desired at the bottleneck. If the virtual queue is full

then the packet is not enqued. REM on the other hand tries to match the input rate

to the bottleneck capacity. Though AVQ and REM have fewer parameters to con-

figure and give crisper guidelines for deriving those parameters these schemes still

do not protect flows. This is because these proposals do not differentiate between

flows. However there are some schemes which take into account flow arrival rate to

allocate marks (or losses) and thus protect flows [60, 71, 30, 64]. We will discuss

these schemes in detail in the following section.

2.3 Fairness

Though there are many definitions of fairness but its meaning in all definitions

is that it represents the distribution of rates between users. Fairness is one of

the most important considerations before network providers. This is because it

represents how a network distributes rates between users such that the network

does not penalize any user and more importantly can also use it to provide service

differentiation.

Kelly et al. in [53] showed that every rate control scheme is associated with a

particular kind of fairness. Specifically they show that if all users use same conges-

tion control scheme then the subsequent rate distribution in the network is associated

with a unique fairness criteria. In Kelly’s framework every rate control algorithm

is associated with a Utility function, U(x), which is a function of its rate allocation,

x on the network. The end user’s objective is to maximize its utility function with

respect to rate. Kelly, Mo and Walrand showed in their work that the equilibrium

distribution of rates or fairness with a utility function, U(x) is given as

∑

i

piU
′
i(xi − x∗i)

30

where xi is the rate allocated to the user i and x∗i is the fair rate for the user i

[53, 69]. The most interesting fact about this formulation is that it can used to

represent any fairness criteria. For example proportional fairness, where the rates

are allocated in proportion to the network resources being used in given by

∑

i

xi − x∗i
xi

.

Recent works in flow optimization have used this definition to relate different

rate control schemes to corresponding fairness criteria. In [61, 56, 13] the authors

show that TCP Reno is associated with minimum potential delay fairness, i.e. it

tries to minimize the total delay in a file transfer. Similarly, TCP Vegas achieves

proportional fairness [61]. Mo and Walrand have also proposed a range of congestion

control algorithm which can achieve weighted proportional fairness [69].

Though a network can allocate bandwidth according to a range of fairness cri-

teria, traditionally equal allocations and Max-Min fairness have formed network’s

criteria for providing fair service to all users. However both these criteria are signifi-

cantly different from the inherent fairness provided by TCP, i.e. minimum potential

delay fairness. Therefore any fairness objective in the network, other than minimum

potential delay fairness, might penalize some TCP flows. As such, any fairness ob-

jective in the network also has to take into account that it does not penalize TCP

flows in the network, especially when most of the network traffic is carried by TCP.

The fairness issue also assumes importance because of proliferation of different

rate control schemes in the network. This is because there could exists schemes

which do not react to congestion indication or their response is different from TCP’s

response. As such, in [35, 65, 14] the authors argue that these schemes pose twin

problems of being unfair to TCP’s flows and importantly congestion collapse.

Different network based mechanisms have been proposed to manage these self-

ish schemes to prevent congestion collapse and to provide fair service to TCP flows.

These schemes can be broadly classified into two categories, oblivious and non-

oblivious schemes. Oblivious schemes allocate equal marks (or loss rate) to all flows

and therefore do not protect TCP flows from other selfish and non-responsive flows.

31

RED, REM, AVQ, CHOKe [57, 7, 29, 28] are some examples of such schemes. How-

ever CHOKe [77] is one notable exception amongst these oblivious schemes as it tries

to punish aggressive flows. Non-Oblivious schemes on the other hand differentiate

between flows mostly on their arrival rate and thus attempt to protect flows. Flow

RED (FRED) [60], Stabilized RED (SRED) [71], Stochastic Fair BLUE (SFB) [30]

, RED with Proportional Dropping (RED-PD) [64] are examples of AQM schemes

which look at some flow characteristic before deciding to enque them. In this section

we discuss some of these proposals.

2.3.1 Oblivious Schemes for Providing Fairness in the Network

End based techniques are insufficient to protect flows in the network and

thereby provide fairness. Towards achieving these objective use of AQM at routers

was proposed. RED [39] was the first significant AQM proposal. However as dis-

cussed in Section 2.2 RED cannot protect flows, especially when TCP flows in the

cases where they compete with unresponsive flows [60]. Moreover since RED’s con-

trol parameter are statically configured, i.e. the configuration does not change with

time, RED’s penalty function can be severe under low loads and insufficient with

large multiplexing of flows [29, 28]. This further constrains the fairness objectives

which RED can achieve.

Taking into the account these configuration issues Feng et al. proposed an

AQM scheme, Adaptive RED (or ARED) [31]. ARED presents an on-line algorithm

for dynamically changing the values of maxp or the maximum dropping probability,

according to the observed traffic. Therefore depending on whether the queue has

been full or empty the maximum dropping value is increased or decreased. BLUE

is another fundamentally different AQM algorithm which uses packet loss and link

idle events to manage congestion [28]. BLUE maintains a single probability, which

it uses to mark (or drop) packets when they are required. If the queue is continually

dropping packets due to buffer overflow, BLUE increments the marking probability,

thus increasing the rate at which it sends at which it sends back congestion notifica-

tion. Conversely, if the queue becomes empty or if the link is idle, BLUE decreases

its marking probability.

32

Though both ARED and BLUE offer dynamic configuration of RED, they still

do not protect TCP flows from misbehaving users. This is because these flows con-

sider aggregate arrival rate to the bottleneck and thus do not differentiate between

flows. Also these schemes allocate equal marks to all flows and thus misbehaving

blows still corner a large share of the bottleneck. This is one of the drawbacks of

the oblivious schemes.

However there is one significantly different oblivious AQM proposal which does

protect flows from misbehaving users. This proposal called, CHOKe [77] takes into

account the number of packets queued for a flow before deciding to enque them.

When a packet arrives at the bottleneck, CHOKe randomly picks a packets already

enqueued in the buffer and compares the flow identifier for both these packets. If

a match is found then both the packets are dropped otherwise the incoming packet

in enqued. This rule of deciding to enque a packet thus punishes aggressive flows

as they are more likely to have more packets enqued and thus more probable to be

dropped. The authors show that CHOKe tries to achieve Max-Min fair distribution

across the network [77].

In summary barring CHOKe all oblivious schemes cannot protect TCP from

misbehaving flows. However, all oblivious schemes are limited by the range of fair-

ness criteria they can provide.

2.3.2 Non-Oblivious Schemes for Providing Fairness in the Network

From discussion in the previous section it is clear that in order to protect

flows from misbehaving users we will need to assign marks not only on the basis

of aggregate arrival rate to the bottleneck queue but also on individual flow arrival

rates. Thus if we are monitoring individual flow rates to assign marks (or drops),

the subsequent schemes are called non-oblivious schemes. Different ways have been

suggested for monitoring individual flow’s share in the bottleneck. One of these is

explicit rate monitoring at every bottleneck, another method involves monitoring at

one bottleneck and then sending the rate information through some means (either

in packet header or through specific control packets) or deciphering the rate through

number of packets enqueued in the bottleneck queue. In this section we will dis-

33

cuss some non-oblivious network based schemes which use one of these methods for

providing fairness in the network.

The first significant non-oblivious AQM proposal was Flow RED (or FRED)

[60]. FRED provides better protection than RED for responsive flows by isolating

non-responsive greedy flows more effectively. Instead of indicating congestion to

randomly chosen connections by dropping packets proportionally, FRED generates

selective feedback to a filtered set of connections which have large number of packets

queued. To achieve this, FRED estimates average per-flow buffer count, avgcq; flows

with fewer than avgcq packets buffered are favored. Also FRED maintains a count,

strike of number of times a flow has failed to respond to congestion notification.

Any flow which has a higher strike value is more likely to be dropped. However

one of the main drawbacks of FRED is that it has to maintain per-flow states, i.e.

states for responsive as well as non-responsive flows, and might also increase average

transfer delays.

A differential dropping scheme to manage fair bandwidth allocation at the

router in presence of malicious users is presented in [76]. The scheme presented is

similar to FRED in the sense that it maintains information about flows to decide

which packet to drop. The authors propose the use of a shadow buffer where the

count of packets is stored. A packet is dropped (or marked) if the packet count for

the flow in the shadow buffer exceeds its fair rate (in terms of packets).

Probabilistic Aggregate Marking (or PAM) uses RED type thresholding on

the token bucket contents to mark a packet (from a traffic aggregate) [23]. If the

token bucket contents fall below minth packets are marked with a lower priority. If

the token bucket contents are in between minth and maxth then packets are marked

according to a linear function. The authors argue that PAM offer proportional

marking though this argument is not backed by any analysis.

The authors in [23] also propose a scheme similar to CSFQ (Core Stateless

Fair Queuing) and call it Stateless Aggregate Fair Marker (or SAFM). The edge

marks packets based on the information present in the header. In SAFM the CSFQ

header contents are replaced by token bucket size, token bucket rate and (1 - token

allocation probability). The ingress calculates these values while the egress uses

34

them to construct the fair rate share vector and then using it to mark packets. The

model involves per-flow calculations at the ingress router.

In [63] the authors present a model to control high bandwidth aggregates in

the network which uses packet history to drop/mark aggressive flows. Also once

these misbehaving sources have been identified and punished this information can

be pushed back to the downstream routers which can further rate limit these flows.

Another per-flow differential dropping called RED-PD (RED- Preferential

Dropping) is proposed in [64]. Therein a malicious user is detected using drop

history, which implies maintaining state. However the authors claim that this state

is minimal because they store information only about the aggressive flows. Nev-

ertheless the scheme requires storing states at all the routers in the network. The

authors propose the use of congestion epochs to detect aggressive users. The idea

is that a flow ideally sees one drop in one congestion epoch and this information

can be leveraged to detect malicious flows. A per-flow filter is applied to these ma-

licious flows which either drops a packet probabilistically or admits the packet. The

probabilistic dropping is based on ARED.

In [44] the authors present a strategy to detect unresponsive flows using Diff-

Serv. They propose shaping the unresponsive flows at the edges using congestion

information from the core. As such the core is required to maintain information

about every dropped packet and sends this information periodically to edge routers.

The scheme proposed by the authors cannot be deployed in the Internet as it re-

quires modifying the core and also requires to maintain state inside the core which

raises questions of scalability.[74, 24, 60].

Yet another network based scheme to achieve fairness in the network is Core

Stateless Fair Queuing or CSFQ [95, 93]. In CSFQ a flow’s arrival rate is monitored

at the network edges and stored in the packet header for use by other routers.

Thereafter each router updates this flow arrival rate and uses it to enque the packet

probabilistically. The authors contend that CSFQ achieves fair queueing in the

network.

Besides these AQM based proposals another popular way of providing fairness

has been the use of schedulers in the network [25, 10, 88]. Fair queueing, Weighted

35

FQ, Deficit Round Robin (DRR) are some scheduling proposals which can be used

to provide fair distribution of rates in the network. However, these schemes are

constrained by the need of placement throughout the network and moreover need

coordination between each scheduler.

2.4 Congestion Response Conformance in the Network

Over the years the Internet growth has been well supplemented by various

applications who have varying needs, especially for transport protocols. Initially all

these applications relied on TCP but as the requirements of the applications changed

TCP was no longer the only favored transport protocols and therefore a variety of

flow control algorithms were proposed. These flow control algorithms can be mainly

divided into three main classes a) TCP-Compatible flows b) unresponsive flows, i.e.,

flows that do not slow down when congestion occurs, and (c) flows that are responsive

but are not TCP-compatible [34]. Yet another class of flow control algorithm use a

mix of responsiveness and unresponsiveness. Specifically these algorithms decrease

their rate on receiving a congestion indication but they also have a lower limit on

transmission rate, i.e. they do not react to congestion indications when the sending

rate is below this limit.

As a result of this proliferation of different congestion control algorithms we

may reach a stage where there is no congestion avoidance mechanisms in the network.

This would bring us back to the congestion collapse problem of 1980s [34]. These

different class of flow control algorithm either responsive or unresponsive also pose

a problem of protocol compliance. Floyd et. al formally defined this problem of

protocol conformance in [35] wherein a conformant flow was called TCP-Friendly or

TCP-Compatible.

RFC 2309 defines TCP-compatibility as, “A TCP-compatible flow is respon-

sive to congestion notification, and in steady-state uses no more bandwidth than a

conformant TCP running under comparable conditions (drop rate, RTT, MTU, etc.)

” [14]. Floyd et al. in [35] proposed mechanisms for protocol conformance. These

mechanisms can be broadly classified into two categories a) End-System and b)

Network Based mechanisms. They proposed guidelines for developing end-system

36

based flow control protocols which have the same reaction to loss as TCP. Since

then there have been many proposals for TCP- Friendly flow control algorithms

[9, 99, 51, 40, 84]. However, as we have previously seen there is a limit to how much

control can be exerted from just the use of end-system. As such Floyd et al. also

proposed network based mechanisms in form of schedulers and pricing mechanisms

to ensure TCP-Friendliness on the network. We will now discuss these proposals

briefly.

2.4.1 End-System Based Schemes for Congestion Response Conformance

in the Network

Though conformance and fairness to TCP is significant it however should not

constrain the choices of end-to-end congestion control algorithms. In [9] the authors

propose a class of non-linear TCP compatible congestion control schemes called

Binomial Congestion Control Schemes (BCCS). AIMD, can be considered as one of

congestion control schemes in the subset of TCP Compatible BCCS. Formally, the

Binomial Congestion Control scheme can be defined as:

Wt+R ← Wt + α/W k
t if no loss (2.1)

Wt+δt ← Wt − βW l
t if loss (2.2)

where k and l are window scaling factors for increase and decrease respectively and

α and β are increase the decrease proportionality constants. For any given values

of α and β TCP Compatible BCCS can be defined by k+l = 1 : k ≥ 0, l ≥ 0.

Another interesting set of TCP Compatible congestion control algorithms has

been presented in [84]. The proposal called Choose Your Response Function (or

CYRF) has a general increase function f and a decrease function g which together

constitute the congestion control policy. Formally the TCP-Compatibility is defined

by the following constraints on the these two function f, g as:

f(x)g(x) ∝ x

There have also been other interesting proposals for TCP Compatible win-

37

dow based protocols [51, 99] but covering all of them is beyond the scope of the

thesis. Besides these window based proposals there have been suggestions for TCP

compatible rate control scheme. The most popular rate based scheme is called TCP-

Friendly Rate Control (or TFRC) [40]. Since we have already discussed TFRC in

Section 2.1.3 we do not elaborate on it any further.

Finally this section can be summarized as, “The concern expressed in [RFC2357]

about fairness with TCP places a significant though not crippling constraint on the

range of viable end-to-end congestion control mechanisms for best-effort traffic.”

[34].

2.4.2 Network Based Schemes for Congestion Response Conformance

in the Network

Though there exists a range of end-system based TCP Compatible congestion

control scheme they might still not meet the needs of various applications. Moreover

there exists a possibility that end users may intentionally not use these algorithms.

Therefore network based solutions are needed to enforce protocol compliance.

The network based support has been envisioned in two primary forms: a)

schedulers and b) pricing mechanisms [35, 34]. Per-flow scheduling in form of Class

Based Queueing, Priority Scheduling or Weighted Round Robin etc can be used

to isolate flows, restrict bandwidth of misbehaving flows and thus provide TCP

Compatibility. Similarly pricing mechanisms can also be used for differentiating

against misbehaving flows by communicating them higher price and thus ensuring

TCP Compatibility in the network. However in order to achieve TCP Compatibility

for the current Internet environment where flows compete in a FIFO queue all these

mechanisms require tight coordination between all routers.

2.5 Optimization: Flow Control, Fairness and TCP Com-

patibility

Recently congestion control schemes have been evaluated and proposed using

optimization frameworks [53, 56, 62, 69, 16]. In these papers, the resource alloca-

tion problem is proposed as 1) individual users maximizing their utility functions

38

and 2) network maximizing every user’s utility function given the network capacity

constraints.

In these optimization models a user s, is described with the help of it’s rate, xs,

a utility function Us and the set of links which he uses, L(s). It is further assumed

that the rates bounded i.e., ms ≤ xs ≤Ms. It is assumed that the utility functions

are increasing with rates and strictly concave. The network is identified with links

l of capacity Cl. The set of users using a link, l, is given by S(l).

The optimization problem can then be defined as user’s trying to maximize

their individual utility functions and the network trying to maximize the resource

allocation subject to link capacity constraints. Thus the primal problem can be

defined as:

maximize
∑

s∈S
Us(xs) (2.3)

subject to
∑

s∈S(l)

xs ≤ Cl, ∀l (2.4)

for all xs ≥ 0. The dual formulation, D(p), for the above problem was defined by

Low in [62] as:

D(p) = min
︸ ︷︷ ︸

p≥0

∑

s∈S
(Us(xs)−

∑

l

plxs) +
∑

l

plCl (2.5)

The authors in [62] show that using the Karush Kuhn Tucker (KKT) conditions and

gradient projection algorithm the dual yields the following update algorithm

xs(t) = U
′−1
s (

∑

l

pl) (2.6)

pl(t+ 1) = [pl(t) + γ(
∑

s∈S(l)

xs − Cl)]
+ (2.7)

Since the primal is strictly concave and the constraints are linear, there is no duality

gap and hence dual optimal is also primal optimal. Further the strict concavity

entails an unique global optimum, (x∗s, p
s∗) where ps =

∑

l pl. Also though the

primal optimal, x∗s is unique, we may not have a unique dual optimal p∗l but instead

we have a unique optimum end-to-end loss probability for every source, ps∗.

39

In [53] the authors analyze the stability and fairness of network under primal

and dual formulation. The dual formulation has also been discussed in [62] where

gradient projection method is used to solve the problem. A penalty function ap-

proach to solving the network problem has been suggested by the authors in [56].

Also, the current TCP implementations have been mapped to optimized rate control

algorithm in [61] [56].

The user’s rate control algorithm can be thought to be tightly coupled with

a utility function. Also, if all the utility functions are of similar type then we can

also associate a fairness criteria with it. Fairness is defined as the way the resources

are distributed amongst competing users, eg. max-min fairness, where the goal is

to maximize the minimum share. The fairness criteria for a set of users S, can be

described in terms of utility function as follows:

∑

S

U ′(xi − x∗i) < 0 (2.8)

where xi is the rate allocated to the user i and x∗i is the fair rate for the user i.

The max-min fair vector corresponds to U(x) = limα→∞
−1
xα
. If the rate allocations

are in “proportion” to the resources used by a user, then such a rate is said to be

proportional fair and is defined by U(x) = log(x).

Thus the equilibrium rate allocation is very closely tied with the utility func-

tion the user chooses to maximize. This association of equilibrium rate allocation

with the utility function might prompt sources to choose a utility function (and hence

an aggressive congestion control scheme) which yields them higher rate allocations

than other competing sources. Such a choice of utility function will still optimize the

network and keep it stable, though at the cost of unfair allocations amongst users.

Finally, in [5] the authors evaluate the existence and properties of Nash Equi-

libria for selfish TCP user. They define selfishness by allowing the user to choose

(and modify) it’s own increase and decrease parameters, α and β respectively. They

pose the problem as game where all users try to maximize their goodputs and eval-

uate the Equilibria for TCP Reno, Tahoe and Sack with both Drop-Tail and RED

queues. They show that efficient Nash Equilibria exists only for TCP-Reno and

40

Drop-Tail queues and the equilibrium can be defined by either α = 1 or any β ¿

0. However the equilibrium for TCP Sack and Tahoe is defined by an arbitrarily

large value of α and β → 1. Also the authors show that when these TCP flavors are

evaluated with RED gateways the Nash equilibrium is inefficient. A similar result is

also reported in [27]. The authors evaluate the Nash Equilibria for stateless AQM

schemes and show that RED and Drop Tail do not impose Nash Equilibria on selfish

users.

2.6 Managing Bottleneck Queues in the Network

The network traffic is bursty by nature. As a result, all routers in the Internet

are configured with buffers to absorb packet bursts. However, configuring the buffer

space has been an active area of research. It is a widely held belief that buffer can

increase the network utilization or throughput. However, this is not always true and

a large buffer can have adverse effect on network and end-to-end performance. A

large buffer will cause consistent queueing in the network even though the link might

be congested. This consistent queueing delays congestion signal causing all flows to

falsely believe that the network is not congested. As a result, they keep increas-

ing their rates and by implication congestion window. However, since bottleneck

routers are finite, after certain size they overflow thus causing huge reductions in

congestion windows. This forces big oscillations in congestion window which makes

the transport protocol unsuitable for a variety of applications - especially the ones

which have strict timing requirements like multi-media services. Sometimes these

buffer overflows also cause multiple packets of a particular flow to be dropped thus

forcing it into timeouts. Therefore, a delay in reporting in the congestion state on

account of large bottleneck queues can have harmful effects on network and more

importantly end-to-end performance.

The simplest buffer management scheme is Drop Tail, i.e. enque packets till

there is space in the buffer and drop them when there is no space. This queue

management policy is commonly referred to as passive queue management. Drop

Tail queues often operate with near full queues which causes burst losses, timeouts

and synchronization. Further, the synchronization of windows (and by implication

41

losses) causes sustained period of very high and low link utilization, reducing overall

throughput [39]. Moreover, full queues can also be associated with the problem of

phase effects and bias against flows with long propagation delay [37, 39]. However,

despite of these issues what works in the favor of Drop Tail queues is it’s simplicity.

Drop Tail queues have no parameter to configure and therefore it’s performance

does not depend on the bottleneck link capacity or the number of flows. Because

of their simplicity Drop Tail queues are very popular with network providers. In

fact, the current Internet operates with only Drop Tail queues ! In summary, Drop

Tail queues are passive or in other words do not manage bottleneck queues and this

inability to manage queues often results in degradation of not only network but also

end-to-end performance.

Active Queue Management (or AQM) was suggested as an alternative to Drop

Tail or passive queueing [39]. Floyd et. al. have argued that actively managing

queues can remove almost all deficiencies of Drop Tail queues. Random Early Drop

was the first and the most popular AQM proposal [39]. Floyd et al. showed that by

dropping packets before the queue over flows (or active queue management) sends

an early congestion indication to some flows causing them to reduce rate. This rate

reduction in turn reduces (or removes) impending congestion. Further, this active

queue management ensures that there is always space in the queue to accommodate

incoming bursts. As such, active queue management schemes remove almost all

deficiencies of Drop Tail queueing.

Many AQM schemes based on RED were proposed [29, 28, 31, 64, 77, 60, 71].

All these schemes used some form of queue thresholds to decide when to start

probabilistically dropping packets. However, all these schemes suffer from imple-

mentational complexities. All these variants of RED, including RED, have a large

number of configurable parameter which usually depends on variety of factors in-

cluding bottleneck link capacity, number of flows and buffer size. Recent studies

have shown that if these AQM proposals are not configured properly or if some net-

work operating conditions change then the worst case performance of these AQM

schemes can be even worse than that of Drop Tail queues [67, 22]. This is because,

these AQM schemes stop managing queues and instead operate with full queues.

42

However, newer AQM proposals have realized the pitfalls of using queue thresh-

olds to actively manage queues [57, 7, 41]. These proposals, derived from network

optimization framework, attempt to match the total input rate to some fraction of

the bottleneck link capacity. This mis-match between the input and output rate

is used to generate congestion indications. (This is in direct contrast with RED

and it’s variants which use some form of queue thresholding to generate congestion

indications and thus manage queues.) The most popular schemes in which use rate

mis-match to actively manage queues are Random Early Marking (REM) [7] and

Adaptive Virtual Queue (AVQ) [57]. REM is derived from the duality model of net-

work optimization (see equation 2.5) and tries to stabilize queue at a pre-specified

desired value. AVQ on the other hand uses notions of virtual link and buffers to

match the input and output rates. Specifically, it constructs a virtual link which has

a capacity slightly less than that of actual bottlenecked link. For every incoming

packet it updates both the virtual link capacity and virtual buffer and marks (or

drops) packet in the actual queue whenever the virtual buffer overflows. Thus, AVQ

tries to match the input rate to virtual link capacity. Since the virtual link capacity

is less than the bottlenecked capacity, in the steady state the bottleneck queue size

is almost zero.

It is interesting to note that all active queue management outlined above are

network based, i.e. each bottleneck link has a module which actively manages the

bottleneck queues. Thus, all AQM proposals require extensive deployment in the

network. Moreover, all these AQM proposals have some configuration parameters

which depend on link capacity, buffer size and network operating conditions like

number of flows. Since, in most cases the guidelines to configure these parameters

are not crisply defined and that network operating conditions might change network

providers have not shown much enthusiasm to deploy these AQM proposals. As

such, as of today, the network still operates with Drop Tail queues or in other words

no queue management modules are deployed in the present Internet.

CHAPTER 3

Randomized TCP: End System Based Mechanism for

Improving Fairness in a Network of Drop Tail Queues 1

3.1 Introduction

As discussed in Chapter 2, Drop Tail queues substantially limit the effective-

ness of end-to-end congestion control protocols. This is primarily due to failure to

provide early congestion notification to the end users. To avoid this and for better

queue management use of AQM has been suggested. However due to configuration

problems these AQMs have not found their way to the Internet, which to this day

operates with Drop Tail queues. As such the problems of congestion window and

loss event synchronization, phase effects and bias against bursty and long RTT flows

persist. In this chapter we look at a comprehensive solution to all these issues by

randomizing the packet transmission times in TCP flows.

The rest of the chapter is organized as follows.

• We present an end system based scheme to introduce randomization in the

network and thereby emulate AQM. The proposal is called Randomized TCP

and is discussed in Section 3.2 and the algorithm is detailed in Section 3.3.

• In Section 3.4 we do a characterization of the increase parameter to enable

Randomized TCP to compete fairly with TCP Reno. A queueing analysis is

presented in Section 3.6 to show that the probability of burst losses decreases

with Randomized TCP.

• We present the implementation of Randomized, simulation setup and define

the performance metrics in Section 3.8.

• Parameter tuning Randomized TCP is presented in Section 3.10.

• In Section 3.11 we present the simulation results for comparative performance

of TCP Reno, Paced TCP and Randomized TCP while Section 3.12 evaluates

1This work was done jointly with Prof. Biplab Sikdar

43

44

the bias against longer RTT flows, phase effects, synchronization and burst

losses for Randomized TCP and TCP Reno.

• We extend the randomization of sending times to other window based schemes,

specifically Binomial schemes and present its results in Section 3.13.

• Finally we present the conclusions in Section 3.14.

3.2 Randomized TCP

From the discussion in the Chapter 2 it is clear that introducing randomization

into the network can break synchronization. Also by introducing the randomization,

we avoid burst losses, thereby making the loss events “distributed”. This then helps

in solving the problem of phase effects. Though AQMs can introduce randomization

in networks to some extent, it is not widely deployed due to variety of reasons

[66, 67]. As such, we propose an end-system based mechanism for emulating AQM

behavior. Specifically we propose a modification to TCP, called Randomized TCP,

as a mechanism for introducing randomization into the network by randomizing the

packet sending times. This solution is distributed, can be implemented at the end

systems and therefore is very attractive from an implementation perspective.

Randomized TCP is similar to Paced TCP in that it “paces” packet trans-

missions but instead of spacing the transmissions equally, it adds or subtracts a

random interval to the packet sending times at TCP sources. Packet transmissions

are scheduled at intervals of RTT
cwnd

(1+x), where x follows the Uniform Distribution on

[-I, I]. Evidently, I has to be between 0 and 1. A packet is transmitted at the expiry

of the timer, if the window allows a packet to be sent. If not, upon reception of an

ack, we schedule the packet transmission with a random delay of RTT
cwnd

y, where y is

U(0,I). Setting I to 0 reduces Randomized TCP to Paced TCP. The Randomized

TCP’s sending time algorithm is stated in Section 3.3.

In Section 3.10, we investigate the optimal setting of the randomization in-

terval and find that a Uniform distribution on [-1,1] is the best. This choice of

Uniform distribution can be intuitively justified as; a) since the distribution is cen-

tered around 0, on an average there is “no randomization” and Randomized TCP

45

behaves as Paced TCP, b) and a minimum value of -1 of randomization implies TCP

Reno implementation. This implies that sometimes we send back-to-back packets

and sometimes we send paced packets. Thus with a randomization interval value

of 1, Randomized TCP keeps moving forth between TCP Reno and TCP Paced.

Intuitively, this entails an early detection of congestion (when the TCP behaves as

Reno) and an even distribution of losses and throughput (when TCP behaves as

Paced). Thus Randomized TCP takes the best of both Reno and Paced TCP and

ensures lesser drops (because of early congestion detection) and fairer throughput.

In Paced TCP packets from each source reach the bottleneck at an uniform rate

which can lead to near perfect interleaving. Such situations can cause all sources to

lose packets thereby resulting in all the sources decreasing their windows together,

resulting in synchronization. But with randomization, the rate is not uniform at

the bottleneck and packets from flows are dropped after differing times due to the

extra delay incurred due to randomization. This means that sources decrease their

windows at different times and hence the periods of increase and decrease are not

as synchronized as in Paced TCP. So the congestion epochs for different flows get

out of sync and the network utilization is higher. Another nice property that comes

because of randomization is that the source which has lost packets once is less likely

to lose again (this may not be the case with deterministic TCP for some parameter

settings [38]), thereby ensuring that over a larger time scale the rate distribution is

fair.

Randomizing the sending times also results in extra delays causing the RTT

to increase artificially. This causes Randomized TCP to get beaten down when

competing with TCP Reno. It is well known that TCP’s throughput is directly

proportional to the square root of the window increase parameter and inversely

proportional to RTT [73]. To allow Randomized TCP to compete fairly with TCP

Reno, we analytically characterize the increased RTT (in Section 3.4) and make the

increase factor in TCP proportional to the square of the ratio of the changed RTT

to the real RTT.

We also note that the probability of two packets coming nearly back to back

is significant only when the window size is large. This means that the probability of

46

multiple packet drops will be very low if the window size is small, thereby reducing

timeouts. Using a simple M/M/1/K queueing analysis, similar to that in [67], in

Section 3.6 we try to get a quantitative feel of the probability of a packet getting

dropped with Randomized TCP.

The increased randomization increases the entropy of the system which cor-

respondingly reduces the queue sizes thereby improving the stability of the system

[79]. Our results show that Randomized TCP reduces phase effects and synchro-

nization even when multiplexed with TCP Reno flows. Also it substantially reduces

burst losses and removes the bias against longer RTT flows. In addition, the benefits

of randomization can be reaped even when it is partially deployed. Randomized TCP

performs better than or as well as Paced TCP and TCP Reno, independent of the

capacity and buffer size at the bottleneck and for both short and long flows. The

performance improvements can be seen in throughput, fairness, loss rates, timeouts

and latency of the flows. We also investigate the impact of randomization on a

class of slowly varying congestion control schemes called Binomial schemes [9] and

show that by incorporating randomization in these schemes, the fairness increases

dramatically when competing with TCP flows in drop tail queues.

In other words our scheme can emulate the beneficial effects of RED in a

distributed manner without the complexities and unfavorable aspects of parameter

tuning of RED. However, we wish to emphasize that unlike RED which is a conges-

tion avoidance scheme, Randomized TCP is just a congestion control scheme. Thus

Randomized TCP does not emulate the congestion avoidance features of RED, at

best it provides the other beneficial features of RED which were achieved by intro-

ducing randomization in the network (by dropping packets probabilistically).

3.3 Randomized TCP Pseudo-code

Define by α the original increase parameter for the TCP Reno and by R the

RTT. Then the Randomized TCP’s algorithm can be stated as

• Send a packet. Schedule the next packet to be sent at time t = RTT
cwnd

(1 + x)

where x is Uniformly distributed on [-1,1].

47

• Let t
′

be the arrival time of next ack. Then

– If t
′

< t send the next packet at t.

– Else send the next packet after RTT
cwnd

y where y is uniformly distributed on

[0,1].

• At each RTT (estimate) update recalculate the new increase parameter as

αnew = α
(
RTTnew

R

)2

3.4 Analytical Characterization of Increase Parameter for

Randomized TCP

In this section we outline the methodology for setting the increase parameter,

α for Randomized TCP so as to make it compete fairly with TCP Reno. This is

required because randomizing the sending times results in extra delay and hence

slows down the window growth. As such it is likely that Randomized TCP will lose

to TCP Reno when competing on a single bottleneck.

Consider a Randomized TCP connection with a constant window size of w.

Let the real RTT for the connection be a constant denoted by R. Each packet is sent

after a time equal to R(1 + x)/w where x is a Uniform random variable between

[−I, I] (The optimal value of this interval is shown to be 1 in section 3.10, but

presently we treat it more generally). Let the first packet be sent at time t = 0.

Then the timer for the w + 1th packet of the connection will be scheduled at time,

say t1, such that

t1 = R(1 +
1

w

w∑

i=1

xi) (3.1)

where xi is the random value for the ith packet in the window. The xis are inde-

pendent and identically distributed. The effective RTT of the flow is the given by

the time when (w + 1)th packet is sent. In the absence of random variations in real

RTT, the ACK for the first packet comes exactly after time R. If
∑w

i=1 xi ≥ 0 then

t1 > R and we will send the (w + 1)th packet at time t1. Else, the (w + 1)th packet

will be sent after a random time RTT
w

y after the ACK arrival, where y is drawn from

an uniform distribution on [0,I].

48

Thus the effective RTT can be expressed as

RTTeff =







R(1 + 1
w

∑w
i=1 xi) w.p. P{

∑w
i=1 xi ≥ 0}

R(1 + y
w
) w.p. P{

∑w
i=1 xi ≤ 0}

(3.2)

where w. p. is short for “with probability”. Then, the mean effective RTT, RTT eff ,

can be expressed as

RTT eff = {R(1 +
1

w
E[

w∑

i=1

xi | (
w∑

i=1

xi ≥ 0)])}

P{
w∑

i=1

xi ≥ 0}+ {R(1 +
ȳ

w
)} P{

w∑

i=1

xi ≤ 0} (3.3)

where ȳ is the mean of y equal to I/2. Since xi follows an Uniform distribution

around zero, its easy to see that

P{
w∑

i=1

xi ≥ 0 } = P{
w∑

i=1

xi ≤ 0 } = 0.5. (3.4)

Assuming that the window size is sufficiently large to invoke the the Central Limit

Theorem we get
w∑

i=1

xi ∼ N(0, σ2), σ2 = w ∗
I2

3
(3.5)

The pdf of
∑w

i=1 xi conditioned on
∑w

i=1 xi ≥ 0 can be found out to be twice that of

the Gaussian pdf multiplied by the Unit step function. From this we can derive the

conditional mean as

E[
w∑

i=1

xi | (
w∑

i=1

xi ≥ 0)] =

√

2wI2

3π
(3.6)

Plugging these back into the equation for RTT eff , we get

RTT eff = R +
1

2w
(

√

2wI2

3π
+
I

2
) (3.7)

For Randomized TCP with increase parameter α and effective mean RTT,

RTT eff , the throughput is proportional to
√
α

RTT eff
. To make the throughput same

as that of TCP Reno (with α = 1 and RTT = R), we set α =
RTT

2

eff

R2 for randomized

49

TCP. In the real implementation, since window value changes with time, RTT eff

changes with time and so we change the value of α also with time.

3.5 Analytical Characterization of Reduction of Synchro-

nization with Randomized TCP

In this section we show that synchronization is reduced with Randomized TCP.

To study the synchronization of flows we use the covariance between the congestion

window of two competing flows. Flows would be synchronized if their windows

increase and decrease simultaneously. In this case both flows’ windows (say w1 and

w2) would be above or below their mean values at any time t, i.e. (w1(t)−w̄1)(w2(t)−

w̄2) > 0. So the cross-covariance coefficient of synchronized flows would be positive.

In the case where the flows are totally out of sync, (w1(t) − w̄1)(w2(t) − w̄2) < 0,

since when one flow has a large window, the other would have a smaller window and

vice versa. So the cross-covariance coefficient of out of sync flows would be negative.

This shows that the cross covariance coefficient of greater than 0 implies in-phase

synchronization while less than 0 implies out-of phase synchronization. However,

too large a negative value of cross-covariance denotes that synchronization effects

still persist albeit in a negative sense which might lead to big window oscillations.

Hence a value equal to or close to 0 for cross-covariance coefficient should be the

optimal.

Consider a Randomized TCP connection with a constant window size of w1.

Let the real RTT for the connection be a constant denoted by R. Each packet is sent

after a time equal to R(1 + x)/w1 where x is a Uniform random variable between

[−I, I] (The optimal value of this interval is shown to be 1, but presently we treat

it more generally). Let the first packet be sent at time t = 0 and the window size

be w1(t). Let us further assume that the packet loss probability is nearly zero and

therefore all packets are acked. Thus we are considering the time when a flow is

about to increase it’s window. Then the timer for sending the w1 +1th packet of the

connection will be scheduled at time, say t+ 1, such that

t+ 1 = R(1 +
1

w1

w1∑

i=1

xi) (3.8)

50

where xi is the random value for the ith packet in the window. The xis are indepen-

dent and identically distributed.

If we randomize the sending time then the window will be increased at t+1 > R

provided
∑w1

i=1 xi ≥ 0. Otherwise, the (w1 + 1)th packet will be sent after a random

time RTT
w1

y after the ACK arrival, where y is drawn from an uniform distribution on

[0,I].

Since xi follows an Uniform distribution around zero, we can calculate

P{
w1∑

i=1

xi ≥ 0 } = P{
w1∑

i=1

xi ≤ 0 } = 0.5. (3.9)

Assuming that the window size is sufficiently large to invoke the the Central Limit

Theorem we get
w1∑

i=1

xi ∼ N(0, σ2), σ2 = w1 ∗
I2

3
(3.10)

The pdf of
∑w1

i=1 xi conditioned on
∑w1

i=1 xi ≥ 0 can be found out to be twice that of

the Gaussian pdf multiplied by the Unit step function. From this we can derive the

conditional mean as

E[
w1∑

i=1

xi | (
w1∑

i=1

xi ≥ 0)] =

√

2w1I2

3π
(3.11)

Plugging these back into the equation for w1(t+ 1), we get

w1(t+ 1) = w1(t) +
1

2w
(

√

2wI2

3π
) (3.12)

Now, let there be another Randomized TCP source whose congestion window

is given as w2(t) and it’s mean value is given as w1. From the above equation we

can calculate the coefficient of variation between w1(t+ 1) and w2(t) as

CoVRandom = E[(w1(t+ 1)− w)(w2(t+ 1)− w2)] (3.13)

= E[w1(t+ 1)w2(t+ 1)]− w1w2 (3.14)

51

which can then be calculated as

CoVRandom = E[w1(t+ 1)w2(t+ 1)] +

√

I2

6π
E[w2(t+ 1)

√

1

w1(t+ 1)
]− w1w2 (3.15)

Let’s assume that w2(t) and w1(t) are identical processes. Then, we may write

the above equation as

CoVRandom = E[w1(t+ 1)w2(t+ 1)] +

√

I2

6π
E[
√

w2(t+ 1)]− w1w2 (3.16)

Let there be two TCP Reno sources, wReno
1 (t+ 1) and wReno

2 (t+ 1) such that

there average window values, wReno
1 and wReno

2 are w1 and w2 respectively. Further

at time t+1 let the window of one of TCP Reno flow increases. We may then after

some simplification write the coefficient of variation of the two TCP Reno flows as

CoVReno = E[(wReno
1 (t+ 1)− wReno

1)(wReno
2 (t+ 1)− wReno

2 (t))] (3.17)

= E[wReno
1 (t)wReno

2 (t)] + E[wReno
2 (t)]− w1w2 (3.18)

Let us assume that E[w1(t)w2(t)] is equal to E[wReno
1 (t)wReno

2 (t)]. Then, since

w(t) is always greater than 1, (irrespective of whether it is TCP Reno or Randomized

TCP), comparing equations (9) and (11) we can see that CoVRandom will be less than

CoVReno.

3.6 Queueing Analysis to Show Reduction in Burst Losses

with Randomized TCP

Consider aM/M/1/K queueing system where the packets arrive according to a

batch Poisson process; specifically, bursts (or batches) of B packets arrive according

to a Poisson process of rate λ. Further, let us denote by π(k) as the stationary

distribution of k number of packets in the queue. Then using the PASTA (Poisson

Arrival See Time Averages) property the probability of a packet drop in a Tail Drop

52

router with TCP as input can be calculated as [67]:

PTD = π(K) + π(K − 1)
B − 1

B
+ ...+ π(K −B + 1)

1

B

Using the same model we will now calculate the probability of a packet being

dropped for Randomized TCP. We first note that the size of burst, B, will now be

changed because Randomized TCP paces the packets. Hence we first try to find

the new burst size (given that the original burst size was B) and then calculate

the packet drop probability. Figure 3.1 shows the epochs at which the packets are

sent. Let us call the time instants at which the packets from a Paced TCP would

have been sent as centered epoch. These centered epochs now represent the time

instants around which we randomize the sending times of packets in Randomized

TCP. Suppose a packet is sent at some time, x after the centered epoch (as shown in

figure 3.1). Let us also define the length of the packet as L bits and the bottleneck

link capacity as C bits/sec. Further, let the window size at steady state be W (B

≤ W) and let RTT denote the round-trip time. Then the probability, p, of packets

from a burst of B, arriving back-to-back at the bottleneck router can be calculated

as

p =
∫ RTT

W

0

(

1

2

x
RTT
W

) (

1

2

L
C

RTT
W

)

dx (3.19)

=
L

8C
(3.20)

Note that the now, B
′

= min(B∗ L
8C
, B), represents the upper bound on the number

of back-to-back packets which can be received at a bottleneck with Randomized TCP

and a burst of size B. Also note that the above analysis holds true iff L
8C
≤ RTT

W

which holds true for WANs and MANs.

Using the above equation, the probability that a packet gets dropped with

Randomized TCP and drop tail router can be calculated as

PTDR = π(K) + π(K − 1)
B

′

− 1

B′
+ ...+ π(K −B

′

+ 1)
1

B′
.

Thus from the above observation we can conclude that the probability that a

53

Centered Epochs
x

RTT / W

Time at which our reference packet is sent

for the packets to arrive back−to−back at the bottleneck queue
Time at which next packet must be sent

which is less than or equal to L/C .

Figure 3.1: Packet Sent Times with Randomized TCP

packet gets dropped with Randomized TCP and drop tail queue decreases. However,

it should be noted that Poisson arrivals do not capture the exact packet arrivals in

the Internet. Nevertheless, this exercise is just intended to show that the probability

of burst losses are reduced with Randomized TCP and have been validated by our

simulation results in Section 3.12.4.

3.7 TCP-Friendliness of Randomized TCP

A key design objective for Randomized TCP is that it should compete fairly

with TCP Reno. Previous studies have shown that Paced TCP [4] (which is Ran-

domized TCP with x = 0) losses to TCP Reno. In this section we will show that

our analytical characterization of Randomized TCP’s increase parameter enables

Randomized TCP to compete fairly with TCP Reno. Let RR be the round-trip

time of a Randomized TCP and R be the end-to-end propagation delay (which in

other words is the round-trip time for the TCP Reno flow). Further let the increase

parameter for Randomized TCP and TCP Reno be αR and α respectively. Lastly,

let the packet loss probability in the network be p. Under these assumptions, the

throughput, x, of TCP Reno is given by [46] as

x =

√

α

βp

1

R
(3.21)

54

The window increase process for the Randomized TCP flow can be written as

W (t+RR) = W (t) + αR(1− p)W (t) − βW (t)(1− (1− p)W (t)) (3.22)

Assuming that the packet loss probability is close to 0, we may re-write the above

equation as

W (t+RR) = W (t) + α− βW (t)pW (t) (3.23)

From the above equation, we may calculate the rate of change of congestion window

as
W (t+RR)−W (t)

RR

=
αR

RR

− β
W (t)

RR

pW (t) (3.24)

or in other words
dW (t)

dt
=

αR

RR

− β
W (t)

RR

pW (t) (3.25)

Since at equilibrium the rate of increase of window will be equal to the rate of

decrease of window we have dW (t)
dt

= 0. We will also drop the time component from

the window, W(t), and instead write it as W . Thus at equilibrium we get

αR

RR

= β
W

RR

pW (3.26)

which can be re-written as

p =
αR

βW 2
(3.27)

We can also express the above equation in terms of the sending rate, xR, of the

source. Moreover, the sending rate is also a measure of the throughput. Thus in

steady state the following equation gives the relationship between the throughput x

and the end-to-end loss probability, p.

xR =

√

αR

βp

1

RR

(3.28)

Now substituting the value of αR which was shown to be αR = αRR
R

2
in Section 3.4

we get

xR =

√
√
√
√αRR

R

2

βp

1

RR

(3.29)

55

���
�

���
�

���
�

���
�

��	
	

�
�

.
.

.

.
.

.Router Router

S1

S2

Sn

D2

D1

Dn

30ms

x Mbps

10ms

4x Mbps

10ms

4x Mbps

Figure 3.2: Topology used in the simulation.

or

xR =

√

α

βp

1

R
(3.30)

which is the same as the throughput of TCP Reno (equation 3.21). Thus Random-

ized TCP is TCP-Friendly.

3.8 Implementation and Simulation Setup

We have implemented Randomized TCP in the Network Simulator ns [1]. For

our implementation, we used the congestion control and loss recovery mechanisms of

TCP Reno and thus Randomized TCP has the usual slow-start and fast recovery and

retransmit mechanisms. For the simulations reported in this chapter, we disabled

the delayed acknowledgments option. Also, we used the modified window increase

parameter for Randomized TCP implementation.

Figure 3.2 shows the topology used in the simulations. The access links were

configured at a rate 4 times greater than that of the bottleneck link and all the links

use Drop Tail queues. The maximum advertised window is set sufficiently high so

that it does not constrain the actual window. We use a Maximum Segment Size of

500 bytes.

We evaluate the performance of randomized TCP for the following set of met-

rics: average throughput, fairness, loss rates, timeouts, latency and synchronization.

We characterize fairness using the modified Jain’s fairness index, [21, 4]. Jain’s fair-

ness index is defined as

f =
(
∑n

i=1 xi.RTTi)
2

n(
∑n

i=1(xi.RTTi)2)
(3.31)

56

where xi is the throughput of the ith flow, RTTi is the round-trip time of flow i and

n is the number of flows.

To study the synchronization of flows we use the covariance between the con-

gestion window of two competing flows. Flows would be synchronized if their

windows increase and decrease simultaneously. In this case both flows’ windows

(say w1 and w2) would be above or below their mean values at any time t, i.e.

(w1(t) − w̄1)(w2(t) − w̄2) > 0. So the cross-covariance coefficient of synchronized

flows would be positive. In the case where the flows are totally out of sync,

(w1(t) − w̄1)(w2(t) − w̄2) < 0, since when one flow has a large window, the other

would have a smaller window and vice versa. So the cross-covariance coefficient of

out of sync flows would be negative. This shows that the cross covariance coefficient

of greater than 0 implies in-phase synchronization while less than 0 implies out-of

phase synchronization. However, too large a negative value of cross-covariance de-

notes that synchronization effects still persist albeit in a negative sense. In [101]

the authors also argue that out-of-phase synchronization is not good. Hence a value

equal to or close to 0 for cross-covariance coefficient should be the optimal.

In the following sections we present the simulation results. We first observe

the effect of bottleneck bandwidth, buffer sizes and RTTs on the randomization

interval I in section 3.10. Using these simulations we propose a value of the interval

for optimal performance.

Section 3.12 shows the performance of Randomized TCP with respect to phase

effects, synchronization amongst flows and burst losses. In Section 3.11 we present

the result of comparative performance of Randomized, Paced and Reno TCP for the

following set of metrics: throughput, losses, timeouts, fairness and latency for both

bulk-data transfer and short-web like transfers. Finally in Section 3.13 we present

the results of extension of Randomization to Binomial schemes.

3.9 Implementation on the Linux Kernel

We have implemented the Randomized TCP in Linux [68]. The following

components were required to implement Randomized TCP 1) a microsecond reso-

lution timer for Linux, 2) a random number generator and 3) a packet scheduling

57

methodology to schedule packets in future. We used UTIME [2] extension to the

Linux kernel to introduce microsecond resolution. Scheduling of packets is done on

the expiry of this microsecond timer. The Linux kernel provides a random number

generator that returns a requested number of random bytes to the module invoked

within the kernel. However, our requirement needs the random number to be gen-

erated on the byte boundaries but rather or bit boundaries. We wrote functions to

create such a random number and also to create both positive and negative random

numbers. We tested the implementation with the simple dumb-bell topology.

3.10 Parameter Tuning

The randomization interval has a significant impact on the performance of

Randomized TCP, and hence its characterization is of utmost importance. In this

section we study the effect of change in bottleneck bandwidth, buffer size, number of

flows and round-trip times on throughput, number of losses, timeouts as a function of

the randomization interval. Through these simulations we obtain the optimal value

of randomization interval. The default settings for this section are a bottleneck link

of 1 Mbps, all the other links of bandwidth 4 Mbps, end-to-end propagation delay

of 100ms and a Drop Tail queue of 25 packets at the bottleneck. Simulation settings

are assumed to be default (as that mentioned in 3.8) unless specifically specified.

3.10.1 Different Bottleneck Bandwidth

Figures 3.3 (a), (b) and (c) plot the loss rates, throughput and timeouts re-

spectively, for a setup of 50 flows as a function of randomization interval on a single

bottleneck setup (figure 3.2). The bottleneck bandwidth was varied in this case

from 3Mbps to 10Mbps while the buffer size was held constant at 25 packets. The

end-to-end propagation delay was 100 ms. It can be seen that as the randomization

interval increases to 1, the loss rates and the timeouts reduce, while the throughput

increases or remains almost the same. Similar results were obtained with a larger

buffer size. The impact of buffer size on the randomization interval is detailed in

the following section.

58

Randomization Interval

Lo
ss R

ate
s

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3 Mbps
4 Mbps
5 Mbps
6 Mbps

10 Mpbs

(a) Loss rate

Randomization Interval

Th
rou

ghp
ut (

in p
ack

ets
/se

c)

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3 Mbps

4 Mbps

5 Mbps

6 Mbps

10 Mbps

(b) Throughput

Randomization Interval

Nu
mb

er o
f T

im
eou

ts

300

400

500

600

700

800

900

1000

1100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3 Mbps
4 Mbps
5 Mbps
6 Mbps

10 Mbps

(c) Timeouts

Figure 3.3: Loss Rate, Throughput and Timeouts for 50 flows as a func-
tion of randomization interval, for different values of bottleneck band-
width.

3.10.2 Different Buffer Sizes

In order to evaluate the effect of buffer sizes, we vary the buffer size at the

bottleneck from one-fourth of bandwidth delay product to one bandwidth delay

product. The bottleneck link is of 4 Mbps and the end-to-end propagation delay is

100ms. Thus we vary the buffer size from one-fourth bandwidth delay product to

one bandwidth delay product. Again, we plot the losses, throughput and timeouts

59

for 30 flows as a function of randomization interval. Figure 3.4 show the effect of

buffer size. From the Figure 3.4 it can be inferred that a randomization interval

value of 1 gives us the best results vis-a-vis throughput, loss rate and the number

of timeouts.

Randomization Interval

Lo
ss R

ate

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.0

0.50

0.25

(a) Loss rate

Randomization Interval

Th
rou

ghp
ut (

in p
ack

ets
/se

c)

30000

30500

31000

31500

32000

32500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.0

0.50

0.25

(b) Throughput

Randomization Interval

Nu
mb

er o
f T

ime
out

s

400

450

500

550

600

650

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.0

0.5

0.25

(c) Timeouts

Figure 3.4: Loss Rate, Throughput and Timeouts for 30 flows as a func-
tion of randomization interval, for different values of bottleneck buffer
size.

60

3.10.3 Different RTT

In this simulation setup every flow had a unique RTT in the range 80ms to

120ms. The RTT for the ith, i ∈ (0, . . . , N−1) flow was 80+i∗(120−80)/N where N

is the total number of competing flows. In Figure 3.5 we plot the losses, throughput

and timeouts for 30 and 50 flows as a function of randomization interval. From the

Figure 3.5 we can conclude that a randomization interval value of 1 suits almost all

the simulation metrics.

Randomization Interval

Lo
ss R

ate

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50 Flows

30 Flows

(a) Loss rate

Th
rou

ghp
ut (

in p
ack

ets
/se

c)

Randomization Interval

20000

22000

24000

26000

28000

30000

32000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50 Flows

30 Flows

(b) Throughput

Randomization Interval

Nu
mb

er o
f T

im
eou

ts

500

550

600

650

700

750

800

850

900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50 Flows

30 Flows

(c) Timeouts

Figure 3.5: Loss Rate, Throughput and Timeouts for 30, 50 flows as a
function of randomization interval, for varying RTT. The RTT varies
from 80ms-120ms, the bottleneck bandwidth is 4Mbps and the buffer
size is 25 packets.

61

From the above simulations it is evident that a higher value of randomization

interval results in increased throughput and lower losses and timeouts. Randomiza-

tion interval of 1 implies that inter-packet time intervals can lie anywhere between

0 and 2RTT/cwnd. This means that packets are randomized the most and this re-

sults in increased scope for breaking the synchronization, thereby resulting in better

performance.

This choice of randomization interval can be intuitively explained as follow-

ing. With a randomized interval value of 1, randomized TCP keeps moving forth

between TCP Reno and TCP Paced. (This is because, since randomization interval

is Uniform on [-1,1] therefore when the randomized value is -1 then the packets

are sent immediately after receiving an ACK akin to TCP Reno. Since the ran-

domization interval is centered around 0, on an average Randomized TCP behaves

as Paced TCP.) Intuitively, this entails an early detection of congestion (when the

TCP behaves as Reno) and an even distribution of losses and throughput (when

TCP behaves as Paced). Thus Randomized TCP takes the best of both Reno and

Paced TCP and ensures lesser drops (because of early congestion detection) and

fairer throughput.

3.11 Throughput, Loss, Timeouts, Fairness and Latency

In this section we compare the performance of Randomized TCP with TCP

Reno and Paced TCP. We evaluate all these three schemes for both Bulk data trans-

fers and small Web like transfers. Specifically, we compare the following metrics:

average throughput, loss rate, timeouts for bulk data transfers and latency for small

web like transfers. We also assess the interaction of Randomized TCP and TCP

Reno on a single bottleneck for the metrics throughput, loss rate and timeouts.

3.11.1 Bulk Data Transfer

3.11.1.1 Same RTT

Figure 3.6 plots the throughput, loss rate, number of timeouts and fairness for

Reno, Paced and Randomized TCP. Though Reno, Paced and Randomized TCP

have the same throughput the losses are more for Paced. This is because in slow

62

start, Pacing delays the congestion signal and hence looses a larger number of pack-

ets. As the number of flows increase Randomized TCP tends to do the best of the

lot.

10 20 30 40 50

Number of Flows

0

0.05

0.1

0.15

0.2

L
os

s
R

at
es

Reno
Paced
Randomized

0 10 20 30 40 50

Number of Flows

0

0.2

0.4

0.6

0.8

T
hr

ou
gh

pu
t

(i
n

M
bp

s)

Reno
Paced
Randomized

(a) Loss rate (b) Throughput

0 10 20 30 40 50

Number of Flows

0

200

400

600

800

1000

N
um

be
r

of
 T

im
eo

ut
s

Reno
Paced
Randomized

Number of Flows

F
ai

rn
es

s

0.95

0.96

0.97

0.98

0.99

1

5 10 15 20 25 30 35 40 45 50

Reno

Randomized

Paced

(c) Timeouts (d) Fairness

Figure 3.6: Loss Rate, Throughput, Timeouts and fairness with Bulk
Data transfer , each flow having same RTT.

3.11.1.2 Different RTT

To study the performance of Randomized TCP with different RTT values for

flows, we varied the RTT of each flow. The RTT of flows were in the range of 80ms

to 120ms. The RTT for the ith, i ∈ (0, . . . , N − 1) flow was 80 + i ∗ (120 − 80)/N

where N is the total number of competing flows. Figure 3.7 shows the throughput,

63

fairness, loss rates and timeouts as the number of flows are increased from 10 to 50.

Randomized TCP is the most fair and also the throughput achieved is marginally

higher. However, it is interesting to note that Pacing also achieves almost the same

performance as Randomized TCP. TCP Reno maintains its bias against flows with

longer RTT (TCP throughput is inversely proportional to the RTT), which is shown

by the fairness graph. Because of this bias, Reno’s fairness curve is lowest. In [3],

the authors contend that bias of TCP against longer RTT flows is considerably

reduced with RED gateways due to uniform distribution of losses over time. The

similarity of our simulation result to this indicates that randomization succeeds in

distributing losses over time (to a certain extent), thereby decreasing TCP’s bias

towards long flows.

3.11.2 Short Web Like Transfers

In this section we present the performance of Randomized TCP for short flows.

This is more representative of Web transfers. In this simulation we used a single

bottleneck link of 4Mbps with a round-trip time of 100ms (figure 3.2). The buffer

was fixed at 25 packets product. 25 flows were always maintained in the network.

As soon as any flow finishes, a new flow initiates transfers. We varied the workload

from 10 packets to 2500 packets.

Figure 3.8 (a and b) plots the latencies for Reno, Paced and Randomized

TCP. For very short flows, i.e. for a workload of 10 packets to 200 packets, TCP

Reno performs the best while Paced TCP performs the worst. Randomized TCP’s

performance though better than Paced TCP is not as good as Reno’s. This can

be attributed to the randomness which has been introduced in pacing intervals.

Because of this randomization, Randomized TCP breaks ties and achieves better

performance than Paced. Reno however, sends packets in bursts and is able to

complete most of the transfers in the slow start. For workloads greater than 200

packets, Reno still performs the best, though the difference in the latencies for Reno

and Randomized reduce as the workload increases. For Pacing, new flows starting in

the slow start saturate the network. Due to late congestion signals in Pacing, many

flows, even those who are in congestion avoidance, simultaneously drop packets thus

64

10 20 30 40 50

Number of Flows

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
hr

ou
gh

pu
t

in
 M

bp
s

Reno
Paced
Randomized

10 20 30 40 50

Number of Flows

0.63

0.7

0.77

0.84

0.91

0.98

F
ai

rn
es

s

Reno
Paced
Randomized

(a) Throughput (b) Fairness

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

10 15 20 25 30 35 40 45 50

Number of Flows

N
u

m
b

er
 o

f
L

o
ss

es

Randomized
Paced
Reno

200

300

400

500

600

700

800

900

1000

1100

10 15 20 25 30 35 40 45 50

Reno
Paced
Randomized

Number of Flows

N
u

m
b

e
r

o
f

T
im

e
o

u
ts

(c) Loss Rates (d) Timeouts

Figure 3.7: Throughput, Fairness, Loss Rates and Timeouts for a set of
flows where each flow has a different RTT.

severely diminishing Paced TCP’s performance [4]. Reno performs better because

Reno flows send packets in clusters, a burst from a particular flow in slow start has

only local effect; it does not effect all flows [4].

3.11.3 Interaction of Randomized TCP with TCP Reno

This section presents the result of multiplexing TCP Reno and Randomized

TCP on the same link. In [4], the authors show that Paced TCP gets beaten

down by TCP Reno, when multiplexed on the same link. This is because a single

paced connection is more likely to have at least one of its packets encounter severe

65

0 50 100 150 200

Flow Size (in packets)

0

1

2

3

4

5

6

7

L
at

en
cy

 (
in

 s
ec

on
ds

)

Reno
Paced
Randomized

0 500 1000 1500 2000 2500 3000

Flow Size (in packets)

0

10

20

30

40

50

60

70

L
at

en
cy

 (
in

 s
ec

on
ds

)

Reno
Paced
Randomized

(a) Short Workloads (b) Moderate Workloads

Figure 3.8: Latencies for Reno, Paced and Randomized for short and
moderate Web like Workloads

TCP Type Throughput Losses (%) Timeouts (%)
Reno 480.21 2.45 0.1
Paced 351.86 5.74 0.8

Reno 389.31 4.2 0.5
Random 408.92 5.1 0.8

Table 3.1: Comparison of Throughput (in pkts/sec), losses and timeouts
for TCP Reno Vs (Paced, Random).

congestion when multiplexed with a bursty connection [4]. This problem is the same

as a source’s packets getting synchronized with the buffer overflow event. Hence that

flow faces a disproportionate number of losses and a lower throughput [38]. This

effect is reproduced in our simulations as shown in Table 3.1 where the throughput

is considerably lesser for Paced TCP (351.86 Kbps) as against TCP Reno (480.21

Kbps). The RTT for this experiment was 100ms, the bottleneck link’s capacity was

1 Mbps and it was configured with Drop Tail with 25 packets of buffer.

However, when Randomized TCP is multiplexed with TCP Reno, the fairness

improves considerably. This is seen in Table 3.1 where the throughput for the

Randomized TCP is 408.92 Kbps when compared to 389.31 Kbps for TCP Reno.

This is primarily due to two reasons. Firstly, by modifying the increase parameter

α of Randomized TCP we account for the extra delay being introduced by random-

66

ization. Secondly, by reduction of synchronization of the source to buffer overflow

events, we ensure equitable distribution of drops.

3.11.4 Summary

To summarize the observations of this section:

• For bulk data transfer Randomized TCP performs as well as or better than

TCP Reno and Paced TCP in almost all scenarios.

• Specifically, for bulk data transfer with same RTT amongst different flows,

with higher multiplexing (of flows) Randomized TCP performs the best by

increasing the throughput and fairness, reducing losses and timeouts.

• For bulk data transfers where every flow has different RTT, Randomized TCP

clearly out-performs TCP Reno and Paced TCP. This is important because

this is more representative of the Internet.

• In the scenario where all flows have different RTT and a Drop Tail queue at

the bottleneck, randomization reduces the TCP bias against longer RTT flows

and achieves a performance similar to RED gateways as mentioned in [3].

• With short web like transfers, Reno performs better than Randomized TCP.

However as the workloads start to increase Randomized TCP catches up with

TCP Reno. Small workload flows complete their transaction in slow-start

(or with very small windows). As such, if we randomize the windows when

they are small, randomization generally delays the sending times which results

in increased latency. Moreover, our re-characterization of increase parameter

(Section 3.4) does not come into play because it works for congestion avoidance

phase. As such, we conjecture that one should not randomize the sending times

when the windows are small (less than 4) and during the slow-start. However,

these inferences are at best intuitive and need to be evaluated in detail. One

could also calculate the adjustment factor for slow start (just like we did for

steady state).

67

• Randomized TCP and TCP Reno can compete fairly at a bottleneck. This

is primarily because of the modification of the increase parameter, α, of the

congestion window growth in Randomized TCP. However, Paced TCP loses

out to TCP Reno as already shown in [4].

3.12 Bias Against Long Flows, Phase Effects, Synchroniza-

tion and Burst Losses

3.12.1 Bias Against Long Flows

It has been widely reported that Drop Tail gateways have a bias against long

flows [39]. In this section we first demonstrate this bias and its reduction with

the use of Randomized TCP. We present the results with single as well as multiple

bottleneck topologies.

3.12.1.1 Single Bottleneck

We performed simulations with two flows, one shorter RTT source(60 ms) and

another longer RTT source (80 ms) and for differing link capacities to demonstrate

the bias against long flows. We varied the bottleneck capacity but kept the buffer

size constant at 25 packets with Drop Tail queues. The simulation time was 500

seconds. Further, all the results reported in this section correspond to an average

of 10 simulations. For the results corresponding to RED, the RED was configured

to the recommendation in [33]. Specifically, the minimum threshold was set at one

third of buffer length, the maximum threshold was set to four-fifth of buffer length,

the queue weight was set at 0.002 and the maximum loss probability was set to 0.1

.

Consider the case when both the bottlenecks use simple Drop Tail queuing.

If we assume that both flows see the same drop rate then the throughput for the

two flows would be distributed as inversely proportional to the RTT (Throughput

∝ 1/RTT) [73]. Thus here the throughput should be distributed as 8/14 (0.57)

and 6/14 (0.43) of the bottleneck capacity, amongst the 60ms and 80ms sources

respectively. Now consider the case when the bottleneck bandwidth is 2 Mbps and

68

RTT Type Throughput % Share of the Loss (%) Timeouts
(pkts/sec) Bottleneck

Long Reno 132.05 28 1.2 173
Short Reno 333.58 72 0.3 35
Long New Reno 113.15 25 1.6 107
Short New Reno 333.63 75 0.2 17
Long Reno 215.20 44 0.3 6
Short Random 277.86 56 0.3 7
Long Random 214.89 47 0.5 88
Short Random 242.03 53 0.5 121
Long Reno (RED) 216.05 46 0.3 2
Short Reno (RED) 256.80 54 0.3 1
Long New Reno (RED) 198.08 45 0.4 1
Short New Reno (RED) 244.93 55 0.4 2
Long Random (RED) 222.90 47 0.3 1
Short Random (RED) 255.95 53 0.4 0

Table 3.2: Bias Against Large RTT Flows in a Single Bottleneck (2Mbps)
Topology: The ideal % share of the bottleneck for the long flow is 43%
and that for short flow is 57%. Drop Tail queues show a bias against
large RTT flows with both TCP Reno and TCP New Reno. However,
Randomized TCP removes this bias, moreover even a single Random-
ized TCP improves the fair sharing of the bottleneck. The results show
that RED also removes the bias. Thus, Randomized TCP has similar
performance gains as RED.

both the longer as well as the shorter flow use TCP Reno. The throughputs for

the longer and the shorter flow in this case are 132.05 packets/sec (the standard

deviation was 10 packets/sec) and 333.58 packets/sec (the standard deviation was

12 packets/sec) respectively (see Table 3.2). The share of the bottleneck for the two

flows is 0.28 (long flow) and 0.72 (short flow) as against the theoretical values of 0.43

and 0.57 respectively. Therefore, we find that when both the sources use TCP Reno,

bias against longer flow exist as expected. A similar result is obtained if we use TCP

New Reno flows. Thus, the Drop Tail queues shows a sufficient bias against long

RTT flows, irrespective of the congestion control scheme being used. However, with

the same 2 Mbps bottleneck, if we randomize one source (in this case, the shorter

source), we find that bias against longer flow is considerably reduced as seen in Table

3.2. In fact the throughput for the 80ms and 60ms flows are 215.20 packets/sec

69

(the standard deviation was 50 packets/sec) and 277.86 packets/sec (the standard

deviation was 48 packets/sec) respectively. Also their share of the bottleneck are

0.44 (long flow) and 0.56 (short flow) as against the theoretical values of 0.43 and

0.57 respectively. This beneficial effect of Randomized TCP is preserved even if we

randomize the longer flow or even if both the flows use Randomized TCP.

Thus Randomized TCP seems to remove the Drop Tail queue’s bias against

against large RTT flows. This behavior of Randomized TCP is similar to that of

RED, as described in [39]. To further verify this argument we also evaluated the

performance of TCP Reno, New Reno and Randomized TCP when RED queue was

used at the bottleneck. As shown in Table 3.2 RED removes the bias against large

RTT flows, further it results in a decrease in the number of timeouts. This can

be attributed to the fact that RED manages the bottleneck queues proactively and

thus rarely operates with full queues. This in turn translates into buffer space to

accommodate any incoming burst of packets, thus preventing timeouts (which might

have occurred due to a burst loss).

A similar statement about the bias against longer flow can be made for the

other case where the bottleneck is of 3 Mbps (see Table 3.3). There too when both

the flows use TCP Reno the bottleneck is shared as 0.30 for the long flow and 0.70

for the short flow instead of 0.43 and 0.57 respectively. Similarly, if both the flows

use TCP New Reno the bandwidth is still shared disproportionately. But when one

of flows uses Randomized TCP while the other uses TCP Reno, the bottleneck is

shared as 0.41 for the long flow and 0.59 for the shorter flow. These two examples

elicits that the bias against longer flows are present with TCP Reno and are removed

with Randomized TCP. Once again, if RED is used at the bottleneck, the number

of timeouts decrease and the bias against large RTT flows is also removed.

We investigated another simulation setup with a bottleneck of 1 Mbps, a Drop-

Tail queue of 25 packets and 10 flows. In this experiment we had 5 sources each

with RTTs of 60ms and 80ms.The results of this simulation are tabulated in Table

3.4. We first show the occurrence of bias against longer flows when all these sources

used TCP Reno, and then we show the removal of this bias when all these sources

used Randomized TCP. But more interestingly, we demonstrate a reduction in bias

70

RTT Type Throughput % Share of the Loss (%) Timeouts
(pkts/sec) Bottleneck

Long Reno 195.29 30 0.6 143
Short Reno 458.61 70 0.2 67
Long New Reno 259.44 37 0.5 5
Short New Reno 448.41 63 0.2 54
Long Reno 276.42 41 0.2 9
Short Random 395.68 59 0.2 13
Long Random 273.89 42 2.7 59
Short Random 374.14 58 2.3 70
Long Reno (RED) 288.56 44 0.2 18
Short Reno (RED) 371.35 56 0.2 28
Long New Reno (RED) 302.66 43 0.3 2
Short New Reno (RED) 394.99 57 0.2 7
Long Random (RED) 308.80 46 0.2 2
Short Random (RED) 368.00 54 0.2 4

Table 3.3: Bias Against Large RTT Flows in a Single Bottleneck (3Mbps)
Topology: The ideal % share of the bottleneck for the long flow is 43%
and that for short flow is 57%. Drop Tail queues show a bias against
large RTT flows with both TCP Reno and TCP New Reno. However,
Randomized TCP removes this bias, moreover even a single Random-
ized TCP improves the fair sharing of the bottleneck. The results show
that RED also removes the bias. Thus, Randomized TCP has similar
performance gains as RED.

even when any one source uses Randomized TCP and the rest use TCP Reno. This

implies that a presence of even a single Randomized TCP at a bottleneck might be

helpful in reducing the bias against flows with larger RTT. Thus even an incremental

deployment of Randomized TCPs would benefit the entire group of users.

3.12.1.2 Multiple Bottleneck

In this section we evaluate the performance of TCP Reno and Randomized

TCP with a multiple bottleneck topology. The topology is shown in Figure 3.9

consists of two bottleneck links of capacity 1 Mbps and delay of 20ms. All the other

links in the figure have a capacity of 4 Mbps and delays as shown in Figure 3.9. The

long flows have end-to-end propagation delay of 120ms while the short flows have

71

RTT 5 Short Reno 5 Short Random 5 Short Reno 5 Long Reno
5 Long Reno 5 Long Random 4 Long Reno + 4 Short Reno +

1 Long Random 1 Short Random
Short 62.6 41.50 45.51 50.02
Long 33.35 33.60 35.80 34.71

Table 3.4: Comparison of Throughput (in Kbps) for different config-
uration of competing 5 Long flows (RTT=80ms) and 5 Short Flows
(RTT=60ms)

RouterRouter

�������
�

���
�

���
� ����

20ms
Router

D1

5ms

S1

Dn

S3

D3

D4

Sn

S4

5ms

5ms

5ms

5ms 5ms

5ms

0.8 Mbps

20ms

0.8 Mbps

5ms

8 Mbps

8 Mbps

8 Mbps

8 Mbps

Figure 3.9: Multi Bottleneck Topology used in the simulation.

an end-to-end propagation delay of 60ms. Our simulation setup consist of 2 long

flows denoted by (S1-D1) and (S2-D2) source-destination pairs and two small flows

denoted by (S3-D3) and (S4-D4) source- destination pairs, as shown in figure 3.9. We

investigate this topology when (S1,S2) and (S3,S4) use TCP Reno and Randomized

TCP. Table 3.5 tabulates the results for different simulation setups. The results

in this section correspond to an average of 10 simulations, with each simulation

duration being 100 seconds. The standard deviations for results reported in this

section were between 5-8 packets/sec for the long flows and 10-14 packets/sec for

the short flows.

We can see from the Table 3.5 that there exists bias against flow(s) with

longer RTT when all the flows use TCP Reno (or TCP New Reno), displayed by the

considerable difference in their throughputs, and is subsequently removed when all

the flows use Randomized TCP. However, an interesting observation again is that

when the short flows use Randomized TCP while the long flows use TCP Reno, we

see reduction in this bias. This further supports our argument that a presence of

72

Source (S1,S2): Reno (S1,S2): Random (S1,S2): Reno (S1:S2) Random
(S3,S4): Reno (S3,S4): Random (S3,S4): Random (S3,S4) Reno
Drop Tail Drop Tail Drop Tail Drop Tail

S1 33.12 39.39 41.63 36.72
S2 34.29 39.79 43.74 37.11
S3 170.12 138.14 146.60 152.04
S4 170.30 143.37 147.20 156.35

Source (S1,S2): Random (S1,S2): Reno (S1,S2): New Reno (S1,S2): New Reno
(S3,S4): Random (S3,S4): Reno (S3,S4): New Reno (S3,S4): New Reno

RED RED Drop Tail RED
S1 52.81 51.26 32.14 54.15
S2 53.19 51.74 34.61 54.66
S3 137.68 141.91 178.40 139.50
S4 139.75 141.56 183.20 149.29

Table 3.5: Bias Against Large RTT Flow in a Multi-Bottleneck Topology:
Drop Tail queues’ bias against large RTT flows with both TCP Reno and
TCP New Reno persist. However, Randomized TCP removes this bias.
Moreover presence of a single Randomized TCP flow at each bottleneck
improves the fair sharing of the network. Once again, RED also removes
the bias but Randomized TCP has similar performance gains.

even a single randomized flow at every bottleneck is sufficient to reduce the bias

against longer flow(s) and thus achieve a better fairness amongst flows. In another

simulation setup where the long flows use Randomized TCP and the short flows use

TCP Reno, we see that the bias persists. This is intuitively true too. The long flows

are the only sources of potential randomness at the bottleneck, which is visible at

the first bottleneck. However, at the second bottleneck the streams arrive in phase

because the randomness at the first bottleneck is broken by the “departure process”

of the queue. Thus at the second bottleneck there is no randomization to break

the bias against longer flows. Hence the long flows get beaten down and the bias

persists.

However, when we use RED at the bottleneck queues, we can see that the

bias against large RTT flows is removed. Moreover, if we look at Table 3.5 we

can see that the not only has the fair share of the flows which go through both

the bottleneck improves but also the over all link utilizations also increase. This

73

increase in link utilization with RED can be attributed to the reduction in timeouts.

RED proactively manages the queues so as to avoid the impending congestion by

dropping packets early. This in turn prevents the bottleneck queues to be full for a

large duration thus allowing more space to accommodate packet bursts. Drop Tail

queues unlike RED, do not attempt to avoid congestion rather they are configured

only to absorb packet bursts and as a result often have full queues. This full queues

with Drop Tail manifests itself with increase in timeouts (because of the inability

to absorb the bursts).

In summary, the Drop Tail queues bias against large RTT flows persist irre-

spective of the TCP flavor (TCP Reno or New Reno) being used. However, presence

of a single Randomized TCP flow at every bottleneck can improve the fairness in the

network by reducing the bias against large RTT flows. This motivates the incremen-

tal deployment of Randomized TCP. RED also removes the bias against large RTT

flows and also marginally improves the overall link and network utilization. But

considering the fact that RED is not deployed on the network for a variety of rea-

sons, the results in this section illustrate that one of the key benefits of using RED,

i.e., removing bias against large RTT flows, can be emulated by using Randomized

TCP.

3.12.2 Phase Effects

In [38] the authors show that phase effects with drop-tail queues can cause a

source’s loss events to get synchronized with the full queues. Consequently it loses a

large number of packets and gets a very low throughput. The authors also note that

an appropriate randomization included in the delay would reduce the phase effects.

In this section we show the presence of phase effects in Drop Tail Gateways with

TCP Reno as first shown in [38]. Subsequently, using the same simulation setup

we show reduction in phase-effects with the use of Randomized TCP. We use the

same simulation setup as discusses by the authors in [38]. Since phase-effects can be

shown by either dis-proportionately high number of losses or low throughput in this

work we chose losses to demonstrate phase-effects. Each point in these losses-time

plot corresponds to the average losses for the last 50 seconds of the simulation.

74

800 Kbps
100 ms

8 Mbps

1 2

4

3

Source Source

Sink

Gateway

5 msd ms
8 Mbps

Figure 3.10: Single bottleneck Simulation Setup to show phase effects
with Reno and Drop Tail Gateways.

Figure 3.10 shows the setup for a single bottleneck topology for a 100 ms

simulation, a bottleneck buffer of 15 packets and the packet size of 1000B. In this

simulation we vary the RTT of source 1 by varying the delay between source 1 and

bottleneck. In figure 3.11(a) we plot the losses of Source 2 against the ratio of RTTs

of the two sources. As can be seen from the figure 3.11(a) that for most of the

data points, source 2 sees almost no loss (source 1 sees all the losses) while for some

particular values of the RTT ratios (between 1.85-2.05) it sees most of the losses

showing the presence of phase effects. However, we see that the phase effects are

removed if Randomized TCP is used and the source 2 never sees disproportionately

higher percentage of network losses.

We also evaluated Randomized TCP’s performance vis-a-vis phase effects for

a multiple bottleneck topology as shown in figure 3.12. In this simulation we varied

the RTT of source 1 by varying the delay between Source 1 and bottleneck 1. The

packet size used for the simulation was 1000B, the buffer length at each bottleneck

was 15 packets (slightly more than 1 bandwidth delay product) and the simulation

time was 100 ms. In Figure 3.11(b) we plot the percentage losses (of the total losses

at the second bottleneck) as seen by Source 3 against the RTT ratios of source 1

and 2. Again it can be seen that Source 3 sees almost 80% losses with TCP Reno

while the losses are considerably reduced (to about 40%) when Randomized TCP

is used. This further verifies the presence of phase effects in Reno and Drop Tail

gateways and removal of phase effects with the use of Randomized TCP.

75

0

10

20

30

40

50

60

70

80

90

100

1 1.2 1.4 1.6 1.8 2 2.2

Randomized TCP

TCP Reno

Round Trip Time Ratio

N
od

e
2’

s
L

os
se

s
(%

)

(a) Single Bottleneck: Node 2 does not see disproportionate losses with
Randomized TCP, Phase effects reduced.

0

20

40

60

80

100

1 1.2 1.4 1.6 1.8 2 2.2

Round Trip Time Ratio

N
od

e
3’

s
L

os
se

s
(%

)

Randomized TCP

TCP Reno

(b) Multiple Bottleneck: Node 3 does not see disproportionate losses with
Randomized TCP, Phase effects reduced.

Figure 3.11: Phase Effects

3.12.3 Synchronization

3.12.3.1 Synchronization in Bulk Data Transfer

We ran separate simulations with 2, 3, 10 and 25 flows of Reno, Paced and

Randomized TCP and calculated pair-wise (between flows) covariance coefficients

of congestion windows. We maintained the default simulation setup as described in

Section 3.8 and the simulation time was 1000 seconds. The congestion window for

each flow was sampled using a sample interval of 0.1 seconds, i.e., the congestion

window was sampled approximately once every RTT. This sample set was then used

76

5

2

7

8

5 ms

80 ms

5 ms

800 Kbps

1

4

8 Mbps

6

3

8 Mbpsd ms

800 Kbps
20 ms 5 ms

8 Mbps

12 ms

8 Mbps

8 Mbps

Gateways

Source Source Sources 2, 3
Sink for

Source 1
Sink for

Source

Figure 3.12: Multiple bottleneck Simulation Setup to show phase effects
with Reno and Drop Tail Gateways.

Bandwidth Reno Paced Randomized
3 Mbps 0.4254 -0.4124 0.1721
4 Mbps 0.3152 -0.1839 0.1604
5 Mbps 0.6700 -0.3302 0.0799

Table 3.6: Comparison of Covariance Coefficient of Congestion Window
for two flows for TCP Reno, Paced and Randomized. (Value around 0 is
Good.)

to calculate the pairwise covariance coefficients. product.

In our first simulation with 2 flows, we varied the bottleneck bandwidth from

3 Mbps to 5 Mbps while keeping the buffer fixed at 25 packets. Table 3.6 shows the

covariance coefficients for each of the flows. It can be inferred that the synchroniza-

tion in Reno increases as the bottleneck bandwidth increases. However Randomized

TCP keeps the synchronization low while Paced TCP is out of phase synchronized.

Also, it is interesting to note that while the synchronization increases in Reno with

increase in bottleneck bandwidth, it decreases in Randomized.

In our second simulation with 3 flows, we kept the bottleneck bandwidth con-

stant. Covariance coefficient values are tabulated in the table 3.7. Again, it is

evident that Reno is the most synchronized and Paced TCP is out of phase syn-

chronized. Also, it can be seen that both Paced and Randomized TCP lead to

reduction in the synchronization.

77

Flow Pair Reno Paced Randomized
(1,2) 0.5183 -0.1454 0.2525
(1,3) 0.5416 -0.1537 0.1422
(1,4) 0.3492 -0.1833 0.1535

Table 3.7: Comparison of Covariance Coefficient of Congestion Windows
for 3 flows for TCP Reno, Paced and Randomized. (Value around 0 is
Good.)

0 10 20 30 40 50

Flow Pairs

0

0.2

0.4

0.6

0.8

Co
va

ria
nc

e C
oe

ffi
cie

nt

Reno
Paced
Randomized

Figure 3.13: 10 flows Covar. coeff. of Congestion Window for (a) Reno,
Paced & Randomized (b) Reno & Randomized, (c) Paced & Randomized

Figures 3.13 and 3.14(a and b) plot the pairwise covariance coefficients for

10 and 25 flows. The y axis of the graph plots the covariance coefficient against

the pair of flows on x axis, i.e., each unit of x axis corresponds to a pair of flows,

starting in the order (1,2), (1,3), . . . , (2,3) Since the graphs for 25 flows are

not visible on one graph we plot it in two. Fig 3.14(a) plots the covariance for Reno

and Randomized TCP and 3.14(b) plots it for Randomized TCP and Paced TCP.

Both Paced TCP and Randomized TCP break synchronization while Reno is highly

synchronized. Also, as the number of flows start increasing, Randomized TCP starts

to get better than Paced TCP.

78

0 50 100 150 200 250 300

Flow Pairs

-0.2

0

0.2

0.4

0.6

0.8

Co
va

ria
nc

e C
oe

ffi
cie

nts

Reno
Randomized

(a) 25 flows

0 50 100 150 200 250 300

Flow Pairs

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Co
va

ria
nc

e C
oe

ffi
cie

nts

Paced
Randomized

(b) 25 flows

Figure 3.14: Covar. coeff. of Congestion Window for (a) Reno & Ran-
domized, (b) Paced & Randomized

3.12.3.2 Synchronization with Short Web Transfers

In [4] the authors contend that one of the reasons for higher latency with

Paced TCP in short web like transfers is that connections seem to get synchronized.

In this simulation setup we have evaluated and verified their arguments. For the

simulation we used a bottleneck link of 4Mbps, a RTT of 100 ms and a buffer of

25 packets. 25 flows were always maintained in the network. As soon as any flow

finishes, a new flow initiates transfers. We varied the workload from 10 packets to

2500 packets.

Figure 3.15 plots the covariance coefficients of congestion windows for Paced

79

and Randomized TCP. A closer look shows that the covariance for Randomized

TCP is consistently lower than that for Paced TCP. In Paced TCP packets reach the

bottleneck at an uniform rate with near perfect interleaving. This causes all sources

to lose packets, thereby resulting in all the sources cutting down their windows

together, and hence higher covariance. But with randomization, the rate is not

uniform at the bottleneck and packets from flows are dropped after differing times

due to the extra delay incurred because of randomization. This means that sources

decrease their windows at different times and hence the periods of increase and

decrease are not as synchronized as in paced, resulting in a decreased covariance

coefficient between the flows.

3.12.4 Burst Losses

In this section we investigate the proposition that Randomized TCP reduces

the burst losses and also that the drops with Randomized TCP and Drop Tail

queues are independent. For testing the first proposition, we varied the bottleneck

bandwidth from 1-2 Mbps and the number of sources from 20 to 30. The end-to-

end propagation delay was 200ms, the bottleneck buffer was set as 25 packets. We

assumed that there is no reverse path congestion and the maximum number of back-

to-back packets or burst at the bottleneck will be just 2. We in fact verified the

also verified this argument by cross checking the burst loss size with the congestion

window trace file for each flow at the bottleneck.

Table 3.8 shows the results average number of burst losses for TCP Reno

and Randomized TCP as the bottleneck bandwidth and the flow multiplexing is

increased. It can be inferred from the table that as the number of flows increase,

with the bandwidth kept constant, the number of back-to-back losses increase in

TCP Reno and decrease (or remain constant) in Randomized TCP. This supports

our argument that Randomized TCP reduces burst losses.

It can also be conjectured here that Randomized TCP distributes the loss over

time. This is because, TCP Reno and Randomized TCP have the same congestion

control policy the total number of drops are likely to be same for both. Thus,

by reducing the burst losses Randomized TCP makes the losses distributed. This

80

No. of 1 Mbps 2 Mbps
Flows Reno RTCP Reno RTCP
20 87 23 1 27
25 119 18 100 31
30 141 15 168 28

Table 3.8: Comparison of average number of burst losses in Reno and
Randomized TCP (RTCP).

0 50 100 150 200 250 300

Flow Pairs

-0.2

0

0.2

0.4

0.6

Co
va

ria
nc

e C
oe

ffi
cie

nts

Paced TCP
Randomized TCP

Figure 3.15: Covariance coefficients for Paced and Randomized TCP for
a transfer of 2500 packets. (Value around 0 is good.)

argument is further supported by the results in Section 3.12.1. There it was shown

that Randomized TCP is successful in removing the TCP bias against longer RTT

flows with Drop Tail queues. In [3] the authors show that TCP bias against long flows

can be reduced by Active Queue Management which distributes losses uniformly over

time, specifically RED. The similarity of our simulation results in 3.12.1 suggest that

Randomized TCP does succeed in making losses independent by distributing them

over time.

3.12.5 Summary

The observations of this section can be summarized as:

• Randomized TCP increases the fairness amongst competing flows of different

RTTs by removing the bias against the longer RTT flows (as found with TCP

Reno) with Drop Tail queues.

81

• Presence of a “single” Randomized TCP flow at every bottleneck (Drop Tail

Gateways) can reduce the bias against longer RTT flow at that bottleneck.

• Phase effects, which persist with TCP Reno with Drop Tail queues, are reduced

if Randomized TCP is used.

• With bulk data transfers randomization reduces the synchronization of win-

dows (thus loss events) as against TCP Reno. This should reduce the queue

oscillations.

• Randomized TCP reduces synchronization with short web-transfers. This

should lower average latency.

• Randomized TCP drastically reduces the number of burst losses. Specifically

its performance increases as the number of flows increase.

• With Drop Tail queues Randomized TCP tries to distribute losses over time

thus making them appear independent.

3.13 Binomial Congestion Control Algorithms

In [9] the authors propose a class of non-linear TCP compatible congestion

control schemes called Binomial Congestion Control Schemes (BCCS) for audio

and video applications. Formally, the Binomial Congestion Control scheme can be

defined as:

Wt+R ← Wt + α/W k
t if no loss (3.32)

Wt+δt ← Wt − βW l
t if loss (3.33)

where k and l are window scaling factors for increase and decrease respectively

and α and β are increase the decrease proportionality constants. For any given

values of α and β TCP Compatible BCCS can be defined by k+l = 1 : k ≥ 0, l ≥

0. Inverse Increase Additive Decrease or IIAD is one such BCCS with k=1, l=0.

Similarly Square Root Increase and Square Root Decrease or SQRT is defined as

82

k=0.5, l=0.5. We refer the reader to [9] for a more detailed description of Binomial

congestion control schemes.

In [9], the authors show that these algorithms, specifically IIAD and SQRT,

beat down TCP when sharing a drop-tail gateway and hence suggest the use of

RED gateways to maintain fairness. This unfairness is due to unequal distribution

of drops amongst these flows. This behavior is seen in figure 3.16 a) and c). When

we incorporate randomization into binomial schemes as well and make it compete

against randomized TCP, we see a marked improvement in fairness as in figure

3.16 b) and d), due to the by now familiar reasons of de-synchronization and more

uniform distribution of losses. The end-to-end propagation delay for this experiment

was 100ms, the bottleneck link’s capacity was 1 Mbps and it was configured with

Drop Tail queue with 25 packets of buffer.

3.14 Conclusions

In this chapter we presented a methodology to introduce randomness in net-

works through end-to-end congestion control schemes. For the TCP case, we call

it Randomized TCP. In this scheme, we space successive packet transmissions with

a time interval ∆ = RTT (1 + x)/cwnd, where x is a zero mean random number

drawn from an Uniform distribution. We showed that Randomized TCP, by in-

troducing randomization in the network, reduces synchronization, phase effects and

bias against bursty traffic, prevalent with current implementations of TCP and Drop

Tail Gateways. We have also analytically characterized the new increase parameter

for Randomized TCP to make it compete fairly with TCP. This was necessary be-

cause randomizing the sending times increases the RTT and as such the Randomized

TCP losses to TCP Reno.

Randomized TCP reduces the bias against connections with larger RTTs with

Drop Tail queues. The presence of a single Randomized flow at a bottleneck is

sufficient to reduce the bias against longer RTT flows thereby motivating incremental

deployment. Randomized TCP also reduces the burst losses and can also distribute

losses over time thus emulating RED like properties. Multiplexing of Randomized

TCP with TCP Reno helps in reducing synchronization and phase effects while

83

0 20 40 60 80 100

Simulation Time (seconds)

0

20

40

60

80

C
on

ge
st

io
n

W
in

do
w

IIAD
Reno

0 20 40 60 80 100

Simulation Time (in seconds)

0

20

40

60

80

100

C
on

ge
st

io
n

W
in

do
w

IIAD
Randomized

(a) IIAD with TCP Reno (b) IIAD with Randomized TCP

0 20 40 60 80 100

Simulation Time (in seconds)

0

20

40

60

80

100

C
on

ge
st

io
n

W
in

do
w

SQRT
Reno

0 20 40 60 80 100

Simulation Time (in seconds)

0

20

40

60

80

100

C
on

ge
st

io
n

W
in

do
w

SQRT
Randomized

(c) SQRT with TCP Reno (d) SQRT with Randomized TCP

Figure 3.16: Performance of Binomial Congestion Control Algorithms
with Randomization

increasing fairness. Additionally, when Randomized TCP is extended to Binomial

congestion control schemes, there is a remarkable improvement in fairness, when

competing with Reno. Consequently, it has high incentives for deployment.

Finally our results indicate that, Randomized TCP can emulate the beneficial

effects of RED in a distributed manner without the complexities and unfavorable

aspects of parameter tuning of RED. In addition, the benefits of randomization

can be reaped even when it is partially deployed. However, we wish to emphasize

that unlike RED which is a congestion avoidance scheme, Randomized TCP is just a

congestion control scheme. Thus Randomized TCP does not emulate the congestion

avoidance features of RED, at best it provides the other beneficial features of RED

84

which were achieved by introducing randomization in the network. We are currently

working on implementation of Randomized TCP in the Linux Kernel.

CHAPTER 4

Selfish Flows: Characterization and Performance on Drop

Tail Queues

4.1 Introduction

Randomized TCP is an end-system based solution which emulates some ben-

eficial properties of AQM. Specifically Randomized TCP achieves fairness in the

network by reducing burst losses. However, since Randomized TCP does not differ-

entiate between flows and does not manage queues in the network and it can not

protect flows under all circumstances. In this Chapter we illustrate this through

some simulation setups. We show that in presence of selfish behavior in the network

the end-system based techniques are insufficient to provide fair service to all users.

However, to show this we first define ways in which selfish behavior can be defined.

Specifically we show the existence of stable rate control schemes. This is then used

to show the unfair distribution of bandwidth amongst competing flows.

The rest of the Chapter is organized as follows.

• In Section 4.2 we classify the selfish behavior in the network. Specifically we

discuss the different type of flow control algorithms being used in the Internet.

• In Section 4.3 we show a class selfish schemes in the network which are obtained

by using different increase and decrease policies. However, these policies do

not change with time.

• We relax the assumption of constant increase decrease policy in Section 4.4

and introduce schemes which change some of their control parameters with

time.

• In Section 4.5 we use these selfish schemes to highlight the problem that end-

system based techniques are not sufficient to manage fair allocations in the

network.

• Finally in Section 4.6 we summarize the arguments presented in this chapter.

85

86

4.2 Classes of Selfish Flows

In this section we will classify the selfish behavior of different rate control

schemes. Since TCP is the most widely used transport protocol, for this classification

we have used TCP as the benchmark flow, i.e. TCP flows are not considered to be

selfish. Henceforth, we define selfish behavior as any rate control scheme which gets

more share of the bottleneck bandwidth than TCP under same operating conditions.

Though we have chosen TCP to identify selfish behavior, we would like to point out

that TCP is just one special case, we could have as well chosen some other rate

control scheme to recognize the selfish behavior.

At the outset we can classify selfish flows into two broad categories: a) respon-

sive or adaptive flow and b) un-responsive or non-adaptive flow. A flow is called

un-responsive flow if it does not react to the congestion indications being fed to it

by the network. On the other hand responsive flows react to congestion indications

by cutting down their rates.

Constant Bit Rate (or CBR) flows and UDP are the two main un-responsive

rate control schemes. These rate control schemes are increasingly becoming popular

in the network, especially as TCP introduces delays because of all its reliability

mechanisms. Most of the multimedia and gaming applications use error protection

through coding schemes and therefore are resistant to packet losses, though worrying

about the end-to-end delays. As such these schemes use UDP. Real Audio, Internet

telephony, and on-line games like Quake, Half life etc are some applications which

use UDP [36]. Finally, flows which always increase their rate with total disregard

to congestion indication would complete the definition of un-responsive schemes.

These un-responsive flows can be modeled by any linear utility function, i.e.

U(x) = ax and they are also characterized by constant marginal utility for any rate

allocation. The utility function of such schemes is also given by a step function,

i.e. till a particular rate these schemes have zero utility while after a particular rate

these schemes have constant utility [85].

Responsive non-cooperative flows encompass a larger range of mis-behaving

scenarios. However, their misbehavior can be differentiated on basis of their increase

policy, (i.e. how they probe the network for available bandwidth) and their decrease

87

(CBR, UDP etc)

Selfish Responsive Flows

Mixed Flows (Use both unresponsive and responsive Algorithm)

TCP Friendly Flows Responsive Flows

Unresponsive Flows

Figure 4.1: Classification of Selfish Behavior in the Network. Our region
of interest is the Selfish Responsive Flows.

policy (or how they respond to congestion indication). These schemes could include

strictly concave, concave or strictly increasing convex (with respect to rate) utility

functions. Such a categorization of utility function leads to flows which are called

greedy, i.e. they are always willing to consume any extra rate available (to them).

This greediness enforces the strictly increasing condition on the utility functions.

Yet another class of non-cooperative functions manifest themselves as a mix

of responsive and un-responsive flows. Some streaming application’s rate control

scheme falls in this category. These applications react to congestion indications

till a certain limit (which could be rate or loss) and after that stops reacting to

congestion indication and thus resorting to a CBR like transmission.

Finally, in figure 4.1 we show different rate control schemes. Though selfish

behavior corresponds to all the sections other than TCP-Friendly flows, in this thesis

we will concentrate on managing selfish responsive flows. Towards achieving this, in

this chapter we will outline various techniques which can be used to generate selfish

behavior in the network. Later in Chapter 5 we will present an edge system based

solution for managing selfish behavior.

88

4.3 Selfish Rate Control Schemes and their Utility Func-

tions

During the congestion avoidance phase TCP increases it’s window by 1 packet

every RTT and cuts it’s window by half on receipt of congestion indication. Thus,

the rate control from TCP can described as:

I : W (t+R) ← W (t) + α (4.1)

D : W (t+R) ← W (t)− βW (t)

where R is the RTT, I,D represent the increase and decrease policy of TCP, re-

spectively and α, β are the increase and decrease parameters. For TCP α = 1 and

β = 0.5.

Let us denote the instantaneous rate of a source by x and the packet loss

probability as p. Further the relationship between window and rate is given as

W = x.R. Then the window increase process can be written as

W (t+R) = W (t) + α(1− p)W (t) − βW (t)(1− (1− p)W (t)) (4.2)

Let us assume that the packet loss probability is close to 0. Then we may re-write

the above equation as

W (t+R) = W (t) + α− βW (t)pW (t) (4.3)

From the above equation, we may calculate the rate of change of congestion window

as
W (t+R)−W (t)

R
=

α

R
− β

W (t)

R
pW (t) (4.4)

or in other words
dW (t)

dt
=

α

R
− β

W (t)

R
pW (t) (4.5)

Since at equilibrium the rate of increase of window will be equal to the rate of

decrees of window we have dW (t)
dt

= 0. We will also drop the time component from

89

the window, W(t), and instead write it as W . Thus at equilibrium we get

α

R
= β

W

R
pW (4.6)

which can be re-written as

p =
α

βW 2
(4.7)

We can also express the above equation in terms of the sending rate, x, of the

source. Moreover, the sending rate is also a measure of the throughput. Thus in

steady state the following equation gives the relationship between the throughput x

and the end-to-end loss probability, p.

p =
α

β(xR)2
(4.8)

Then using the flow optimization analysis of Kelly, Low et al [53, 62, 56] and

equilibrium properties of TCP [46] we can calculate the utility function of TCP as

U ′(x) = p (4.9)

However from the throughput analysis presented above, after some simplification at

steady state we have

p =
α

β(xR)2
(4.10)

Then using the equations (4.9) and (4.9) we have

U ′(x) =
α

(xR)2β
(4.11)

Now, we can get the utility function of TCP by integrating the above equation. This

gives us

U(x) =
−α

R2xβ
(4.12)

The equilibrium rate allocations of TCP can be found using equation 4.8. It is clear

that the throughput of TCP, x, increases with increase in a value of α and a decrease

in the value of β. Thus, a straightforward way of generating selfish flows, with to

90

respect to TCP, would be to choose aggressive increase and decrease parameter.

Therefore any choice α > 1 or 0 < β < 0.5 will result in aggressive rate control

schemes. Akella et. al [5] use this definition of selfishness to evaluate the properties

of Nash Equilibria with selfish flows and Drop Tail, RED queues.

Bansal et. al proposed non-linear increase decrease policies in form of Binomial

Congestion Congestion Schemes. Formally, these schemes can be written as:

I : W (t+R) ← W (t) +
α

W (t)k
(4.13)

D : W (t+R) ← W (t)− βW (t)l

where α, β, k, l define the Binomial Algorithm. TCP-Friendly Binomial schemes are

defined as all the scheme satisfying k + l = 1. Using an analysis similar to the one

stated above the utility function of the binomial schemes can be calculated as:

p =
α

β W (t)k+l+1
(4.14)

=
α

β (xR)k+l+1
(4.15)

U(x) =
−α

β (k + l)R (xR)k+l
(4.16)

Again, selfish schemes can be generated by changing the increase and decrease pa-

rameters, α and β respectively. However, the throughput of Binomial schemes is

given as

x =
1

R

(

α

βd

) 1

k+l+1

Since, p < 1 it is easy to see that equilibrium allocations increase with decreasing

value of k + l. Thus selfish rate control schemes can be generated by choosing

k + l < 1. Further the utility function of Binomial schemes is strictly concave with

respect to β, x and k, l.

Sastry et. al further relaxed the increase and decrease policy to come up with

the following rate update rules:

I : W (t+R) ← W (t) + f(W (t)) (4.17)

91

D : W (t+R) ← W (t)− g(W (t))

where f, g are some functions of window, W. The utility function of such schemes

can be calculated as

U(x) =
∫

x

1

Rxf(x)g(x)
dx (4.18)

and the TCP-Friendly schemes are given by

f(x)g(x) ∝ x (4.19)

Further, Binomial congestion control schemes are special case of the above model.

From the discussions of utility function characterization of Binomial schemes

and TCP, it is clear that selfish flows are given by

U(x) ∝
−1

xn
, n < 1 (4.20)

Then using equation 4.20 selfish schemes can be generated by choosing f, g such

that

f(x)g(x) < x (4.21)

Also it can be easily shown that the strict concavity of the Utility function can be

guaranteed by the following equation

−1

x
>

f ′(x)

f(x)
+
g′(x)

g(x)
(4.22)

4.4 Aggressive Rate Control Scheme: Control Parameters

are Time Dependent

In the previous section we looked at different selfish flow control schemes which

were obtained by changing the increase and decrease rules. However, these rules do

not change with time. In this section we consider rate control schemes where some

parameters are allowed to change with time. Specifically, we will look at the time-

varying Binomial schemes. We can get selfish rate control by either modifying the

decrease parameter, β over time or by changing its binomial parameters k and l.

92

In the previous section we found the utility function for binomial schemes. It

can be seen that the utility function is strictly concave with respect to x, β, k and l.

In this section we will evaluate what update rules are allowed for decrease parameter

and k, l.

4.4.1 Modifying the decrease parameter β

Let us assume that the source changes it’s decrease parameter, βs with time

and lets represent it as βs(t). Assume that the other parameters, α, k and l are kept

constant. Then the network optimization

maximize
∑

s∈S wsUs(xs, βs) (4.23)

subject to
∑

s∈S(l) xs ≤ Cl, ∀l (4.24)

can be rewritten as

J(xs, βs) = max
︸ ︷︷ ︸

xs

∑

s

wsUs(xs, βs)− γ
∑

l

∫
∑

j
xj

0
pl(Cl, x)dx (4.25)

where ws is the weight for the utility function, Us, of source s, xs is the rate of source

s, γ is some constant greater than 0 and pl represents the penalty function and is

given as

pl(Cl, λ) =
(λ− Cl)

+

λ
. (4.26)

where y+ = max(y, 0). Using the utility function of the binomial scheme we can

rewrite equation 4.25 as

J(xs, βs) = max
︸ ︷︷ ︸

xs

∑

s

ws

−α

βs(t) (k + l)d (xs(t)d)k+l
− γ

∑

l

∫
∑

j
xj

0
pl(Cl, x)dx (4.27)

We will assume that the function J(xs, βs) is strictly concave. This constrains the

range of possible choices for βs(t), but more importantly it guarantees us a unique

optimum. Moreover, this constraint on J(xs, βs) will also help us in proving that

the optimum solution is also stable. Thus from the strict concavity assumption on

93

J(xs, βs) the sufficient condition to reach the optimal point is given by

dJ(xs, βs)

dt
> 0 (4.28)

To achieve this consider the following differential equation

dJ(xs, βs)

dt
=

∂J(xs, βs)

∂xs

∂xs

∂t
+
∂J(xs, βs)

∂βs

∂βs

∂t
(4.29)

which can be calculated as

dJ(xs, βs)

dt
=



as
U

′

s(xs)

βs

− γ
∑

l

pl(Cl,
∑

j

xj)



 ẋs +
bs

βs(t)2xs(t)k+l
β̇s (4.30)

where as, bs are constant and can be calculated as

as =
wsα

dk+l+1
(4.31)

bs =
wsα

(k + l)dk+l+1
(4.32)

Assume we choose the following rule for updating the rates

ẋs = ρ



as
U

′

s(xs)

βs

− γ
∑

l

pl(Cl,
∑

j

xj)



 (4.33)

where ρ is some constant greater than 0. Such a choice of update rule also satisfies

our needs as this rule corresponds to the window dynamics of binomial congestion

control schemes. Substituting this update rule into equation (4.30) we get

dJ(xs, βs)

dt
= ρ



as
U

′

s(xs)

βs

− γ
∑

l

pl(Cl,
∑

j

xj)





2

+
bs

βs(t)2xs(t)k+l
β̇s (4.34)

From the above equation we can conclude that a sufficient condition for the game

to reach its optimal point is that β̇(t) ≥ 0, i.e the decrease parameter increases with

time. However in the previous section we have seen that the selfish behavior of

a rate control algorithm increases with a decreasing value of β. But our present

update rule for β, β̇(t) > 0 will eventually make a selfish scheme TCP-friendly

94

because eventually we will reach a value of β ≥ 0.5. Thus we are interested in the

update rule where the end-system is allowed to decrease its value of β with time.

Assume that we choose β̇(t) ≤ 0 then the optimal point is reached if equation (4.28)

is satisfied. This can be further expressed as

|β̇(t)| <
ẋs(t)

2

ρ

βs(t)
2xs(t)

k+l

bs
(4.35)

<
ẋs(t)

2

ρ

βs(t)
2dWs(t)

k+l

wsα
(4.36)

β̇(t) < 0 (4.37)

Assuming that the window size is always greater than or equal to 1, we can upper

bound the decrease rate as

|β̇(t)| ≤
ẋs(t)

2

ρ

βs(t)
2d

wsα
(4.38)

Since the Lagrangian relaxation, J(xs, βs), is strictly increasing and concave

in it’s argument a unique and stable optimal solution exist. Also from previous

analysis we have that at equilibrium rate of increase (of window) is equal to the rate

of decrease. As such, we have that at equilibrium ẋs = 0. Thus the minimum value

of ẋs
2 can be calculated as

inf{ẋs
2} = 0 (4.39)

where inf is the infimum. Also from equations (4.38) and (4.37) we have

|β̇(t)| ≤ 0 (4.40)

β̇(t) < 0 (4.41)

Thus from the above equations we can conclude that the system does not have a

always have a unique optimal solution if β̇s(t) < 0. In other words, we cannot get a

selfish scheme by consistently decreasing our decrease parameter, βs(t). However, we

may generate selfish schemes by choosing a very small decrease parameter and then

consistently increasing it. Moreover, in such cases we need to bound the final value

of βs(t) to be less than 0.5. Thus we may generate time-variant selfish congestion

95

control scheme (when compared to TCP) if

0 < βs(0) < 0.5 (4.42)

∂βs(t)

∂t
> 0 (4.43)

sup{βs(t)} < 0.5 (4.44)

where sup(y) is the supremum of any series y.

4.4.1.1 Global Stability

Since the function J(xs, βs) (equation 4.25) is strictly concave it has a unique

maxima. Lets denote this maximum by Jmax. Then the J = Jmax − J(xs, βs) can

be thought of as Lyapunov function. It is easy to see that J ≥ 0. Further it can be

shown that J is Lipschitz continuous on xs ∈ (ms,Ms),ms > 0 and β > 0. Then

from equations (4.34, 4.43) we can conclude that

dJ

dt
= −

dJ(xs, βs)

dt
< 0 (4.45)

Thus from Lyapunov’s stability theorem (Theorem 3.1 [55]) we have that the update

rules for rate and the decrease parameter yield a stable system under equations (4.34,

4.42-4.42).

4.4.2 Modifying the Window Scaling Parameters, k, l

In the previous section we assumed that the window scaling parameters, k, l

were held constant. In this section we relax this assumption however we add the

assumption that the decrease parameter β is held constant. Further let us denote

by n = k + l. Throughout this section we will use n for our analysis and use it to

make observations about changing k, l with time. Then we may write the network

optimization problem as

J(xs, ns) = max
︸ ︷︷ ︸

xs

∑

s

ws

−α

β nd (xs(t)d)n
− γ

∑

l

∫
∑

j
xj

0
pl(Cl, x)dx (4.46)

96

where pl is given by equation (4.26), and ns represents the window scale parameter

for source s. Since the above objective function is strictly concave in n and x the

sufficient condition to reach the optimal point is

dJ(xs, ns)

dt
> 0 (4.47)

dJ(xs, ns)

dt
=

∂J(xs, ns)

∂xs

∂xs

∂t
+
∂J(xs, ns)

∂ns

∂ns

∂t
(4.48)

Assuming the update rule for rate is given by equation (4.33) the sufficient condition

for above algorithm is met if

∂J(xs, ns)

∂ns

∂ns

∂t
≥ 0 (4.49)

But
∂J(xs, ns)

∂ns

∂ns

∂t
=

wsα

βR

(

nslog(xsRs) +
1

n2
s

)

ṅs(t) (4.50)

and since α, β, ws, R, ns are all positive we have that the optimal point will always

be reached if

ṅs(t) ≥ 0 (4.51)

This update rule points that if the window scaling factors increase or stay constant

with time, the optimal point will always be achieved. Further this also points to the

following interesting update rule for the window scaling parameters

k̇s(t) = −l̇s(t) (4.52)

4.4.2.1 Global Stability

Using an analysis similar to the one in Section 4.4.1.1 J = Jmax − J(xs, ns)

can be thought of as the Lyapunov function. It’s easy to see that J is again always

positive and Lipschitz continuous on xs ∈ (ms,Ms),ms > 0 and ns > 0. Further

from equations (4.47, 4.49) we have that J̇(t) ≤ 0. Thus J satisfies all the conditions

for Lyapunov stability (Theorem 3.1 [55]) and the update rules of ns, xs are stable.

97

4.5 Selfish Flows and Drop Tail Queues

In the previous sections we showed different ways to generate mis-behaving

flows in the network. In this section we will validate our claim that the Drop Tail

queues do not protect TCP flows from mis-behaving flows. Further, Randomized

TCP also is a marginal improvement over TCP and consequently does not protect

TCP flows.

Router Router

x Mbps 20 ms

10 x Mbps 10 x Mbps

5ms 5ms

S1

S2

Sn

D1

D2

Dn

RouterRouter

���������������
�

���
� ����

20ms
Router

D1

5ms

S1

Dn

S3

D3

D4

Sn

S4

5ms

5ms

5ms

5ms 5ms

5ms

0.8 Mbps

20ms

0.8 Mbps

5ms

8 Mbps

8 Mbps

8 Mbps

8 Mbps

(a) Single Bottleneck (b) Multi-Bottleneck

Figure 4.2: Topologies used in the Simulations.

Because of the simplicity of implementation and understanding, for this work

we used Binomial scheme to generate misbehaving flows. We fixed the values of

α, β as 1 and 0.5 respectively. TCP flows are defined by k = 0, l = 1 and as

discusses previously in this Chapter, misbehaving flows are defined by k + l < 1.

This is because network allocates more resources to flows which have higher marginal

utility, U ′s. Henceforth, we will use the k and l values to identify misbehaving flows.

In figures 4.3 and 4.4 we plot the throughputs for flows competing on a single

and multi-bottleneck topologies respectively. We first present the result with a single

bottleneck (4.2 a) of 0.8Mbps and access links of 8Mbps for 2 competing flows. We

evaluated the single bottleneck topology for the two cases, one when we used TCP

Reno flow and a misbehaving flow (k=0, l=0.5) and in the second case we replaced

the TCP Reno flow with Randomized TCP flow. In both the cases flows have

same RTT of 60ms. It can be seen from the figure 4.3 that in both the cases the

misbehaving flow gets most of the bottleneck share. Moreover it beats the TCP

98

Number of Round Trip Times

Th
ro

ug
hp

ut
 (i

n
pa

ck
et

s/s
ec

)

0

50

100

150

200

0 150 300 450 600 750 900 1050 1200

TCP Flow

Misbehaving Flow

Misbehaving Flow

Randomized TCP Flow

Figure 4.3: Single Bottleneck: Throughputs (in pkts/sec) for two com-
peting flows, one is TCP while the other is Mis-behaving (k=0,l=0.5)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 P
ac

ke
ts/

Se
c

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Mis−Behaving Flows

TCP−Friendly Flow

Figure 4.4: Multi Bottleneck: Throughputs (in pkts/sec) for 2 competing
flows on a network of Drop Tail queues. One flow is TCP while the other
is Misbehaving (k=0,l=0.5).

flows comprehensively. Further, Randomized TCP only marginally improves the

performance. This can be explained by the fact that network allocates equal losses

to both the flows and the misbehaving flow by cutting down its window slowly as

compared to TCP flows always get a larger share of the bandwidth.

Figure 4.2 b) show a multi-bottleneck topology with a TCP flow traversing

both the bottlenecks while one short mis-behaving flow (k=0, l=0.5), each going

through one bottleneck. It can be seen from figure 4.4 that TCP flow is almost shut

out by the mis-behaving flows, who now get all the bandwidth. Not only is the TCP

99

flow is forced into multiple timeouts (23 for this case) but these timeouts occur with

very small windows and are often back to back. Similar results were obtained with

Randomized TCP flow. In summary, with Drop Tail queues mis-behaving flows may

get significant share of the bandwidth, almost to the extent of shutting out TCP

flows.

4.6 Summary

In this chapter we first classified selfish flows. These flows were primarily char-

acterized by their response to congestion indication. There are some flows which do

not react to congestion indication. Instead either they keep sending their traffic at

a specified rate on keep increasing their rates with total disregard to the state of

congestion in the network. These flows are called non-responsive flows. However,

there is another section of congestion control scheme, which reacts to congestion

indication by cutting down the rate. But, in spite of this rate cut these flows may

be selfish. This can be attributed to either their aggressive window increase (as com-

pared to TCP) or by a smaller rate cut (than TCP). These flows are called responsive

flows. The last category of the flows use both responsive and non-responsive policy.

These flows, upon reception of congestion indication cut down their rates. However,

beyond a certain threshold (which could either be a rate limit or a loss rate limit)

these flows stop reacting to congestion signals, instead they keep sending data into

the network at a constant rate.

After this classification of selfish behavior of rate control schemes we suggested

ways in which these selfish responsive schemes could be implemented on the net-

work. The simplest selfish schemes can be obtained by using aggressive increase and

decrease parameter in TCP, i.e. α > 1 or 0 < β < 0.5. Another suggested method

of generating selfish schemes was using Binomial schemes. These algorithms are

characterized by window scaling parameters k, l besides the increase and decrease

parameters. Selfish schemes can be created by using aggressive window scaling pa-

rameters, specifically by choosing k or l such that k + l < 1. These increase and

decrease policy can be further generalized to include any function f(x), g(x) such

that they are always positive. If f(x), g(x) are chosen such that f(x)g(x) is sub-linear

100

then we can produce a variety of selfish rate control schemes. Besides these schemes,

we also looked at schemes where the user is allowed to change his congestion control

parameter with time. In this chapter we formulated guidelines under which these

schemes might be stable.

Finally, in this chapter we evaluated the performance of Drop Tail queues in

presence of selfish rate control schemes. Our results show that Drop Tail queues

cannot protect TCP flows from selfish users. Moreover the performance of Drop

Tail queues deteriorate with multiple bottleneck, so much so that selfish flows can

almost shut out TCP flows. Further, Randomized TCP also does not protect flows.

This can be explained by the fact that network allocates equal losses to both the

flows and the misbehaving flow by cutting down its window slowly as compared to

TCP flows always get a larger share of the bandwidth. Therefore it is imperative

that we use some network based strategies to protect flows from selfish behavior in

the network.

CHAPTER 5

Uncooperative Flow Control: An Edge-Based Re-marking

Framework for Congestion Response Conformance in the

Network

5.1 Introduction

Over the years as the Internet has evolved TCP has formed the backbone

of its stability. TCP placed the trust of responsive behavior, i.e. decrease rate if

there is congestion, at the end-user and as a result the core network could be kept

simple. However as the application needs changed newer rate control schemes were

proposed. Moreover, new software advancements have also placed users in a position

where they can change their congestion control schemes. As such we now have an

Internet which operates with a spectrum of transport protocols, some of which don’t

even react to congestion indications. Thus, over the years, the trust placed in the

end-system to react to congestion indications has been sufficiently weakened. In this

thesis, the flows which break the trust of the network by not reacting in appropriate

or a standard way (e.g. TCP) will be called uncooperative flows. In this thesis, we

will also refer to uncooperative flows as non-cooperative or non-conformant flow.

It has been widely reported that this breach of trust or absence of end-to-end

congestion control schemes and presence of uncooperative users can lead to TCP un-

friendliness and also cause congestion collapse [5, 35]. Moreover, as reported recently

and further validated by our results, these uncooperative flows can also force a traffic

volume based denial-of-service to their cooperative counterparts [58, 42]. Also as the

network grows and the access pipes get bigger, uncooperative flows will pose a signif-

icant challenge before the network providers. This is because of uncooperative flows

have the ability to monopolize bottleneck space and their disregard to appropriate

congestion responses may cause congestion collapse thus effecting the stability of the

Internet. Some architectural responses such as use of AQM schemes, schedulers and

pricing mechanisms have been suggested to manage the uncooperative flows [35].

101

102

U2

Us

Conformant

[U1,U2] defines the conformance space

U

x (Rate)

Remap U

Non Conformant

U1

Figure 5.1: Mapping a uncooperative user to a conformant space.

However, use of AQM and schedulers require deployment at all (bottleneck) routers

in the network, which is not only expensive but also requires significant network

upgrade. These deployment considerations coupled with presence of simple Drop-

Tail queueing schemes at all routers in the Internet present us with an interesting

question - What are the appropriate alternate architectural responses for managing

a network of un-cooperative users, such that it requires minimal network support ?

In this chapter we explore architectural responses for managing the entire spec-

trum of uncooperative sources at the edge of the network. The biggest advantages

of the Uncooperative Congestion Control framework are that it is independent of

buffer management scheme deployed on the network and works equally well in a

dropping or a marking based network. The framework presented in this chapter

can also be used to distribute rates amongst user’s according to some a-priori fair

rate allocation, while still allowing users to choose their rate control schemes. Thus,

this proposal can be used to enforce congestion response conformance e.g. TCP-

Friendliness. Moreover, our framework allows for a enforcement of a broader range

of congestion response conformance criteria.

The framework presented in this chapter follows from the flow optimization

model [53, 56, 62], specifically the duality framework of Low etal. [62]. The flow op-

timization framework is a network-based approach for modeling rate control schemes

and computing average sending rates and end-to-end loss probabilities for users. In

this work we describe a user with his rate, x and a utility function, U(x), while

103

a network is identified with link capacities. Thereupon, the users try to maximize

their utility functions subject to link capacity constraints and in the process we

derive rate control schemes for the users and link price update mechanisms for the

network.

In this chapter we call users cooperative if their utility functions fall within

some a-priori specified target range of utility functions. For example in Fig 5.1

[U1, U2] defines the cooperation boundaries or the target range. We show that

through a transparent penalty function transformation the network provider can

re-map the utility functions of the uncooperative users to a target range of utility

functions, see Fig 5.1. Further, this re-mapping can be easily implemented at the

edge of the network. Moreover, our framework allows users freedom to choose ar-

bitrary concave utility functions or in other words they can pick any rate control

scheme [53, 56, 62]. This solution presented in this chapter is attractive because it

does not require any upgrades in the routers of the network, they function as usual,

i.e. they may mark, or drop packets using any buffer management scheme (including

Drop-Tail policy). Fig 5.2 shows the model for policing uncooperative users.

The problem of managing uncooperative users has been actively researched

[5, 35, 28, 60, 64]. Router based mechanisms, such as Active Queue Management

(AQM) schemes, schedulers and pricing mechanisms, have been suggested for man-

aging uncooperative users in the network. However, use of AQM schemes, schedulers

require deployment at all (bottleneck) routers in the network, which is not only ex-

pensive but also requires significant network upgrade. Further, almost all AQM

proposals try to implement max-min fair rate distribution on the network which

might not always be the desired fairness criteria for the network provider, especially

if he wants to provide differentiated services. Moreover AQM schemes face config-

uration problems and also lack of deployment of ECN. As a result, they are not

deployed and Internet works on simple Drop Tail queueing and the problems due to

uncooperative flows persist.

The framework presented in this chapter also suggests that management of

uncooperative flows need not be coupled with AQM design and can be simply viewed

as an edge network based policing question. Our mechanisms may also be thought

104

⇒ Drop Tail/RED etc.

Core Network

(No Changes)

Any queue mgmt algorithm

Core Routers

Edge Routers

Edge Based Re-Marking Agent

Users

Free to choose
their congestion
control algorithm

Either marking or dropping

Figure 5.2: Model for managing Uncooperative users at Network Edge

of as a new class of “traffic conditioning” techniques, where the “conditioning” can

be achieved by manipulating either the feedback or packet stream. Moreover, since

the users cannot always be trusted with their rate control schemes, the network has

to enforce this trust and the network edge is the first place this trust is enforced.

Additionally, this function can combined with the other edge based functions like

preventing spams, denial-of-service attacks etc.

We have implemented this framework in NS-2 and evaluated it for various

single and multi-bottleneck topologies, for both marking and dropping congestion

notification policies and also with and without AQM schemes. Our results show that

the framework can “re-map” any uncooperative user to co-operative user for a broad

range of network scenario. Further, the framework is robust and works well even in

the presence of background web-traffic and reverse-path congestion. However, for

our our scheme to perform well, we need to estimate user’s utility function. Towards

this end we also outline and evaluate Linear Least Squares Errors (LLSE) and Non-

Linear LSE (Least Squared Error) methods. Our initial results show that these

methods are easy to implement and work well, even with a small sample set or in

other words they can quickly characterize sources. The chapter also presents results

for simple differentiated services which can be derived from the model. Finally, we

also compared the performance of CHOKe and BLUE in managing un-cooperative

flows.

105

To summarize, the main contributions of this chapter is that it proposes an

edge-based model for managing uncooperative users. The framework is independent

of AQM schemes, i.e., it works with both RED or other AQM scheme and Drop

Tail queues, with both marking and dropping as congestion notification policies.

Further, it maintains state information only about mis-behaving users, at the edge.

The framework can also be thought of as a new class of traffic conditioning where

conditioning can be achieved by manipulating either the ack or packet stream. This

chapter also suggests that management of uncooperative flows need not be coupled

with AQM design. The model presented in this paper can also prevent traffic volume

based denial of service attacks. Service differentiation can also be provided in this

framework by mapping sets of users to different ranges of target utility functions.

Finally, the paper also illustrates a simple estimation technique for characterizing

user’s according to their utility functions.

The rest of the chapter examines the policing of uncooperative sources in

detail. The organization of the chapter is as follows:

• In Section 5.3 we present the network model, assumptions and motivation for

protocol conformance.

• In Section 5.5 we present the edge based re-marking model.

• We present the implementation and simulation setup in Section 5.6 and esti-

mation of utility function is described in Section 5.6.1.

• In Section 5.7 we present the results of the re-marking framework. The model

is evaluated with both marking and dropping for single and multi-bottleneck

topologies, background traffic and reverse path congestion.

• Finally we present the conclusions and limitations of the model in Section 5.9.

5.2 Network Model, Definitions and Assumptions

Consider a user s, who is described with the help of his rate, xs, a utility

function Us and the set of links which he uses, L(s). Let the network be identified

with links l of capacity Cl and the set of users using a link, l, be given by S(l).

106

Further, we will assume that the rates are bounded and that the utility functions

are increasing with rates and strictly concave. Formally, the assumptions are stated

as

• A1: The Utility functions are continuous, strictly concave and increasing in

their arguments. Further the rates are bounded by I: [ms,Ms].

• A2: The curvature of Us are bounded away from 0 on I, i.e. −U
′′

s (xs) ≥ 1/αs >

0.

Then the flow optimization problem can be defined as users trying to maximize

their individual utility functions and the network trying to maximize the resource

allocation subject to link capacity constraints. The problem is formally defined as

[62]:

maximize
∑

s∈S
Us(xs) (5.1)

subject to
∑

s∈S(l)

xs ≤ Cl, ∀l (5.2)

for all xs ≥ 0. The solution to this problem is given by the following update rules

xs(t) = U
′−1
s (

∑

l

pl) (5.3)

pl(t+ 1) = [pl(t) + γ(
∑

s∈S(l)

xs − Cl)]
+ (5.4)

where pl are the dual variables of the problem and can be identified as penalties,

price or link loss probability [62, 56, 53].

From the above update rules it follows that both the rate control algorithm

and the equilibrium rate can be associated with the utility function user chooses

to maximize (equation (5.3, 5.4)). However, given that the same price is being

communicated by the network, the equilibrium rates can be different, but are still

fair within Kelly’s utility function framework. Thus even though the network doesn’t

desire to be perceived unfair, a bias in equilibrium rates can be created by choosing

two different utility functions. We now illustrate this through an example.

107

Set 1

Set 2

Bottleneck Link

Figure 5.3: Example 1: Two competing set of flows through one bottle-
neck.

5.3 Motivation

In this section we will illustrate through examples what we mean by unequal

bandwidth sharing. Specifically, we present two examples illustrating selfish behav-

ior in a single bottleneck topology and a multi-bottleneck topology.

Example 1. Consider a bottleneck link where two set of rate control schemes com-

pete for the bandwidth as shown in figure 5.3. The utility function for Set 1 is given

by Us(xs) = wslog(xs) and that for Set 2 is given by Us(xs) = −wsx
−1
s , where ws

represents the weight assigned to the flow. Let there be 50 sources each in Set 1 and

Set 2. Assume that the link capacity to be 300, weights to be 1, the round-trip time

(RTT) for all sources to be same. Then the throughput seen by each source can be

obtained by solving the following optimization problem:

max
50∑

i=1

logxi −
100∑

j=51

1

xj

(5.5)

subject to
50∑

i=1

xi +
100∑

j=51

xj ≤ 300 (5.6)

and xi, xj ≥ 0 ∀i, j. Solving this problem yields xi = 4.0, i ∈ {1, ..., 50} and xj =

2.0, j ∈ {51, ..., 100}.

Thus even though the network is fair, the equilibrium rate depends on the rate

control algorithm chosen by the sources. This differentiation in the rates is present

because the network conveys the same congestion price to each competing user.

(Henceforth we will call such a network as an oblivious network) and users respond

differently to the congestion penalties. Another reason for rate differentiation can

be attributed to how the users probe the network (or the increase policy). Thus

with oblivious network, different final allocations can primarily be associated with

108

Set 2

Set 3

Bottleneck Link 2 Set 1

Bottleneck Link 1

Figure 5.4: Example 2: Three competing set of flows through two bottle-
necks.

users rate control schemes.

Example 2. Figure 5.4 shows a scenario where there are 50 flows in Set 1 traversing

both the bottlenecks. Let all of them have the same utility function of Us(xs) = −x
−1
s .

Then there are two other sets of flows, Set 2 and 3 which go through bottleneck 1

and 2 respectively. Sets 2 and 3 have 50 flows each and their utility function is

given as Us(xs) = log(xs). We will assume that all the flows have same RTT. Let

the capacity of both the bottleneck links be 300 units. Then the final rates are the

solution to the following optimization problem

max
50∑

i=1

−1

xi

+
100∑

i=51

logxi +
150∑

i=101

logxi (5.7)

subject to
50∑

i=1

xi +
100∑

i=51

xi ≤ 300 (5.8)

50∑

i=1

xi +
150∑

i=101

xi ≤ 300 (5.9)

Solving the above optimization problem we get the equilibrium rate allocation, x =

{1.5, 4.5, 4.5 } for the flows in Set 1, 2 and 3 respectively. However, if all the flows

in Set 1 use a utility function, Us(xs) = log(xs) then on solving the corresponding

optimization problem we would get the final rate allocations for Set 1, 2 and 3 as x

= {2, 4, 4}, respectively.

The above examples illustrate that if a subset of flows on the network change

their utility function then the rate allocations at the bottleneck change. Thus with

oblivious (i.e. which do not differentiate between flows) queue management schemes

at the bottleneck e.g. RED the fairness (or the final rate allocation) in the network

seems to be solely governed by its users rate control scheme. Also, it can be seen from

109

the example 2 that by using a slightly aggressive utility function, log(xs) instead of

−1
xs
, the users of Set 1 can significantly alter their rates. In this case the users in Set

1 increased their equilibrium allocations by 33%.

These examples thus illustrate that in an oblivious network, the fairness cri-

teria is dependent upon the utility function chosen by the user. In other words the

network does not control the rate distribution of the users and does not enforce any

particular fairness criteria. For example, TCP Reno is associated with minimum

potential delay fairness while TCP Vegas with proportional fairness [56], however

when both TCP Reno and Vegas flows are competing for bandwidth, the final rate

allocation is neither minimum potential delay fair nor proportionally fair. This is

also illustrated in the above examples when the flows in Set 1 use the utility func-

tion Us(xs) = −x
−1
s (TCP Reno) while the rest use Us(xs) = log(xs) (TCP Vegas),

which can be verified to be neither minimum potential delay fair nor proportionally

fair. But, if all the competing users deploy the same rate control scheme, e.g. use

Us(xs) = log(xs), the final rate allocation as the bottleneck is indeed proportionally

fair, as desired.

To summarize the arguments of this section, in presence of queue management

schemes which do not differentiate between flows the fairness or the equilibrium rate

allocations depend almost entirely on user’s rate control schemes. Thus there are

clear incentives for selfish behavior. Also the above arguments suggests that fair-

ness might not entirely be network’s prerogative, especially if the network does not

differentiate between flows. Now we outline the re-marking framework, wherein

the network by transforming the congestion penalties can make it appear as if all

the users are maximizing the same utility function. Thus, the network by choos-

ing a utility function can provide the fairness associated with that utility function

throughout the network.

5.4 Impact of Uncooperative Flows on Existing Buffer Man-

agement Algorithms

Though many AQM schemes have been proposed to manage uncooperative

flows their deployment on the Internet has been lacking because of variety of rea-

110

sons: configuration problem, lack of deployment of ECN and requirement of sig-

nificant network upgrade. As a result of these deployment constraints, the present

Internet works on simple Drop-Tail queueing. In this section we evaluate the effect

on uncooperative flows on the buffer management schemes and motivate the need

for our work.

Router Router

x Mbps 20 ms

10 x Mbps 10 x Mbps

5ms 5ms

S1

S2

Sn

D1

D2

Dn

RouterRouter

���������������
�

��
�
��
� ����

20ms
Router

D1

5ms

S1

Dn

S3

D3

D4

Sn

S4

5ms

5ms

5ms

5ms 5ms

5ms

0.8 Mbps

20ms

0.8 Mbps

5ms

8 Mbps

8 Mbps

8 Mbps

8 Mbps

(a) Single Bottleneck Topology (b) Multi-Bottleneck Topology

Figure 5.5: Topologies used in the Simulations.

5.4.1 Uncooperative Flows and AQM Schemes

Many AQM schemes have been proposed to limit the effect of uncoopera-

tive flows. These proposals can be broadly classified into two categories: state-full

schemes like FRED [60] etc and stateless schemes like CHOKe [77], BLUE [28].

State-full schemes also include some partial state schemes like RED-PD [64] where

states for only the mis-behaving sources are stored. Each of these proposals has it’s

own merits; stateless schemes are easy to manage while state-full schemes patrol

uncooperative flows more efficiently but do not scale. However, given the number

of AQM proposals it is beyond the scope of this paper to do an exhaustive perfor-

mance evaluation across all schemes, hence we will only evaluate CHOKe and BLUE

as they represent the stateless alternatives to this work.

We evaluated CHOKe and BLUE on NS-2 on various single and multi bottle-

neck topologies with different degrees of flow multiplexing. However, we will only

present the results for multi-bottleneck scenario. The multi-bottleneck topology is

shown in Fig 5.5 b) and the AQM settings are described in Section 5.6. For this

setup, we define long flow as a flow which traverses both the bottleneck, whereas

the short flows are defined as flows traversing only one bottleneck. Since limita-

111

tions of CHOKe with unresponsive flows has already been outlined in [64], for our

simulations we will evaluate CHOKe (and BLUE) with responsive uncooperative

flows. For our simulations the uncooperative flows were generated using BCCS with

k + l < 1. There was one long and one short flow on each bottleneck and the short

flows were mis-behaving, k = 0, l = 0.5.

Fig 5.6 (a)-(c) plots the throughput of each flow as well as the ideal share

from each simulation while Fig 5.6 (e)-(g) shows the link utilization for the same

simulation. Since we have chosen TCP-Friendliness as our definition of cooperation

the ideal shares correspond the simulation where both the long and short flows were

TCP flows. It can been seen from Fig 5.6 b) that CHOKe marginally improves

the throughput of long flow as compared to that with RED, Fig 5.6 a). But more

importantly this marginal improvement in performance of CHOKe comes at the

expense of link utilization, i.e. the link utilization is almost 30% less with CHOKe

(Fig 5.6 e, the thick curve in this plot is the average utilization). On the other

hand, BLUE does even worse than RED and the long flow is further penalized as

it’s throughput goes down. Moreover BLUE also does not utilize the link efficiently,

Fig 5.6 f), though it’s better than CHOKe. Table 5.1 shows a similar results when

the number of flows on each bottleneck was increased to 10 (5 long and 5 short

flows), the bottleneck capacity increased to 10Mbps and a buffer of 150 packets.

Again it can be seen that marginal improvement in performance of CHOKe comes

at the expense of significantly low link utilization (of 70%). Figure 5.6 d) plots the

results with our framework and shows that our framework can improve fair sharing

of the bottleneck without compromising link utilization.

One of the reasons why CHOKe’s performance suffers is because it has poor

estimate for the aggressiveness of the uncooperative flow. For every incoming packet

to the queue, CHOKe picks a random packet from the queue and matches it’s header.

If the headers match then CHOKe drops both the packets otherwise it probabilisti-

cally enques the incoming packet. Thus if the selfish behavior of the uncooperative

flows can be classified properly then depending upon the aggressiveness CHOKe can

pick n packets from the queue to match the header. Such a method will then greatly

improve the fair sharing of the bottleneck. Our proposal does better precisely be-

112

Type Ideal RED CHOKe BLUE
Long Flow (S1-D1) 132 82 95 63
Short Flow (S3-D3) 340 390 300 430

Table 5.1: Performance of AQM Schemes: Comparison of throughput
(packets/sec) of Different AQM Schemes on a multi-bottleneck topology
with 10 flows on each bottleneck.

cause of this reason. At the edge of the network we measure the loss probability

and rate of the uncooperative users and use it to decide the penalty transformation

(Section 5.5 presents these arguments in detail).

We also ran simulation with partial network upgrade, i.e. setups where CHOKe

was turned on only one bottleneck router while the other bottleneck had Drop Tail

queueing. We found performance of CHOKe in partial upgrade to be similar to that

of CHOKe on both bottlenecks. However, on a single bottleneck topology CHOKe

does remarkably well and the all flows share bandwidth fairly though link utilization

remains poor. In yet another set of simulations we enabled ECN on the network and

also modified CHOKe to mark packets instead of dropping them. Since our sources

were closed loop schemes we expected CHOKe to limit the rates of uncooperative

sources. However, the results were most surprising as CHOKe performed even worse

than RED.

In summary, CHOKe performs remarkably well in patrolling uncooperative

users over single bottleneck scenarios. However, it’s performance is only marginally

better than RED on multi-bottleneck scenarios and it also results in poor link uti-

lization. These wide fluctuations in link utilization suggests oscillations in the bot-

tleneck queue size which in turn cause window (or rate) oscillations. These oscilla-

tions are considered harmful as they increase jitter and make any kind of buffer or

resource provisioning harder. Thus CHOKe and BLUE cannot always patrol unco-

operative flows, especially under multi-bottleneck scenarios and also result in poor

link utilization.

113

5.4.2 Uncooperative Flows and Drop-Tail Queues

Since AQM schemes require significant network upgrade, network providers

have not turned on these proposals on the routers. As a result, the present Internet

still works with simple FIFO queuing. In this section we will present the impact of

uncooperative flows on a network of Drop-Tail queues.

Fig 5.7 shows the shares of a long and short flow on a multi-bottleneck topol-

ogy. The simulation set-up is similar to the one described above with one long

and one short flow. It can be seen from figure 5.7 a) TCP-Friendly is almost shut

out by the mis-behaving flows, who now get all the bandwidth. Not only is the

TCP-Friendly flow forced into multiple timeouts (23 for this case) but these time-

outs occur with very small windows and are often back to back. This result is

also indicative of traffic volume based denial-of-service attacks on cooperative users.

Similar results were obtained with a higher multiplexing (of flows) and with single

bottleneck scenarios and some of them are reported in [17].

To summarize, with DropTail queues uncooperative flows may get significant

share of the bandwidth, almost to the extent of shutting out cooperative flows. This

might also be construed as denial-of-service to the TCP flows [58, 42]. Thus given

that AQM proposals are yet to be deployed on the network and presence of simple

FIFO queueing uncooperative flows not only get more than their fair share but may

also lead to denial-of-service to conformant flows. As such we are presented with the

following question: What are the appropriate alternate architectural responses for

managing a network of un-cooperative users, such that it requires minimal network

support ? Moreover, as ECN and AQMs are eventually deployed on the network, do

these solutions still work ? In the following section we present our framework which

addresses these questions.

114

T
hr

ou
gh

pu
t (

in
 p

ac
ke

ts
/s

ec
)

Number of Round Trip Times

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500

Short Flow (Ideal Share)
Long Flow (Ideal Share)

Mis−Behaving Long Flow
Mis−Behaving Short Flow

3000

%
 L

in
k

U
ti

li
za

ti
on

Time in Seconds

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

(a) RED: Throughput (e) RED: Link Utilization

T
hr

ou
gh

pu
t (

in
 p

ac
ke

ts
/s

ec
)

Number of Round Trip Times

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500

Short Flow (Ideal Share)
Long Flow (Ideal Share)

3000

Mis−Behaving Long Flow
Mis−Behaving Short Flow

%
 L

in
k

U
ti

li
za

ti
on

Time in seconds

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

(b) CHOKe: Throughput (f) CHOKe: Link Utilization

Number of Round Trip Times

T
hr

ou
gh

pu
t (

in
 p

ac
ke

ts
/s

ec
)

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000

Long Flow (Ideal Share)

Mis−Behaving Long Flow
Mis−Behaving Short Flow

Short Flow (Ideal Share)

Number of Seconds

%
 L

in
k

U
ti

li
za

ti
on

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

(c) BLUE: Throughput (g) BLUE: Link Utilization

T
hr

ou
gh

pu
t (

in
 p

ac
ke

ts
/s

ec
)

Number of Round Trip Times

0

50

100

150

200

0 500 1000 1500 2000 2500 3000

Short Flow (Ideal Share)
Long Flow (Ideal Share)

Mis−Behaving Short Flow
Mis−Behaving Long Flow

Time in Seconds

%
 L

in
k

U
til

iz
at

io
n

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

(c) Our Proposal: Throughput (g) Our Proposal: Link Utilization

Figure 5.6: Multi Bottleneck: Throughput of long TCP-Friendly flows
and short uncooperative flows (k=0,l=0.5) flows with different buffer
management schemes.

115

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Mis−Behaving Flows

TCP−Friendly Flow

(a) Ideal Share

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 P
ac

ke
ts/

Se
c

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Mis−Behaving Flows

TCP−Friendly Flow

(b) Impact of Uncooperative Flow

Number of Round Trip Times

Th
ro

ug
pu

t i
n

pa
ck

et
s/

se
c

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Mis−Behaving Flow

TCP−Friendly Flow

(c) With our Proposal

Figure 5.7: Performance of Drop-Tail Queueing: Throughputs (in
pkts/sec) for two competing flows on a multi-bottleneck setup, long flow
is TCP Friendly while the short flows are uncooperative.

116

5.5 Re-marking Framework for Managing Non-Conformant

Users

From the discussion in the previous section it follows that sources can choose

rate control schemes which yield higher rate allocations. Another important point

to note is that even though the sources are cooperative (i.e. they react to congestion

indication) they still can be unfair. As such it is imperative to decouple the fairness

criteria from the user’s rate control scheme and let the network decide the fairness.

That way the network not only has the flexibility of being fair, but more importantly

it can choose the fairness criteria it wants to provide. Now we shall describe the

re-marking framework to manage non-conformant users.

Lets assume that the users are maximizing the utility function Us and that

the network decides that the final equilibrium rate allocation should be, as if every

user chose to maximize a utility function of Uobj. Then the rate updation algorithm

(and thus equilibrium rates) of the users is given by equations (5.3,5.4). Now, if we

communicate a link price f(pl), instead of pl, then the user-rate updation algorithm

will be

xs(t) = U
′−1
s (

∑

l∈L(s)

f(pl))

Further, if we choose f(pl) : f(pl) ≥ 0, ∀pl, f(0) = 0 and the following condition

holds true
∑

l∈L(s)

f(pl) = U
′

s(U
′−1
obj (

∑

l∈L(s)

pl)) = g(
∑

l∈L(s)

pl) (5.10)

then the rate updation algorithm algorithm becomes

xs = U
′−1
s (

∑

l∈L(s)

f(pl)) (5.11)

= U
′−1
s [U

′

s(U
′−1
obj (p

s))] (5.12)

= U
′−1
obj (p

s) (5.13)

where ps =
∑

l∈L(s) pl. From the above equation it is easy to see that by communi-

cating a different price we can transform the user’s utility function from Us(x) to

117

Uobj(x). This transformation can be explained by the following modified dual:

D(p) = min
︸ ︷︷ ︸

p≥0

∑

s∈S
Us(xs)−

∑

l

f(pl)(
∑

s∈S(l)

xs − Cl) (5.14)

where f(pl) is defined by equation 5.10. Next we will show that a unique solution

exists for the modified dual, but before that we prove the following proposition.

Proposition 1. Given the non-negativity constraint on xs and pl and strictly con-

cave utility functions Us and Uobj, the function g(
∑

l∈S(l) pl), f(pl) as defined in

(5.10) are non-negative and strictly increasing in their argument.

Proof. Define ps =
∑

l∈S(l) pl. Note g(p
s) = U

′

s(U
′−1
obj (p

s)). Recognizing that U
′−1
obj (p

s)

is just xs from equation (4), we can rewrite g(ps) as g(ps) = U
′

s(xs(p
s)). Since Us(xs)

is increasing and strictly concave in its arguments hence U
′

s(xs) ≥ 0. Hence, g(p
s)

is greater than 0.

Let’s define F (ps) = U
′

obj(p
s) and it’s inverse as H(ps) = F−1(ps). Therefore,

H(F (ps)) = ps.

Now differentiating both sides with respect to ps we get,

H
′

(F (ps)) · F
′

(ps) = 1 (5.15)

or (U
′−1
obj ())

′

=
1

U
′′

obj(p
s)
. (5.16)

Now, differentiating g(ps) with respect to ps we get

g
′

(ps) = U
′′

s (U
′−1
obj (p

s)).(U
′−1
obj (p

s))
′

= U
′′

s (·)(U
′−1
obj (·))

′

. (5.17)

Since Us and Uobj are strictly concave therefore U
′′

s (), U
′′

obj() < 0 and from equation

(5.16) we conclude that g
′

(ps) is greater than 0. Combining g
′

(ps) > 0 and the

definition of f(pl) (equation 5.10) we conclude f
′

(pl) > 0.

Theorem 1. The modified dual represents a non-linear optimization problem where

the objective function is as if every user is maximizing a utility function of Uobj

118

subject to the capacity constraints. Moreover, if the objective utility function is

strictly concave then a unique maximizer exists.

Proof. The transformation or the re-mapping function, U ′s(U
′−1
obj (p)), can also be

explained as the solution to the following set of equations:

∑

s∈S(l)

xs ≤ Cl, ∀l (5.18)

pl(
∑

s∈S(l)

xs − Cl) = 0 (5.19)

U
′

s(xs) = g(
∑

l∈L(s)

pl) (5.20)

p, x ≥ 0 (5.21)

Then using equation 5.10 we can rewrite equation 5.20 as

U
′

obj(xs) =
∑

l∈L(s)

pl (5.22)

Then equations (5.18-5.22) are the KKT conditions for the following strictly concave

maximization problem

max
︸ ︷︷ ︸

x

∑

s∈S Uobj(xs) (5.23)

∑

s∈S(l)

xs ≤ Cl, ∀l (5.24)

x ≥ 0 (5.25)

Then using assumption A1 we conclude that the objective function (equation 5.23)

is strictly concave and hence an unique solution exists.

Then, using the KKT conditions and the gradient projection method we get

the following rate and price updation rules

xs = U
′−1
s (

∑

l

f(pl)) (5.26)

119

pl(t+ 1) = [pl(t) + γ
∂

∂pl
f(pl)(

∑

s∈S(l)

xs − Cl)]
+ (5.27)

The above formulation is however difficult to implement because it requires per-flow

queuing and that too inside the network. Since upgrades in the network are hard

to achieve consider the following update rule.

pl(t+ 1) = [pl(t) + γ(
∑

s∈S(l)

xs − Cl)]
+ (5.28)

xs(t+ 1) = U
′−1
s (

∑

l

f(pl(t))) (5.29)

Next we establish that the update rule presented above converges to the optimal

point. But before that we prove that D(p) is lower bounded, continuously differen-

tiable and convex and ∇D(p) is Lipschitz continuous.

Proposition 2. Under Assumptions A1 ∇D(p) is Lipschitz.

Proof. Define by A the incidence matrix where Als is 1 if source s uses link l and 0

otherwise. Further let the total number of links used by any source be bounded by

L and the total number of sources by S. Then after some simplification we have

∂x(p)

∂p
= diag

(

1

U
′′

obj(xs(p))

)

AT (5.30)

Also from equation (5.14) we get ∇D = f
′

(p)(C−Ax). Differentiating it again with

respect to pl we get

∇2D = f
′′

(p)(C − Ax) + f
′

(p)(−A
∂x(p)

∂p
) (5.31)

After some simplification f
′′

(p) can be calculated as

f
′′

(p) =
U3′

s (x(p))

α2
s

+
αs

U3′
obj(x(p))

(5.32)

Since the utility functions are strictly increasing in their arguments hence they will

be rightly skewed, i.e. U 3′

s is bounded away from 0. Further since the rate are

bounded by I (Assumption A1) the second derivative of f(p) will be bounded, let

120

us say that this bound is F. After some simplification the bound on f
′

(p)(−A∂x(p)
∂p

)

can be calculated as βLS (for some β > 0 and β function of αs(> 0)). Then using

the capacity constraint we conclude that ∇D will be Lipschitz with the following

bound

‖∇D(q)−∇D(p)‖ ≤ (FC + βLS) ‖q − p‖

Proposition 3. Under assumption A1 D(p) is lower bounded, continuously differ-

entiable and strictly convex.

Proof. By Assumption (A1), Us is bounded and continuously differentiable thus

U
′−1
s (and f(p)) exist and is also bounded and continuously differentiable. There-

fore, D(p), as defined in equation (5.14) is also lower bounded and continuously

differentiable.

Further from the assumption A1 (strictly increasing and strictly concave utility

function) and equation (5) f
′′

(p) (as defined in equation (5.32)) will be greater than

0. Using this knowledge and the capacity constraint the first term in equation (5.31)

is always greater than or equal to 0. The second term of equation (5.31) is

f
′

(p)(−A diag

(

1

U
′′

obj(xs(p))

)

AT)

also strictly positive because from Proposition 1, f
′

(p) is always greater than 0, the

incidence matrix is a 0-1 matrix and the utility functions are strictly concave. Thus

we can say that equation (5.31) is greater than 0. Or ∇2D(p) ≥ 0 and D(p) is

strictly convex.

Proposition 4. Given the non-negativity constraint on xs and pl and strictly con-

cave utility functions Us and Uobj, the new update algorithm as defined in equations

(5.28, 5.29) converges to the optimal point.

Proof. Using the equation 5.14 and differentiating it with respect to time we get

d

dt
D(p) =

d

dpl



f(pl)[Cl −
∑

s∈S(l)

xs]




d

dt
pl

121

d

dt
pl = γ(

∑

s∈S(l)

xs − Cl), γ > 0

Thus,
d

dt
D(p) = −γ

d

dpl
f(pl)[Cl −

∑

s∈S(l)

xs]
2

Since, f
′

(pl) > 0 and γ > 0 we can establish that D(pl(t)) is a decreasing function

in t. Also since D is strictly convex (see Proposition 3), there exists a minima, and

d
dt
D(p(t)) ≤ 0 implies convergence to the optimal point.

Theorem 2. Assume that utility functions, Us, are increasing, strictly concave and

continuously differentiable, and their curvature is bounded away from 0. Then start-

ing from any initial rates in the interior of X and prices p(0) ≥ 0, every accumula-

tion point (x∗, p∗) of the sequence (x(t), p(t)) generated by the above algorithm and

equations (5.28,5.29) is primal dual optimal.

Proof. By Propositions 3 and 4 the dual objective function D(p) is convex, lower

bounded and ∇D(p) is Lipschitz, then any accumulation point p∗ of the sequence

{p(t)} generated by the gradient projection algorithm is dual optimal [11]. Moreover,

the constraints are linear and the primal problem is strictly concave hence there is

no duality gap. Therefore dual optimal is also primal optimal.

Thus this update rule minimizes the dual function and converges asymptoti-

cally. The above update rule also does not change the core network, as we retain

the price update rule as proposed in [62]. Further, the price being communicated

to the user can be updated at the edge. We now state the algorithm for the edge

re-marker as

Edge Marker’s Algorithm:

• For each source, receive from the network the total price for the source’s traffic

as ps(t) =
∑

l∈S(l) pl(t).

122

• Recalculate (or Re-mark) the new price for the source as

psnew = g(
∑

l∈S(l)

pl(t)).

• Communicate this re-marked price to the source.

The update algorithm for the network and the source are given by equation (5.28)

and (5.29) respectively.

Finally, we end this section with the following remark on convergence of the

algorithm.

Proposition 5. The rate of convergence of the algorithm is given by the smallest

eigen vector of ABAt where A is the routing matrix and B is diag(U
′−1
obj (p

∗))′ and p∗

is equilibrium price.

Proof. In Theorem 1 we showed that by our penalty transformation the original

optimization problem was translated into as if all the users were maximizing a

utility function of Uobj and the update algorithm can be written as

∂p(t)

∂t
= −γ(Ax−C) (5.33)

x = Uobj
′−1(ptA) (5.34)

where p is the vector of dual variables or price in our framework. Since the objective

function is strictly concave a unique maximizer exists, let this maximizer be called

p∗. Let p(t) = p∗ + ξ(t). Then linearizing the system of equations (5.33,5.34) about

p∗ and after some simplification we get

∂(p∗ + ξ(t))

∂t
= −γ

(

AUobj
′−1((p∗ + ξ(t))tA)−C

)

(5.35)

∂ξ(t)

∂t
= −γABAt (5.36)

B = diag(Uobj
′−1(p∗))′ (5.37)

Thus the rate of convergence of the algorithm is given by the smallest eigen vector

123

of ABAt.

5.6 Implementation

We implemented the edge based re-marker in the NS (Network Simulator). The

edge based re-marker was tested for two scenarios, one when network marks packets

and second when it drops packets. For the case where the network marks packets,

the edge based re-marker was placed on the reverse path (i.e. on the reverse access

link of the user) and re-marked the ACKs. However when the network is dropping

packets, the edge based re-marker was placed on the forward path at the network

egress and dropped packet. Also, in either cases the edge re-marker estimated the

loss rate for each flow and subsequently used it to re-mark or drop acks or packets.

We also assumed that we know the utility functions of all the flows. However, later

we detail a procedure to estimate the utility functions of users at network edges.

For our simulation we used the congestion control and loss recovery mecha-

nisms of TCP New Reno. Also, we disabled the delayed acknowledgments option.

In our simulations we have assumed TCP Friendliness as the conformance criteria.

Thus all rate control schemes whose utility function is given by Us =
−1
x

are called

conformant (or compliant or TCP Friendly). For simulating mis-behaving (or self-

ish) flows we used the Binomial Congestion Control scheme (BCCS) proposed in

[9]. As explained in Chapter 4 the BCCS is described by the window increase and

decrease parameters: α and β respectively and the window increase and decrease

scaling factors, k and l respectively. For our simulations, we fixed the values of

α, β as 1 and 0.5 respectively. Also, as shown in Chapter 4 the utility function for

Binomial schemes is defined as U(x) ∝ −1
xn
, where k+l=n. Thus conformant or TCP

Friendly flows are described by k+l = 1. Since the network allocates more resources

to user’s whose marginal utility are higher, non-conformant or misbehaving flows

can be generated by choosing k + l < 1. Henceforth, we will use the k and l values

to identify mis-behaving flows.

Figure 5.5(a) shows the single bottleneck topology used in the simulations. The

access links were configured at a rate 10 times greater than that of the bottleneck

link. All the links use Random Early Drop (RED) queues with min thresh and max

124

thresh set as buffer/3 and 0.8*buffer respectively, where buffer is the total bottleneck

buffer length. Further, the weight was set as 0.002 and the marking probability for

RED was set to 0.1. The RTT was 60ms and the packet size 500B.

Figure 5.5(b) shows a multi-bottleneck topology used in the simulation. The

bottleneck buffer was set to 25 packets. We also evaluated our framework for another

multi-bottleneck setup of bottleneck link of 10 Mbps, access link of 100 Mbps and

a buffer of 250 packets. The link delays were kept the same. RED minimum and

maximum threshold settings were similar to those of single bottleneck. Also for all

the simulation setups (single or multi-bottleneck) the access link rate are always 10

times greater than that of the bottleneck link.

The maximum advertised window is set sufficiently high so that it does not

constrain the actual window. The simulation time for each setup was 1500 seconds.

We plot the throughput of competing flows in packets/sec, averaged over 20 round-

trip times. We assumed that all the flows have infinite data to transfer.

5.6.1 Estimating the Utility Function

The uncooperative congestion control framework works well if the network

knows the utility function of the non-cooperative flows. Thus estimating the utility

function parameters is of paramount importance. In this section we briefly describe

ways to estimate the utility function.

For the results presented in this chapter we have chosen BCCS schemes as

non-cooperative users. These schemes can generally be described by their exponent,

n, by the following relationship

U(x) ∝
−1

xn
(5.38)

Thus, for describing these class of selfish flows we just need to estimate the param-

eter, n. For that purposes consider the following relationship between the rate and

the loss probability

U
′

s(xs) ∝ p (5.39)

p ∝
n

xn+1
(5.40)

log(p) = log(nK)− (n+ 1)log(x) (5.41)

125

where K is some constant. It is interesting to note that estimating the parameter n is

nothing but a regression analysis on the equation (5.41). But for those purposes we

would need to have a measure of the throughput x and the loss probability p. These

can be calculated by either sampling the packet stream (at the egress) or the ack-

stream. If processing the packet-stream we could just count the number of packets

sent and lost in a specified time. Using this time-series a Linear-Least Squared

Errors (LLSE) method could be applied to estimate n. In this thesis we employed

LLSE to estimate the parameter n and present the results in Section results.

For a more general utility function as defined in equation (4.18) we could

employ the Non-Linear Least Squared techniques to detect a power-series in x and

n. We are currently working on this estimation problem.

However, for all these estimation to work we would need to identify the non-

cooperative users first. We leave this problem as that of future work, but would

like to point out to some schemes described in SRED, Stochastic Fair Blue and

RED-PD. But irrespective of how we detect these selfish users, we will have to

store information (or state) about them at the routers. However, since these will

be malicious users the amount of state would not be large. Moreover, it is further

constrained by the fact that this state information is kept only at the edge routers

and nothing needs to be stored in the core. Also, since we are trying to police

selfish flows we are inadvertently doing per-flow management where per-flow is the

total number of selfish flows in the Internet. Stateless schemes like CHOKe which

police the selfish flows enforce a max-min fairness criteria and therefore may end up

differentiating flows on RTTs and also in a multi-bottleneck scenario do not enforce

the protocol compliance criteria (like TCP Friendliness).

5.6.2 Estimating the Loss Rate

The scheme proposed in this thesis is sensitive to loss-estimation. If we under-

estimate the loss rate, then we would be not penalizing the selfish user enough and

consequently there will be unfair rate allocation in the network. On the other hand

over-estimation of losses leads to the scenario where selfish user’s are over penalized

and get a lesser share of the bandwidth, even less than the conformant users.

126

In [40] the authors propose two methods for estimating losses: Exponential

Weighted Moving Average (EWMA) and the Weighted Average Loss Indication

(WALI). In the EWMA proposal the losses are averaged infinitely over time while

in WALI the authors average a fixed window of loss event with higher weights to

the current loss events. However, there are no clear guidelines on how to configure

EWMA and WALI weights; the values assigned are obtained by trials and some

intuition regarding the importance of recent loss events. End-to-end losses in the

Internet have been examined using real traffic traces in [98]. Again, the modeling

aspect is limited to comparing a fixed window averaging scheme to an EWMA

scheme, no attempt is made to find weights for past samples or adapt these weights.

The traffic process (not the loss process) has been modeled using an AR model in

[100]. The authors in [100] make no attempt to analyze the loss process and restrict

the paper to fitting an AR model to traffic traces. In [81] the propose a linear

prediction formulation to predict these loss rates. In order to adapt the loss rates

to the samples as they arrive, the author has suggested to use the Recursive Least

Squares algorithm.

For estimating the losses we have used EWMA and the WALI methods of

Equation-Based Rate Control algorithm [40]. We updated these loss indications

every RTT and we have assumed that the network knows the RTT of the flows. We

present the results for EWMA based loss-estimator. Similar results were obtained

with WALI based estimator. For EWMA based system we gave 60% weight to the

history, while with the WALI based estimator we measured samples over 8 windows

to estimate losses.

5.7 Simulation Results

In the following sections we present our simulation results. Our simulation

objectives can be stated as

• Validate the model with both single as well as multi-bottleneck topologies with

varying degrees of (flow) multiplexing.

• Examine the robustness of the model in presence of background (web) traffic

127

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200 1400

TCP Friendly (Remarked)

TCP Friendly (No Remarking)
Mis-Behaving Flow (No Remarking)

Mis-Behaving Flow (Remarked)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

TCP Friendly Flow (No Remarking)
Mis-Behaving Flow (No Remarking)

TCP Friendly Flow (Remarked)
Mis-Behaving Flow (Remarked)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

(a) k=0, l=0.5 (b) k=0, l=0.8

Figure 5.8: Single Bottleneck (Marking): Throughputs (in pkts/sec)
for two competing flows, one is TCP Friendly while the other is non-
conformant with and without Re-Marking.

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

TCP Friendly Flows (7 in all)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

Mis-Behaving Flows (3 in all)

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Mis-Behaving Flows (3 in all)

TCP Friendly Flows (7 in all)

(a) No Re-Marking (b) Re-Marking the non-conformant Flow

Figure 5.9: Single Bottleneck (Marking): Throughputs (in pkts/sec) for
ten competing flows, where seven flows are TCP Friendly while three are
non-conformant (k=0, l=0.5) with and without Re-Marking.

and reverse path congestion.

• Verify if the model works with dropping as a congestion notification mecha-

nism. Specifically, if it can work with a network of Droptail queues only.

• Substantiate and test how to estimate utility functions.

• Test the sensitivity of the model with respect to inaccurate RTT and utility

function estimates.

The result section is organized into two separate sub-sections to evaluate the

framework with both marking and dropping. In Section 5.7.1 we present the results

of edge-based re-marking framework. For the results in this section, the penalty

128

0

20

40

60

80

100

0 200 400 600 800 1000 1200

Mis-Behaving Flow (k=0,l=0.5)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

TCP Friendly Flow

Mis-Behaving Flow (k=0,l=0.2)

0

20

40

60

80

100

0 200 400 600 800 1000 1200

Mis-Behaving Flow (k=0,l=0.5)
TCP Friendly Flow

Mis-Behaving Flow (k=0,l=0.2)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

(a) No Re-Marking (b) Re-Marking the non-conformant Flows

Figure 5.10: Single Bottleneck (Marking): Throughputs (in pkts/sec) for
three competing flows, where one flow is TCP Friendly while the other
two are non-conformant with (k=0, l=0.5) and (k=0, l=0.2) resp., with
and without Re-Marking.

transformation agents were placed on ingress node in the reverse path and re-marked

the Acks. In order to evaluate the network where ECN is not enabled and dropping

is used to convey congestion indication, we placed the penalty transformation at the

egress nodes on the forward path. These agents conveyed appropriate penalties by

dropping packets from the malicious flows. The results with dropping are reported

in Section 5.7.2.

5.7.1 Evaluation of Edge Based Re-Marking Framework on an ECN

Enabled Network

In this section we present the results of managing selfish behavior on an ECN

enabled network. We assume that the network operates with RED queues and their

parameter setting are detailed in Section 5.6. We evaluate the framework for both

single and multi-bottleneck scenarios, , background traffic and with reverse path

congestion.

5.7.1.1 Single Bottleneck

In figure 5.8 a) we present the throughputs of two competing flows on a single

bottleneck of 0.8 Mbps with a buffer of 25 packets. Here, one of the flows is TCP,

while the other is non-conformant and is defined by k = 0 and l = 0.5. As the figure

5.8 a) shows, when we do not re-mark the non-conformant flow, it garners more

129

bandwidth than the TCP friendly flow. However, re-marking the non-conformant

flow makes the two flows to share the bandwidth equitably. Figure 5.8 b) show

similar results where the non-conformant user is defined by k = 0, l = 0.8.

Figure 5.9 shows the results for a set of 10 competing flows on a 10Mbps

bottleneck and 150 packet buffer. The flow set comprises of 7 TCP Friendly flows

while the remaining 3 flows are non-conformant and are defined by k = 0 and l = 0.5.

The bandwidth is shared equitably in presence of re-marking, however in absence

of re-marking mis-behaving flows easily beat the TCP Friendly flows.

We also evaluated our scheme for a scenarios where every flow has a different

utility function. Figure 5.10 shows the result for one such setup for a bottleneck

bandwidth of 0.8 Mbps. In the first simulation setup we have three flows, one TCP-

Friendly flow and the others are defined as (k=0, l=0.5) and (k=0, l=0.2). We can

see from the figure 5.10 that in the absence of re-marking, non-conformant flows

beat the TCP friendly flow; however when we re-mark the non-conformant flows the

bandwidth is shared fairly. These simulation results also illustrates that the edge

based re-marking framework can map the utility functions of the selfish flows to

that of TCP, thus making them appear TCP Friendly.

5.7.1.2 Multi Bottleneck Topology

In this section we present the results for multi-bottleneck topology (figure 5.5

b)). We define long flow as a flow which traverses both the bottleneck, whereas the

short flows are defined as flows traversing only one bottleneck. In the first simulation

setup, where there were 2 flows on each bottleneck, (0.8Mbps, 25 packet buffer), we

first measured the optimal rate allocations when all the flows (long and short) are

TCP friendly and plot them in 5.11 a). As expected, the short flows grab more

share of the bottleneck because they have smaller RTTs and go through a single

bottleneck as compared to the long flow. We then changed the short flows to be

non-conformant (k=0, l=0.5) and plot the result in figure 5.11 b). The effect of mis-

behavior is more pronounced in this case as the non-conformant flows are trying to

shut out the TCP friendly flow. However, when we used our model to re-mark the

non-conformant flows we see that (figure 5.11 c)) the flows now share the bandwidth

130

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000 14000

Number of Round Trup Times

TCP Friendly Long Flow

Th
ro

ug
hp

ut
 in

 P
ac

ke
ts/

se
c

TCP Friendly Short Flow 2
TCP Friendly Short Flow 1

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

TCP Friendly Short Flows (10 in all)

TCP Friendly Long Flows (5 in all)

Number of Round Trip Times

(a) 2 Flows: Every Flow is TCP Friendly (d) 10 Flows: Every Flow is TCP Friendly
Ideal bottleneck Shares Ideal bottleneck Shares

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

TCP Friendly Long Flow

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Mis-Behaving Short Flow 2
Mis-Behaving Short Flow 1

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

Number of Round Trip Times
Th

ro
ug

hp
ut

 in
 p

ac
ke

ts/
se

c

TCP Friendly Long Flows (5 in all)

Mis-Behaving Short Flows (10 in all)

(b) Short Flows are Non-Conformant: (e) Short Flows are Non-Conformant:
No Re-Marking No Re-Marking

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

TCP Friendly Long Flow

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

Mis-Behaving Short Flow 2

Mis-Behaving Short Flow 1

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

TCP Friendly Long Flow (5 in all)
Mis-Behaving Short Flows (10 in all)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

(c) Short Flows are Non-Conformant, (f) Short Flows are Non-Conformant,
Re-Marking Re-Marking

Figure 5.11: Multi Bottleneck (Marking): Throughputs for 2, 10 compet-
ing flows.

fairly. More importantly, we see that the result in figure 5.11 c) is very similar to

5.11 a), i.e., we have successfully mapped the utility function of the non-cooperative

flows. We also simulated the scenario where the long flows were non-conformant

and short flows TCP-Friendly and similar results were obtained.

In figures 5.11 d), e) and f) we plot the results for a multi-bottleneck topology

(10Mbps, 250 packets buffer) where on each bottleneck there are 5 TCP Friendly

131

flows and 5 non-conformant flows (k=0, l=0.5). Figure 5.11 (d) plots the throughput

of long and short flows, if all of them were TCP Friendly. As expected the longer

flows get a smaller share of the bottleneck than the shorter flows. In Figure 5.11 (e),

we changed the shorter flows to act as non-conformant flows and plot the throughput,

and it can be seen that the non-conformant shorter flows conveniently beat down the

TCP friendly flows. However, in presence of re-marking, (Figure 5.11 (f)) the non-

conformant flows are conveyed higher price by the edge-re-marker and thereupon

share the bottleneck more favorably with the longer flows. Once again, we see that

re-marking tends to achieve the same performance as those as if all the flows were

TCP Friendly.

TCP Friendly Flow

TCP Friendly Flow (Remaked)
Mis-Behaving Flow (Remarked)

Mis-Behaving Flow (No Remarking)

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

TCP Friendly Flow (No Remarking)

TCP Friendly Flow (Remarked)
Mis-Behaving Flow (Remarked)

Mis-Behaving Flow (No Remarking)

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

(a) 15% noise (b) 25% noise

Figure 5.12: Background Traffic (Marking): Throughputs (in pkts/sec)
for two competing flows in a single bottleneck topology, where one flow
is TCP Friendly while the other is Non-Conformant with (k=0, l=0.5).
Also there is web-traffic in the background.

5.7.1.3 Background Traffic

In this section we evaluate the framework in presence of noise-like mice traffic.

HTTP sources were added to the persistent non-conformant and conformant sources.

Each http page sends a single packet request to the destination, which then replies

with a file of size which was exponentially distributed with 12 1Kb packets. After a

source completes this transfer it waits for a random time, which was exponentially

distributed with a mean of 1 second and then repeats the process.

Two sets of simulations were conducted for the single bottleneck case. In the

first simulation, there were two persistent flows (one non-conformant and the other

132

Number of Round Trip Times

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400

Mis-Behaving Flows (3 in all)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

TCP Friendly Flows (7 in all)

Mis-Behaving Flows (3 in all)

TCP Friendly Flows (7 in all)

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

(a) No Re-Marking (b) Re-Marking

Figure 5.13: Background Traffic (Marking): Throughputs (in pkts/sec)
for 10 competing flows in a single bottleneck topology, where 7 flows are
TCP Friendly while the other 3 are Non-Conformant with (k=0, l=0.5)
with 20% noise.

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

TCP Friendly Flows (7 in all)

Mis-Behaving Flows (3 in all)

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

TCP Friendly Flows (7 in all)

Mis-Behaving Flows (3 in all)

(a) No Re-Marking (b) Re-Marking

Figure 5.14: Background Traffic (Marking):Throughputs (in pkts/sec) for
10 competing flows in a single bottleneck topology, where 7 flows are TCP
Friendly while the other 3 are Non-Conformant with (k=0, l=0.5) with
65% noise.

TCP Friendly) competing for a bottleneck of 0.8 Mbps. 2 and 4 http sources were

added to generate 15% and 25% noise (i.e. the http sources occupied 15% and

25% of the bottleneck bandwidth). The results for this simulation are plotted in

figure 5.12. Again, it can be seen that the re-marking works well in the presence

of noise and the bottleneck is shared equitably. In another simulation we increased

the number of competing persistent flows to 10 and of these, 7 flows were TCP

Friendly while the remaining 3 where non-conformant (k=0,l=0.5). The bottleneck

bandwidth for this simulation was 10Mbps and a buffer of size 150 packets. Also

in this setup we increased the noise sufficiently high to validate the robustness of

133

the scheme in presence of many flows and noise. Figures 5.13 and 5.14 plot the

results for the cases where the noise traffic is 20% (25 http sources) and 65% (80

http sources) respectively. Figure 5.14 also shows the robustness of the scheme. The

re-marker manages to efficiently patrol non-conformant users even when the noise

is the network is sufficiently high, (65% noise).

5.7.1.4 Cross Traffic

In this section we present the results for our penalty function transformer

when two way traffic is present. We evaluate this scenario with the multi-bottleneck

topology, where we have 5 TCP Friendly long flows and 5 non-conformant (k=0,

l=0.5) short flows on each bottleneck. Additionally, on the reverse path, there are 5

TCP Reno flows on each bottleneck. The bottleneck bandwidth for this simulation

was 10Mbps and a buffer of size 250 packets. Re-Marking, once again achieves

equitable sharing of the bottleneck (as shown in Figures 5.15 (a) and (b)).

0

100

200

300

400

500

600

0 200 400 600 800 1000

TCP Friendly Long Flows (5 in all)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Mis-Behaving Short Flows (10 in all)

0

100

200

300

400

500

600

0 200 400 600 800 1000

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Mis-Behaving Short Flows (10 in all)

TCP Friendly Long Flows (5 in all)

(a) No Re-Marking (b) With Re-Marking

Figure 5.15: Cross Traffic (Marking): Throughputs (in pkts/sec) for 10
competing flows in a multi-bottleneck topology, where on each bottleneck
there are 5 TCP Friendly flows and 5 Non-Conformant with (k=0, l=0.5),
with two-way traffic.

5.7.2 Evaluation of Edge Based Re-Marking Framework on a Non ECN

Capable Network

Up till now we have discussed the non-conformant framework with re-marking,

i.e., we have assumed that ECN support is available in the network. In this section,

we look at the alternative scenario, when drops are used to convey congestion penal-

134

ties. We present the results for two cases, when one the network operates with Drop

Tail queues only and then the second where the network works with RED queues.

For RED parameter settings the reader is referred to Section 5.6. Again, we test

the framework for single and multi-bottleneck scenarios and cross traffic and reverse

path congestion.

5.7.2.1 Single Bottleneck

We present the result with a single bottleneck of 0.8Mbps and access links of

8Mbps for 2 competing flows. One of the flows is TCP-Friendly while the other

is misbehaving flow (with k=0, l=0.5). Both the flows have same RTT of 60ms.

For such a scenario we sampled the packet-stream at the egress router and also

placed the re-marker there. The re-marker in this case conveyed the transformed

penalties to the mis-behaving flows by dropping its packets. Figure 5.16 a) and b)

shows the results of with and without the re-marking framework with Drop Tail and

RED queues respectively. It can be seen from the figure 5.16 a) that in a network

of Drop Tail queues and absence of re-marking the non-conformant flow gets most

of the bottleneck share. Moreover it beats the TCP-Friendly flow comprehensively

as against the same simulation setup with RED queues (as shown in figure 5.16

b). However, when we start re-marking the misbehaving flows this bias against the

TCP-Friendly is reversed. But, it can be seen from the figure 5.16 a) that now

TCP-Friendly flow gets a better share of the bottleneck. This is because unlike

marking, dropping is a stricter means to convey congestion notification as it can

lead to timeouts. As such the misbehaving flow suffers.

5.7.2.2 Multi-Bottleneck

Figure 5.5 b) show a multi-bottleneck topology with a TCP-Friendly flow

traversing both the bottlenecks while one short mis-behaving flow (k=0, l=0.5),

each going through one bottleneck. It can be seen from figure 5.17 a) TCP-Friendly

is almost shut out by the mis-behaving flows, who now get all the bandwidth. Not

only is the TCP-Friendly flow is forced into multiple timeouts (23 for this case) but

these timeouts occur with very small windows and are often back to back. Similar

results were obtained with a higher multiplexing (of flows) but are not reported here.

135

0

50

100

150

200

0 150 300 450 600 750 900 1050 1200

TCP-Friendly Flow (No Remarking)
Misbehaving Flow (No Remarking)

TCP-Friendly Flow (With Remarking)
Misbehaving Flow (With Remarking)

Number of Roundtrip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200 1400

TCP Friendly (Remarked)

TCP Friendly (No Remarking)
Mis-Behaving Flow (No Remarking)

Mis-Behaving Flow (Remarked)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

(a): DropTail Queues (b): RED Gateways

Figure 5.16: Single Bottleneck (Dropping): Throughputs (in pkts/sec)
for 2 competing flows on a network of DropTail and RED queues with
and without Re-Marking. One flow is TCP Friendly while the other is
Non-Conformant (k=0,l=0.5).

In summary, with DropTail queues mis-behaving flows may get significant share of

the bandwidth, almost to the extent of shutting out conformant flows.

Figure 5.17 b) plots the throughput when instead of DropTail queues we used

RED queues at the bottleneck. (The reader is referred to Section 5.6 for RED

settings.) It can be concluded from the figures that though RED improves the

shares of TCP-Friendly flow, the unfair rate allocations because of mis-behavior

of flows persist. This is because RED is an oblivious AQM scheme and therefore

allocates equal marks to all users. Then as outlined earlier, the final rate allocations

are dependent on the utility function used by the user’s and as such an different

choices of utility function can cause unfair sharing of the bottleneck. In figure 5.17

c) and d) we plot the results with re-marking enabled in the network, with DropTail

and RED queues respectively. Our results suggests that when re-marking is enabled

on a network of DropTail queues we can significantly improve the sharing of the

bottleneck. On a network of RED queues with re-marking enabled the results are

even more appealing thus pointing to virtues of deploying RED in the network.

5.7.2.3 Background Traffic

In this section we evaluate the framework in presence of noise-like mice traffic.

HTTP sources were added to the persistent non-conformant and conformant sources.

The details of these HTTP sources have already been outlined in Section 5.7.1.3 and

136

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 P
ac

ke
ts/

Se
c

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Mis−Behaving Flows

TCP−Friendly Flow

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Mis−Behaving Flows

TCP−Friendly Flow

(a): DropTail Queues (No Remarking) (b): RED Gateways: (No Remarking)

Number of Round Trip Times

Th
ro

ug
pu

t i
n

pa
ck

et
s/s

ec

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Mis−Behaving Flow

TCP−Friendly Flow

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Mis−Behaving Flows

TCP−Friendly Flow

(c): DropTail Queues (Remarking) (d): RED Gateways (Remarking)

Figure 5.17: Multi Bottleneck (Dropping): Throughputs (in pkts/sec)
for 2 competing flows on a network of DropTail and RED queues with
and without Re-Marking. One flow is TCP Friendly while the other is
Non-Conformant (k=0,l=0.5).

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

TCP Friendly Flow

Mis−Behaving Flow

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

Mis−Behaving Flow

TCP−Friendly Flow

(a): No Re-Marking (b): Re-Marking

Figure 5.18: Background Traffic (Dropping):Throughputs (in pkts/sec)
for 10 competing flows in a single bottleneck topology, where 7 flows are
TCP Friendly while the other 3 are Non-Conformant with (k=0, l=0.5)
with 65% noise.

137

Flow DropTail RED
Type No-Rem Rem No-Rem Rem

TCP-Friendly 55 85 100 200
Non-Conformant 450 400 400 325

Table 5.2: Cross Traffic (Dropping): Comparison of throughput (pack-
ets/sec) for network with DropTail and RED queues with and without
re-marking.

as such are not reported here.

We used a single bottleneck topology and different level of flow multiplexing

to evaluate the effect of background traffic on the performance of a droptail queue

network with and without re-marking. However we report results for one case where

there were 10 persistent and of these, 7 flows were TCP Friendly while the remaining

3 where non-conformant (k=0,l=0.5). The bottleneck bandwidth for this simulation

was 10Mbps and a buffer of size 150 packets. Also in this setup we increased the

noise sufficiently high to validate the robustness of the scheme in presence of many

flows and noise. Figures 5.18 a) and 5.18 b) plot the results for the cases where

the noise traffic is 65% (or 80 http sources), i.e. mice traffic occupied 65% of the

bandwidth. Figure 5.18 b)shows the robustness of the scheme when sufficiently high

(65%) noise is present in the network and the re-marker still manages to efficiently

patrol non-conformant users.

5.7.2.4 Cross Traffic

Finally we present the results for the edge based re-marker when two way

traffic is present in the network. We evaluate this scenario with the multi-bottleneck

topology, where we have 5 TCP Friendly long flows and 5 non-conformant (k=0,

l=0.5) short flows on each bottleneck. Additionally, on the reverse path, there are 5

TCP Reno flows on each bottleneck. The bottleneck bandwidth for this simulation

was 10Mbps and a buffer of size 250 packets. Re-Marking, once again achieves fair

sharing of the bottleneck (as shown in Table 5.2). However, it can be seen from the

results that DropTail queues perform poorly in comparison to RED queues. This

further suggests that deployment of RED will help in improving overall network

138

performance, especially in presence of non-conformant flows.

5.7.3 Estimating the Utility Function

The uncooperative congestion control framework, presented in this chapter,

works well if the network knows the utility function of the non-conformant flows.

Thus estimating the utility function parameters is of paramount importance. In

section we outlined a LMMSE method to estimate the utility function. In this

section we present the results of estimating utility function.

We have assumed that the identity of misbehaving user is revealed to us.

Thereafter, we sample its packet stream at the egress node counting the number

of packets sent as well as packets lost. This data set is then separated into bins

of 0.5, 1.0 and 2 seconds where in each bin we measure the number of packets

sent and the loss rate for that bin. Once we have constructed such a series we

used LMMSE method detailed in Section 5.6.1. The results of a simulation of 2

flows, one TCP and the other a non-conformant flow with k=0, l=0.5, competing

on a single bottleneck (see figure 5.5 a) is showed in figure 5.19 with the bin size

being 2 seconds. Further, the bottleneck is 0.8Mb, the access links of 8Mb and the

bottleneck employs RED with a buffer size of 25 packets. Also, RTT of the flows

is 60ms. Figure 5.19 a) and b) show the estimation results for the non-conformant

and the TCP flow respectively. The slope of the graph in each case measures n+1,

where n is the exponent (see Section 5.6.1). The exponents theoretical values for

our simulation are 0.5 and 1.0 for the non-conformant and TCP flow respectively.

For the non-conformant flow we estimate the exponent to be approximately 0.6 (the

slope of the graph is 1.5). Similarly for the TCP flow we estimate the exponent to

be approximately 0.8.

Figure 5.22 a) shows the throughput of the two competing flows when we used

these exponent values to remark the flows. Figure 5.8 a) shows the throughput

when we didn’t mark any flow. Because of estimation errors the re-mapping of

utility functions was not exact and as such we see that the non-conformant flow

still gets more bandwidth. However, there is a significant improvement in the TCP-

friendly flow’s allocation thus suggesting that the model improves the fair share of

139

4.8 5.0 5.2 5.4 5.6 5.8

log(x)

-6

-5

-4

-3

-2

log
 (p

)

3.85 4.10 4.35 4.60 4.85 5.10 5.35 5.60

log(x)

-6

-5

-4

-3

-2

log
 (p

)

(a) Estimation of Utility Function: (b) Estimation of Utility Function:
Uncooperative Flow TCP Flow

Figure 5.19: Estimation of Utility Function for 2 competing flows in a
single bottleneck topology, where one flow is TCP Friendly flow while
other is Non-Conformant with (k=0, l=0.5).

Ex
po

ne
nt

 (k
+l

+1
) V

al
ue

 fr
om

 L
LS

E

Number of Samples

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200

Figure 5.20: Exponent Value Vs Sample Size: As the Sample Size in-
creases estimation gets better. Even Smaller samples give good estimates.
Motivates use of RLS.

the conformant flows at the bottleneck by penalizing misbehaving flows.

Although LLSE is simple and has faster convergence it suffers from imple-

mentational complexities. Specifically its time complexity is O(M 2), where M is

the order of the filter [80]. Moreover, it needs the entire data set a-posteriori to

estimate the parameters. However, there exist LLSE schemes which compromise

the implementation complexity with convergence. Recursive Least Squares (RLS)

[80] is one such scheme. It has a time complexity of O(M) and it can recursively

use new data with some incremental work. We will now motivate the need for using

RLS and show that good estimates can be gathered with small sample set and then

the estimates can be improved by further measurements. Moreover, with RLS the

140

new measurements can be incrementally consumed.

A point of concern in estimation is - how many samples are needed to charac-

terize a source ? We will address this concern using the example presented above.

We took the time-series used in previous examples and broke it into smaller series.

This gives us the results for estimation with smaller sample space; the new sample

sets corresponded to 5, 7, 10, .., 250 samples. In Fig 5.20 we have plotted the ex-

ponent value versus number of samples for the uncooperative user. As the figure

shows even with 5 samples the exponent, n, is detected to be 0.7 and as the sample

size increases the exponent value fast approached the true value. This suggests that

using estimation schemes like RLS will make the estimation task easier.

5.7.4 Sensitivity Analysis of Framework

In this section we investigate the effect of inaccurate estimation. Specifically

we test the validity of the model in presence of inaccurate utility function and RTT

estimates. RTT-estimation is needed for updating our congestion indication estima-

tions (which is similar to the one presented in [40]) while utility function estimation

is needed for re-mapping. Our simulation results suggests that the inaccurate RTT

estimates don’t have a pronounced effect on the re-mapping, at most they might

slow the convergence (to the objective utility function). However, large errors in

estimation of utility function may over-penalize the non-conformant sources. For

the results reported in this section, we assumed that the network was ECN capable

and therefore marked packets.

5.7.4.1 Effect of Inaccurate RTT Estimate

In all our previous simulations we assumed that the network knows the RTT

of the flows. We used these RTT estimates to update our congestion indication

estimations. For the results presented in this section we looked at two cases, one

when we under-estimated the RTT and the other when we over-estimated it. We

present the results with a single-bottleneck of 0.8Mbps, 25 packet buffer and 2

competing flows.

Figure 5.21 a) shows the results when the RTT was under-estimated as 0.05

(instead of 0.06). Figure 5.21 b) shows similar results when we over-estimated the

141

RTT as 0.07. The figures suggest that inaccuracy in RTT estimates alters the

convergence speed to the optimal point; a larger value of RTT will slow down the

convergence while a smaller value will increase the convergence. However, from

both the results its easy to see that the effect of inaccurate RTT estimation is not

pronounced and the model works well. We ran simulations with higher degree of

multiplexing and came to a similar conclusion. However, we do not present those

results here.

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

Mis−Behaving Flow (No Remarking)

TCP Friendly Flow (No Remarking)

Mis−Behaving Flow (Remarking)

TCP Friendly Flow (Remarking)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

Mis−Behaving Flow (Remarking)

Mis−Behaving Flow (No Remarking)

TCP Friendly Flow (No Remarking)

TCP Friendly Flow (Remarking)

(a) Under-estimation of RTT (rtt=0.05s) (b) Over-Estimation of RTT (rtt=0.07s)

Figure 5.21: Inaccurate RTT Estimates: Throughputs (in pkts/sec) for 2
competing flows in a single-bottleneck topology, where one flow is TCP
Friendly flow while other is Non-Conformant with (k=0, l=0.5), when
network has inaccurate RTT estimates.

5.7.4.2 Effect of Inaccurate Utility Function Estimate

Till now we have assumed that the network knows the utility function of the

flows. Since utility functions are not being explicit conveyed to the network therefore

we will need to estimate them. Thus we need to explore the effect of inaccurate

utility function estimates. In this section we evaluate the model’s sensitivity to

utility functions; when the utility functions are under-estimated and second when

they are over-estimated. Under-estimation here refers to the case when we estimate

the utility function to be less aggressive than it really is, i.e. when k + l values

are reported to be larger than the actual values. Over-estimation refers to the case

where we report the flow to be more aggressive than it really is, i.e. k + l values

are reported to be smaller than the actual values. We present the results with a

single-bottleneck topology (figure 5.5 a)) for 2 flows.

142

Figure 5.22 a) shows the results when the utility function was under-estimated

as 0.6 (instead of 0.5). Figure 5.22 b) shows similar results when we over-estimated

it as 0.4. It can be seen from the results that the model is sensitive to inaccurate

estimate of utility functions. When we under-estimated the utility function (k +

l = 0.6) the model didn’t penalize the mis-behaving flow much, and as such it

still garners more bandwidth than the TCP flow. In the case of over-estimation

(k + l = 0.4) we see that the network penalizes the mis-behaving flow more and

consequently brings it share down below the TCP Friendly flow.

However, the estimation errors pointed out in the simulation are large (the

error is 20% since we estimate the k+ l values as 0.5±0.1). We evaluated the model

for two other error estimates, 10% and 5% and report the result for the 5% error case

in figure 5.23. As expected, as the estimation error decreases the model starts to get

better. Further we found that for estimation errors of more than 5% the model does

not penalize (or over penalizes) the mis-behaving flow much and it consequently has

a larger (or smaller) share at the bottleneck. However in spite of these estimation

errors, these shares are still more fair than the case when there was no re-marking

present. For estimation errors of less than or equal to 5% the model worked well

(figure 5.23). We evaluated the model for different simulation setting where we had

10 flows (5 mis-behaving, 5 friendly) and came to a similar conclusion.

5.8 Differentiated Services

In this section we will briefly present how simple differentiated services can

be obtained from our framework. As shown in Fig 5.1 any uncooperative user can

be mapped to a conformant utility space. Exploit this mapping simple differenti-

ated services can be obtained by re-mapping the utility function to a higher utility

function curve, for example map U2 to U1 (Fig 5.1).

Though theoretically it is possible to map a utility function to a higher utility

function, e.g. map U2 to U1, but in practice it implies reducing the end-to-end price

for U2. This clearly cannot work in a dropping based network. Moreover this line of

direction is also flawed when applied to a marking based network. This is because a

mark always represents a congestion state and by removing a mark would just result

143

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

TCP Friendly Flow (No Remarking)

Mis−Behaving Flow (Remarking)

TCP Friendly Flow (Remarking)

Mis−Behaving Flow (No Remarking)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

TCP Friendly Flow (No Remarking)
Mis−Behaving Flow (No Remarking)

Mis−Behaving Flow (Remarking)
TCP Friendly Flow (Remarking)

(a) Under-estimation of Utility Function: (b) Over-Estimation of Utility Function:
In-sufficient Re-marking, Misbehaving Flow Excessive Re-marking, Misbehaving Flow

Still Wins Over Penalized (Loses to TCP)

Figure 5.22: Inaccurate Utility Function Estimates, 20% Estimation Er-
rors: Throughputs for 2 competing flows in a single-bottleneck topology,
where one flow is TCP Friendly flow while other is Non-Conformant with
(k=0, l=0.5), when network has inaccurate estimates of source’s utility
function.

in delaying the congestion indication, which is in turn more harmful for the source.

Hence we need to take a slightly different approach. Suppose that there are two

flows, F1, F2, in the network, and the utility function of both the flows is U1. Further

assume we need to provide differentiated services to F1 such that it always receives

10% more bandwidth than F2. This can be implemented in our framework by simply

re-mapping the utility function of F2 to U2, such that U1
−−→
f(p)U2 ⇒ x1

−−→
f(p)x2 where

f(p) represents the re-marking function and x1, x2 represents the steady state rates

of F1, F2 respectively.

In Fig 5.24 a) we plot one such result for a single bottleneck topology, where

both the flows use TCP and go over a bottleneck link of 0.8Mbps, the buffer size is 25

packets and the RTT is 60 ms. The aim of the simulation was to given one flow 10%

more bandwidth than the other flow. As shown in the figure, by re-mapping one of

the flows to a lower utility function we can achieve simple differentiated service. A

similar result is plotted for a multi-bottleneck scenario in Fig 5.24 b) where the aim

was to increase the share of the long flow by 10%. In this simulation the bottleneck

capacity was again 0.8Mbps, buffer size of 25 packets, there was one long and one

short flow on each bottleneck and all the flows used TCP.

144

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

TCP Friendly Flow (No Remarking)

Mis−Behaving Flow (Remarked)

TCP Friendly Flow (Remarked)

Mis−Behaving Flow (No Remarking)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

TCP Friendly Flow (No Remarking)

Mis−Behaving Flow (Remarked)

TCP Friendly Flow (Remarked)
Mis−Behaving Flow (No Remarking)

(a) Under-estimation of Utility Function: (b) Over-Estimation of Utility Function:
Bottleneck is still shared equitably because Bottleneck is still shared fairly because

estimation errors are small estimation errors are small.

Figure 5.23: Inaccurate Utility Function Estimates, 5% Estimation Er-
rors: Throughputs (in pkts/sec) for 2 competing flows in a single-
bottleneck topology, where one flow is TCP Friendly flow while other
is Non-Conformant with (k=0, l=0.5), when network has inaccurate es-
timates of source’s utility function.

Number of Round Trip Times

Th
ro

ug
hp

ut
 (i

n p
ac

ke
ts/

se
c)

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Remarking Flow 1 (10% More Bandwidth)
Remarking Flow 2

Flow 1 (No Remarking)
Flow 2 (No Remarking)

Th
ro

ug
hp

ut
 (i

n p
ac

ke
ts/

se
c)

Number of Round Trip Times

0

20

40

60

80

100

0 500 1000 1500 2000 2500

Short Flow (No DiffServ)
Long Flow (No DiffServ)

Short Flow (With DiffServ)
Long Flow (With DiffServ)

3000

(a) Single Bottleneck (b) Multi-Bottleneck

Figure 5.24: Differentiated Services

5.9 Summary

This chapter addresses the question of protocol conformance in the Internet.

In presence of different rate control schemes in the Internet, we consider a rate

control protocol to be conformant if they are obtained by maximizing same utility

function. Towards understanding the effect of protocol non-conformance, we looked

at the impact of non-conformant flows (or mis-behaving flows) on a network of

Droptail and RED queues. Our results show that on a network of DropTail queues

non-conformant flows get a large (unfair) share of the bandwidth. Further in a

multi-bottleneck scenario non-conformant flows can almost shut out the conformant

145

flows by pushing them into timeouts. However, on a network of RED queues though

the non-conformant still share the bottleneck unfairly but the conformant flows are

not shut out. In other words the mis-behavior has a significant impact on a network

of Droptail queues than RED queues thus motivating for use of RED.

In this chapter we have proposed an abstract model for modeling and man-

aging non-conformant flows. The primary objective of this framework are to look

at ways to achieve protocol conformance. However, in this chapter we also look at

the fairness at network’s perspective, i.e. how a network might allocate resources

amongst different users. Towards addressing these issues we have proposed a frame-

work to map a user’s utility function, Us, to any objective utility function, Uobj,

by manipulating congestion penalties. These penalty transformation agents can be

completely implemented at network edges. Further we have a flexibility of choos-

ing either to re-mark the packets or acks. In cases where we do not have access

to the packet-stream we can re-mark the ack-stream and achieve the goals of the

model. Packeteer boxes, deployed widely on the Internet, already do a similar work

by accessing the ack-stream and pacing the acks [72] and work well with even 20,000

flows.

This proposed utility function transformation can decouple the fairness criteria

from the user’s rate control scheme. This allows the network provider to allocate

bandwidth amongst user’s according to a broad range of fairness criteria. This

framework could also find application in pricing especially those of usage based or

flat rate pricing. By having all users conform to a particular rate control scheme,

the network ensures that it is fair to all users and hence makes usage based or flat

rate billing more meaningful. Broadly, this chapter also suggests that management

of mis-behaving or non-conformant flows need not be coupled with AQM design and

can be simply viewed as an edge network based policing question. This framework

may also be thought of as a new class of “traffic conditioning” technique, where

the “conditioning” is achieved by manipulation of the feedback stream rather than

manipulation of the packet stream.

We have analyzed the framework and evaluated it for various single and multi-

bottleneck scenarios with marking and dropping policies being used for congestion

146

notification. Further we showed model is robust and works well even in presence

of high background (web) traffic and reverse path congestion. In this chapter we

have also presented a scheme to estimate the utility function of the non-conformant

user. We also tested the sensitivity of the framework to estimation errors (for RTT

and utility function). Our results how that inaccurate RTT estimates do not have a

very profound effect on the model’s correctness. However, in presence of large utility

function estimation errors the model does not fully correct the non-conformant flows,

but still considerably improves the fairness at the bottleneck (as compared to the

scenario when there was no re-marking).

However, a limitation of the proposed framework is that it only considers the

mapping of selfish responsive schemes and might not work well if path asymmetry

exists. In such a situation we would have to place the penalty transformation at

every exit routers. Further, path asymmetry will also result in erroneous values

for network losses which might make the framework either over penalize or under

penalize the selfish flow. Thus when a flow may take different paths, we would

need coordination between all the penalty transformation agents. However, if a

single ingress (or egress) router is used by the flow then the model is immune to

path-asymmetry problems of the network. Both unique ingress or egress routers is

generally true in the present Internet.

CHAPTER 6

virtual AQM: Managing Bottleneck Queues from Network

Edge

The proposals previously discussed in this thesis improve fair sharing of the network,

can efficiently manage selfish flows and remove some other deficiencies of Drop Tail

queues like phase effects and synchronization. Consequently, we have seen an im-

provement in performance of TCP with reduction in number of timeouts and burst

losses, removal of bias against flows with large round-trip time and improvement in

fairness. However neither Randomized TCP nor Uncooperative Congestion Control

framework can proactively manage bottleneck queues. This implies that the task of

managing bottleneck queues in the network is still associated with the requirement

that an active queue management module be present at every router in the Internet.

The Internet uses only Drop Tail queues. Drop Tail queueing is also often re-

ferred to as passive queueing or in other words it does not manage queues. As a result

the Internet operates with near full queues which causes increase in end-to-end la-

tencies. Moreover, this inability to manage bottleneck queues also results in delayed

congestion response from the sources, and possibly big congestion window oscilla-

tions. As such, we need to direct efforts to manage bottleneck Drop-Tail queues

from network edge or end-systems. Towards achieving this target in this Chapter

we will outline an edge-and-end-system proposal called virtual AQM (vAQM), to

manage almost all bottleneck queues in the network.

We show through simulations that an edge based virtual AQM module can

reduce the steady state queues in the network. As such, the framework presented

in this chapter, virtual AQM, shows that we can de-couple the task of management

of bottleneck queues and it’s placement. In other words, for managing queues in a

network, we do not require an active queue management component to be present

at every bottleneck.

147

148

6.1 Introduction

The primary task of any AQM is to proactively manage bottleneck queue

length so as to provide early congestion indication and thus keep the network uti-

lization healthy. Proactive management of queues also generally results in small

bottleneck queues which in turn not only reduce end-to-end latency but also pro-

vide space to enque any incoming bursts and thus prevent burst losses and timeouts.

However, a majority of AQM proposals, especially RED and it’s derivatives, do not

always operate with small queues and consequently their worst case performance is

worse than simple Drop-Tail queues. The primary reason for such poor worst case

performance is lack of proper guidelines for configuring such AQMs.

Recently a few AQM schemes schemes based on virtual or shadow queueing

have been proposed and initial results have shown that these proposals have a fairly

large operating area. The most popular of such schemes is AVQ (Adaptive Virtual

Queue) by Kunniyur et. al. [57]. AVQ at a router emulates a virtual link that has a

capacity less than the real link. In order to achieve this, AVQ marks/drops packet

to match the capacity of this virtual link. This virtual link capacity can also be

thought of as the actual desired link utilization. In order to do this, AVQ maintains

a virtual buffer which together with actual router buffer simultaneously enques any

incoming packet. Upon the receipt of an incoming packet, the virtual queue length

is updated. If the virtual queue length overflows, the packet is subsequently marked

(or dropped) in the actual router queue. Thus, AVQ allows network operators to

deploy any AQM scheme in the network, including Drop Tail queue, to take any

corrective action on any packet which resulted in overflow of virtual queue. To

summarize, since the incoming packet rate equals the virtual link capacity at the

steady state, the router queue can thus be kept to zero (or, in fact, a very small

value due to bursty traffic).

Though AVQ allows the providers to continue operating with Drop Tail queues,

all the routers must be upgraded to perform the virtual queueing tasks. This is not

only expensive but requires significant upgrades. As such, for some foreseeable

future, the network will continue to operate with Drop Tail queues. In this thesis,

we present an end-or-edge based framework which emulates AVQ properties over a

149

network of Drop Tail queues.

The framework presented in this chapter, virtual AQM shows that we can

de-couple the task of management of bottleneck queues and it’s placement. In

other words, for managing queues in a network, we do not require an active queue

management component to be present at every bottleneck. We show that using

end-to-end packet probes and a virtual AQM module, we can manage the bottleneck

queues at the network edge.

Our initial results suggest that the proposed framework can significantly reduce

bottleneck queue lengths without compromising on link utilization or fairness. The

rest of the Chapter presents the arguments in detail. In Section 6.2 we present our

framework, virtual AQM and outline a special case called vAVQ or virtual AVQ

which emulates virtual queueing properties of AVQ in Section 6.2.1. Section 6.3

presents some results with vAVQ and the comparison of its performance with AVQ

and simple Drop Tail queueing. Finally, in Section 6.4 we debate on the merits and

limitations of vAVQ and present the conclusions and future work in Section 6.5.

6.2 vAQM: virtual AQM

In the Internet a flow might traverse multiple bottlenecks. However, of these

multiple bottlenecks there is only one congested link which is dominant. In other

words, the dominant bottleneck is the most congested link or is referred to the link

with highest marking (or dropping) probability. Recent studies have shown that

even though the end-to-end latency distribution might be multi-modal (i.e. there

are multiple bottlenecks) the tail distribution of end-to-end latency is dominated by

a single link [97]. As such, if for every flow, we could abstract out this dominant

congested link then running an AQM only on this router will also ease out congestion

on other bottlenecks. However, the congestion at other bottlenecks is not only

because of traffic stream going to the dominant router, but also of cross traffic

which might not always come to the dominant router.

Figure 6.1 shows one such scenario. In this example, for the flow, F, the router,

R3 is the dominant congested router while routers R1 and R2 are other congested

routers on its path. If we were to run just one AQM on the router R3 we will certainly

150

Figure 6.1: Most Congested Router

ease the congestion on that router. As a result of this active queue management

at router R3, the flow group F will also be policed, thus easing the congestion on

routers R1 and R2. However, since the total traffic at routers R1 and R2 is made

up of other traffic streams such as G and H, the congestion at these bottlenecks

may not be alleviated fully. None the less, such a method will also reduce the queue

length at the bottleneck queues and thus reduce end-to-end latency.

This ability to identify the most congested router on a path and run just one

AQM on that particular router is the stepping stone for our proposal virtual AQM or

vAQM. However, we further extend the notion of running one AQM to network edge,

i.e. from the network edge for every path we will try to identify and manage the

most congested router by running an AQM for that particular path at the network

edge. In this proposal we refer this to as virtual AQM.

The virtual AQM model can be explained within the utility function based

network optimization framework. Consider a source, s, which is described by its

rate xs and lets assume it’s maximizing a utility function Us(xs). We will further

assume that the utility function is strictly increasing and concave in it’s arguments.

Then we can explain running an AQM only for the dominant congested router by

151

the following set of equations

U ′(xs) = max
︸ ︷︷ ︸

l

pl (6.1)

pl(
∑

s

xs − Cl) = 0 (6.2)

∑

s

xs − Cl ≤ 0 (6.3)

pl ≥ 0 (6.4)

6.2.1 vAVQ: virtual AVQ

We will now outline one specific proposal under vAQM which uses packet

probes and AVQ to identify and manage the most congested router on any path.

However, before we outline the model we will define a few terms used in our frame-

work.

Definition 1. Stream: The group of flows which have the same ingress and egress

routers. Moreover, these flows have the same routing path between the ingress and

egress routers.

Definition 2. Path: The route, between ingress and egress routers, taken by a

particular stream.

Definition 3. Path Capacity: The minimum link capacity along a path. Thus, for

a stream, f, which traverses n bottlenecks, R1, R2, .., Rn, we define the path capacity,

Cf , as Cf = min(CR1
, CR2

, .., CRn)

Definition 4. Path Demand: The maximum demand along a path. Thus, for a

stream, f, which traverses n bottlenecks, R1, R2, .., Rn, we define the path demand,

Df , as Df = min(DR1
, DR2

, .., DRn)

Consider a scenario where a network edge knows the path capacity and de-

mand for every stream entering the network. Further assume that the provider

has specified a desired target utilization for the network. Let the desired network

utilization be denoted by γ, such that 0 < γ < 1. Further, for any stream, f , let

the path capacity be denoted by Cf , demand by Df and the virtual path capacity

of γCf . Thereupon we conjecture that if we try to match the demand, Df , to the

152

virtual path capacity, γCf then by the virtue of utilization factor being less than 1,

the steady state queue due to the stream f will be very small or close to 0. More-

over, if we are able to match the demand with respective virtual path capacity for

all streams then the queues at all the bottleneck routers will be small or close to

0. Further, if we know the path capacity and demand for each stream, we can do

this at the network. This is the premise of our proposal virtual AQM, which use

packet probes to estimate path capacity and demand and tries to manage bottleneck

queues from the network edge. Figure 6.2 shows the model of vAVQ.

Figure 6.2: The model for vAVQ

Further, since the vAVQ consistently attempts to keep the network utilization

below 100% (or at the specified network utilization factor) it will usually signal

congestion indications to flows before the network starts dropping packets. Such a

behavior in turn results in proactive queue management and thus might help us in

managing the bottleneck queue length from the network edge.

6.2.2 Estimating Path Capacity and Demand

In this section we will outline end-or-edge system based methods for estimating

path capacity and demand. For the purposes of estimation we envision use of priority

153

Algorithm 1 virtual AVQ (vAVQ)

t: Current time
s: Arrival time of previous packet
T : Time when last demand estimate was taken
D(T): Demand Estimate at time t in packets
C(T): Capacity Estimate at time t in packets
ξ: Time after which D(T) is updated
γ: Network Utilization Factor
B: Buffer Size in packets
V Q: Size of Virtual Queue in packets
C̃: Virtual Path Capacity in packets.

for each packet arrival in (t, t+ ξ) do
VQ ← max(VQ, C̃(t-s), 0) /* Update virtual queue size */
if V Q+ 1 > B then

Mark (or drop) the packet in real queue.
else

VQ ← VQ + 1
Enque the packet in the real queue.

end if
C̃ = C̃ + α ∗ (γC(T)−D(T)) ∗ (t− s) /* Update virtual path capacity */
C̃ = min(max(C̃, 0), γC(T))
s ← t /* Update last packet arrival time */

end for

queues in the network. Specifically, we propose two queues: a high and low priority

queues. The packets enqued in the high priority non pre-emptive queue are serviced

before those in the low priority queues.

To calculate the path capacity, Cf , we send probe packets in pairs and these

packets are enqueues in the priority queue in the network. These probe packets are

sent back to back and their inter-arrival time at the receiver is used to measure the

available path capacity. Specifically, if the inter-arrival time of these probe packets,

at the receiver, is δ, then the path capacity is given as

Cf =
8 ∗ S

δ
(6.5)

where S is the size of probe packets in bytes.

To estimate the path demand, Df , a packet train is sent through the low

priority queue. However, this packet train is not sent back-to-back but with some

154

inter-packet gap. Then, at the receiver, the difference between the inter-arrival time

and inter-packet gap represents the estimate of effective capacity on that path. An

estimate of demand can then be calculated by taking the difference of the actual

path capacity and the effective capacity. Thus, if the inter-arrival gap at receiver is

ta and the inter-packet gap is tg, the demand can be estimated as

Df = Cf −
8 ∗ S

ta − tg
ta > tg (6.6)

= 0 otherwise (6.7)

However, to estimate demand the most important configuration parameter is

the inter-packet gap. If the inter-packet gap is very large then our simulation results

show that inter-arrival time at receiver is equal to the inter-packet gap. Thus, in

such cases we do not have an estimate of demand. Similarly, if the inter-packet

gap is very small then packets may go back to back and in such cases the estimate

for demand is often equal to the path capacity. A more through discussion on the

inter-packet gap is presented in [47].

Besides using packet probes for estimating demand we could use the data

packets themselves for purposes of estimation. If the sender stamps the sending of

every packet (or some packets) and the receiver echoes the time when these packets

were received then the difference between sending and receiving timestamp will give

us a measure of the demand on the path. However, such a method will not work

with very small window sizes because then the inter-packet gap is huge and we often

get no demand estimates.

6.3 Results

We implemented the vAVQ in NS. The bottleneck routers had two queues,

a priority queue for path capacity probe packets and a Drop Tail queue for data

and path demand probe packets. Packet pairs were used for estimating both path

capacity and demand. For the results presented in this section, the path capacity

was always estimated as the minimum link capacity in the path. As such, we will

not present the results for path capacity estimation. Figure 6.3 (a) and (b) show

155

Router Router

100 Mbps 100 Mbps

10ms

S1

S2

Sn

D1

D2

Dn

10ms

10 Mbps 25ms

(a) Single Bottleneck Topology

RouterRouter

�������
�

���
�

���
� ����

25ms
Router

D1

10ms

S1

D2

S3

D3

D4

S2

S4

10ms

10ms

10ms

10ms

10ms

10ms

10 Mbps

25ms

10 Mbps

100 Mbps100 Mbps

100 Mbps
10ms

(b) Multi-Bottleneck Topology

Figure 6.3: Topologies used in the Simulations.

the single and multi-bottleneck topologies used in the simulation. The access links

have 10 times more capacity than the bottleneck link. Further, all the bottleneck

links had Drop Tail queueing. For our implementation, we used the congestion

control and loss recovery mechanisms of TCP New Reno and disabled the delayed

acknowledgments option.

For the results presented in the following sections, the performance metrics of

interests are evolution of instantaneous bottleneck queue length, average bottleneck

queue length, fairness and bottleneck link utilization. In this section we will evaluate

vAVQ for these metrics and compare it’s performance with Drop Tail and AVQ buffer

management policies. For all the simulation results presented in this section, unless

specifically specified, the virtual buffer length for AVQ was set to be equal to the

actual bottleneck buffer length. Further, the desired link utilization was set to be

at 90% of link capacity and AVQ was set to mark packets in the actual queue.

156

Time in Seconds

De
ma

nd
Est

ima
te a

t B
otte

nec
k (M

bps
)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 20 40 60 80 100 120 140 160

(a) Demand Estimate at the Bottleneck

Ac
tua

l A
rriv

al R
ate

 at
Bo

ttle
nec

k (M
bps

)

Time in Seconds

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

0 20 40 60 80 100 120 140 160

(b) Actual Arrival Rate at Bottleneck

Figure 6.4: Demand Estimation in a Single Bottleneck scenario.

6.3.1 Single Bottleneck Topology

We will first present the results for demand estimation. For estimating the

demand we used packet pairs. A packet pair with an inter-packet gap of 0.00037

seconds was sent every 0.1 seconds. The sender time stamped the packets receiver

used these timestamps to calculate an estimate of the demand. Further, we filtered

this demand estimate using an Exponentially Weighted Moving Average (EWMA).

The EWMA filter gave 40% weight to the current estimate and 60% to the smoothed

average. This smoothed demand estimate was then communicated to the sender for

running the vAVQ algorithm. Figure 6.4 (a) and (b) show the results of estimation

using packet probes and actual packet arrival rate at the bottleneck.

As the results show, the demand estimate are often close to zero and as such

the estimates are not entirely accurate. The main reason behind this inaccuracy

is the burstiness of the cross-traffic (TCP in this case). In some cases, a burst of

packet arrives before the first packet of the probe and as a result the first probe

157

De
ma

nd
Est

ima
te (

in M
bps

)

Time in Seconds

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 20 40 60 80 100 120 140 160

(a) Demand Estimate at the Bottleneck

Time in Seconds

Lin
k A

rriv
al R

ate
 (M

bps
)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

0 20 40 60 80 100 120 140 160

(b) Actual Arrival Rate at Bottleneck

Figure 6.5: Demand Estimation in a Single Bottleneck scenario when the
estimate’s lower bound is 50% of Link Capacity. This bounding then
gives us a better estimate of Demand.

packet sees a large queue in front of it. Now if there is an idle period of the burst,

and the second probe packet arrives in this period, it is enqued behind the first

probe packet and we thus under-estimate demand. A similar case can be sighted for

the over-estimation of demand, wherein the first probe packet sees almost no burst

while the second period sees a huge burst. Estimation of available capacity, path

capacity and demand has received considerable attention, starting from the first

work on packet trains [50] and packet-pair [54] to the current efforts [59, 47, 26].

However, all these efforts report that the estimation suffers and is at best within

10% of the actual value.

Now we will present a result which will show that vAVQ will perform signifi-

cantly better is the demand estimations improved. Our previous demand estimation

results showed that we often estimate the demand to be close to 0, while the actual

158

Drop Tail AVQ vAVQ vAVQ AVQ
(good (6 packet

estimate) buffer)
Avg. Queue Size 18.69 13.62 12.22 10.94 4.30

Avg. Throughput (Mbps) 1.6 1.5 1.6 1.5 1.45
Fairness 0.067 0.30 0.06 0.05 0.012

Table 6.1: vAVQ: Performance on a Single Bottleneck Topology

demand at the bottleneck is seldom less than half of the bottleneck capacity. We

used this insight to engineer a new demand estimate. Specifically, we decided to

round-off all demand estimates to be at least half of the path capacity. We con-

jecture that in absence of window synchronization and presence of many persistent

flows the bottleneck link will always be almost fully utilized. Our results as shown

in Figure 6.4 (b) and 6.5 (b) further validate our arguments. Coming back to our

engineered demand estimates, Figure 6.5 shows the results of one such experiment.

As we can see the rounding off of demand estimate significantly improves the results

and now the estimate as shown in Figure 6.5 (a) almost resembles Figure 6.5 (b).

Later in this section we will present the result with this tailored estimate and show

that it significantly improves the performance of vAVQ.

Now we will present the results for vAVQ and compare it’s performance with

simple Drop Tail queueing and AVQ. Our performance metrics of interests are evo-

lution of instantaneous bottleneck queue length, average bottleneck queue length,

fairness and bottleneck link utilization. For this simulation the bottleneck link ca-

pacity was 10 Mbps, the bottleneck queue size was 50 packets and the round-trip

time was 90ms.

Figure 6.6 presents the instantaneous queue length evolution for Drop Tail,

AVQ and vAVQ buffer management policies. Drop Tail queues hardly manage the

bottleneck queues and are more likely to operate with near full queues, see Figure 6.6

(a). This huge and consistent variations in queue not only increase the average queue

size (as shown in Table 6.1) but also result in oscillations in window size thereby

making any form of provisioning (for multi-media services) difficult. AVQ on the

other hand does much better than Drop Tail queue, as it’s average queue size is less

159

Time in Seconds

Ins
tan

tan
eou

s Q
ueu

e L
eng

th

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

(a) Instantaneous Queue Length for Drop Tail Queue

Time in Seconds

Ins
tan

tan
eou

s Q
ueu

e L
eng

th

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

(b) Instantaneous Queue Length for AVQ

Ins
tan

tan
eou

s Q
ueu

e L
eng

th

Time in Seconds

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

(c) Instantaneous Queue Length for vAVQ

Figure 6.6: Instantaneous Queue Length Evolution in a Single Bottleneck

than that of Drop Tail queues by almost 30%. However, the oscillations to full and

zero queues are still present, though they are not as consistent as Drop Tail queues.

One of the reasons, why AVQ still oscillates is the large virtual buffer length which

ensures that there is almost always space to accommodate any incoming packet.

As such, the virtual buffer rarely overflows and not many packets are not marked

thus allowing the actual router queues to grow. However, AVQ still manages to

160

Time in Seconds

Ins
tan

tan
eou

s Q
ueu

e L
eng

th

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

Figure 6.7: Instantaneous Queue Length for vAVQ with almost perfect
Demand estimate

Time in seconds

Vir
tua

l Q
ueu

e L
eng

th

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160

Figure 6.8: vAVQ: Evolution of Virtual Queue at Network Edge

match the arrival rate to the bottleneck link capacity and thus keeps the network

utilization pegged at 90% (as shown in Table 6.1). In Figure 6.9 we plot the results

of the simulation when the virtual buffer length for AVQ is 6 packets (this is the

value used in our vAVQ simulations). As discussed previously in this section, with

small and moderate values of virtual buffer length AVQ performance significantly

improve: not only is the average value of queue length small in this case but also

there are fewer excursion to full queue.

We configured vAVQ such that one instance of vAVQ was being run for every

source. However, there was only one demand estimation module which estimate

demand every 0.1 seconds, on an average. All the vAVQ instances used this demand

estimate to update their virtual capacity and buffer estimates. We evaluated vAVQ

with a range of virtual buffer length values. A very large value of vAVQ buffer

length will not result in performance improvements. This is because when we run a

vAVQ for every flow then, given the burstiness of TCP (which in absence of reverse

161

Ins
tan

tan
eou

s Q
ueu

e L
eng

th

Time in Seconds

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

Figure 6.9: AVQ: Instantaneous Queue Length evolution when the virtual
buffer length is 25% of actual router queue.

path congestion sends only two or three back-to-back packets) a very large virtual

queue will always have space to enque the incoming packets. As such, the virtual

queue hardly overflows and there is almost no change in the queueing at the actual

router queue. Similarly, we can argue that if we run vAVQ for every flow, then the

virtual buffer length at the router should have at least two or three packets. For the

result presented here, we chose the virtual buffer length to be 6 packets. Further,

the demand estimation for this simulation setup has already been explained earlier

in this Section and is shown in Figure 6.4.

Figure 6.6 (c) shows the instantaneous queue length plot while the Figure

6.8 shows the evolution of virtual queue length. Further, the Table 6.1 shows the

average value of instantaneous queue. It can be seen from these values that vAVQ

can substantially reduce the average queue size and by implication average queueing

delay and thus end-to-end latency. In this particular case, the reduction is almost

30% as compared to queueing with Drop Tail queues. Moreover, these are the results

when we do not have a good measure of the demand on the bottleneck. To further

evaluate the vAVQ algorithm we used the demand estimate where the lower bound

of estimate was fixed at half of path capacity, see Figure 6.5. The instantaneous

queue length for this simulation is plotted in Figure 6.7. Our results show that

with good demand estimates the performance of vAVQ improves and in this case

the average value of instantaneous queue length is almost half of it corresponding

value with just Drop Tail queues.

Table 6.1 shows the average queue size, average throughput and coefficient of

162

variation of throughput for Drop Tail, AVQ and vAVQ schemes. The AVQ and vAVQ

algorithms were set to operate at 90% of bottleneck capacity and this is reflected

in their throughputs. When vAVQ is operated with good demand estimates and for

either case of AVQ, we can see that the average throughput is about 90% of it’s

corresponding value for Drop Tail queues. However, there is a substantial reduction

in the queue size, so much so that for the vAVQ with good demand estimates the

queue size is almost half of that for Drop Tail queues. Further, we can see from the

coefficient of variation of throughput that both AVQ and vAVQ are fair.

However, the performance of vAVQ is still inferior to that of AVQ (with same

virtual buffer queue lengths). This is because, AVQ operates at the bottleneck,

as such at every instant it has precise estimates of demand. vAVQ on the other

hand relies on packet probes to estimate demand which are not only inaccurate

but often stale. vAVQ sends probe every 0.1 seconds to estimate demand and this

estimate is used for all subsequent calculations. Thus the demand estimate is often

stale. However, we could correct this situation by taking demand estimates more

frequently. Any such method will however considerably increase the control traffic

in the network.

6.3.2 Multi-Bottleneck Topology

The multi-bottleneck topology used in this simulation is shown in Figure 6.3.

There were two long flows, i.e. flows which traversed both the bottlenecks. Also, on

each bottleneck there were three short flows, i.e. flows which traverse only one bot-

tleneck. The queue length at each bottleneck router was fixed at 50 packets. Once

again, we compared the performance of vAVQ with both Drop Tail and AVQ buffer

management policies. Figure 6.10 and 6.11 show the instantaneous queue length

for both these cases for both the bottlenecks. Table 6.2 shows the corresponding

average queue size and fairness for this simulation.

For vAVQ we ran three separate packet probes for estimating demand. We ran

one probe for estimating demand for the long flows, this is because these flows go

through two bottlenecks and as such their estimate of path capacity and demand will

be very different from that for short flows. Accordingly, we ran two more demand

163

First Bottleneck

Drop Tail AVQ vAVQ vAVQ
(good estimate)

Avg. Queue Size 18.00 11.46 15.48 14.02

Second Bottleneck

Drop Tail AVQ vAVQ vAVQ
(good estimate)

Avg. Queue Size 17.97 10.86 15.72 14.66

Long Flow Drop Tail AVQ vAVQ vAVQ
(good estimate)

Avg. Throughput (Mbps) 0.66 0.53 0.89 1.11
Fairness 0.05 0.02 0.03 0.05

Short Flow Drop Tail AVQ vAVQ vAVQ
(good estimate)

Avg. Throughput (Mbps) 2.20 2.17 2.20 2.21
Fairness 0.09 0.03 0.03 0.05

Table 6.2: vAVQ: Performance on a Multi-Bottleneck Topology

estimates for the short flows: one for the flows going through only one bottleneck

and one for the flows going through the second bottleneck. Once again our demand

estimates are inaccurate for all these cases and this will reflect in the performance

of vAVQ. Finally, we ran one instance of vAVQ for each flow. For the long flows the

vAVQ was configured to be on the access link to first bottleneck router while for the

short flows the vAVQ was configured on their respective upstream access links.

Figure 6.10 (c) and 6.11 (c) show the results for instantaneous queue evolution

at both the bottlenecks with vAVQ. The virtual buffer length for this simulation was

set to 6 packets. We experimented with other values of virtual buffer length and

will comment on them later in the section. Table 6.2 shows the average value of

instantaneous bottleneck queues. Once again, vAVQ improves on the performance

of Drop Tail queues. However, the gains are less than those obtained with the

single bottleneck simulations. One of the reasons for this is the increase in errors in

estimation of demand. Another reason is that with long flows going over both the

164

bottlenecks it is not possible to perfectly pin-point to the bottleneck. For example

the demand estimate we get may largely correspond to the first bottleneck but

the second bottleneck is congested more (as compared to the first bottleneck). As

such, the rate cut might not be sufficient to alleviate the congestion at the second

bottleneck. Another reason for reduced performance gains is that once again we

take demand estimates every 0.1 seconds. As such, in addition to the estimates

being stale the probability that they are wrong is also high.

Table 6.2 shows the average throughput and fairness for the multi-bottleneck

scenario. The results show that the bias against large RTT flows is present with

Drop Tail queues (which can be seen by low average throughput for long flows).

However, surprisingly AVQ also shows this bias. This is because the virtual buffer

for AVQ is large so even though it matches the input rate to output capacity, the

queue management is similar to drop tail queues. As a result of this AVQ instead of

marking packet also ends up dropping packets. Consequently both AVQ and Drop

Tail show a comparatively large number of retransmissions as compared to vAVQ.

The vAVQ algorithm has shorter virtual buffer (6 packets) and thereby frequently

marks packets. Moreover, since the arrival rate for the short flows is more (than

long flows) they get a proportionately larger share of marks and this allows long

flows to get more share of the bottlenecked link.

Table 6.2 also shows the results when we lower bounded the demand estimates

to half of path capacity. We can see that as the demand estimates improve the

performance of the proposed algorithm also improves. In another experiment, we

varied the virtual buffer lengths. Specifically, we chose different virtual buffer lengths

for the long and the short flows. Our initial results show that a smaller virtual buffer

length for short flows (as compared to that for long flows) reduces the average queue

size further. This is because, the short flows go through only one bottleneck, as such

they are the biggest contributor to the demand at any bottleneck. As such, a large

value of virtual buffer length for them ensures that the virtual buffer length does

not over flow often and as a result fewer packets are marked. As such, the biggest

contributor to traffic generally passes unchecked and average queue size continues

to be high.

165

6.4 Discussion

In this section we will discuss the merits and limitations of vAVQ. As the

results show, the edge-based queue management scheme can reduce the average

queueing delays and does not require extensive network upgrades. We believe that

this is an area of research which needs to be investigated further as it could lead to

interesting and deployable queue management algorithms.

In this thesis we have presented an abstract framework for managing bottle-

neck queues from the network edge. Specifically, we conjecture that if we run an

AQM, at network edge, per path then we can reduce the average queueing in the

network. For this purpose, in this Chapter we propose use of packet probes to iden-

tify the bottleneck router. However, we are not interested in finding exactly which

router is back logged rather we just try to find the bottlenecked capacity and the

peak demand on that path. Thereupon, we propose that through an edge based

AQM we can match this demand to some desired fraction of bottlenecked capacity

(which in turn in the desired network utilization). Now, if this network utilization

factor is less than 100 then at steady state the total input (on the path) will always

be less than the bottleneck link capacity leading to near zero queues.

The edge-based AQM scheme presented in this thesis is a novel concept which

to the best of our knowledge has not been explored before. Moreover, our results

suggests that this line of work entails very interesting possibilities and needs to be

evaluated further. However, the evaluation of the vAVQ is by no means thorough

and many of it’s building blocks needs to be thoroughly investigated. In this section

we will look at all the building blocks of the vAVQ and discuss how they can be

improved further.

The key to a successful operation of the proposed scheme is the accuracy

of the estimation component. It is through estimation that we try to find the

bottlenecked link capacity and demand estimates. Inaccuracies in either estimates

can severely constrain the performance of the proposed algorithm. As shown in

Section 6.3.2 the performance of the algorithms severely suffers because of errors

in estimation. Moreover, the scheme presented in this paper entails use of priority

queues to estimate the path capacity. In absence of priority queues, we will have to

166

take up more frequent probing to estimate the path capacity. In such a scenario,

we propose that we send N pairs of back-to-packets and the maximum estimated

value from these values might be taken as the bottleneck link capacity. Further, this

value of N can be calculated depending upon the estimate of the loss rate in the

network. For example, if the loss estimate for the network is p then by sending at

least 1/p probe packet pairs we can argue that at least one pair will be go through

the network without getting dropped and we will have an estimate of the path

capacity. However, if p is large then we will need to send lot of probe packets and

thereby will increase the control traffic in the network.

Estimating effective end-to-end capacity is an active area of research [59, 47,

54, 50, 26]. However, all the current proposals incur an error of at least 10%. We

believe we can leverage the current work in this area. However, to estimate demand

we not only have to rely on estimates of effective capacity but also estimates of

path capacity. As such, any errors in either estimates will effect our calculations

about the path demand. Besides errors in estimation the proposed model may also

suffer because the demand estimate and path capacity might not always correspond

to the same physical bottleneck. However we can argue that our path capacity

estimate will mostly likely identify the most constrained link in the network. As

such, in multi-bottleneck scenarios we might be trying to match the demand of

some bottleneck link to that of most constrained bottleneck link. As a result of this

mis-match the most constrained link might continue to be a bottleneck. However,

if we run a vAVQ for every path, then since its likely that with time we will match

the demand to the respective bottleneck link capacities. This also follows from the

premise that at any time we are trying to match the demand to some percentage

(less than 100) of network capacity. As such, in steady state the total demand will

be less than the network capacity and the queueing will be there to accommodate

the burst arrivals. None the less, this is needs to investigated further.

Another configuration parameter on which the performance of vAVQ depends

is the length of the virtual buffer. Our results have shown that a large value of

virtual buffer queue will result in a marginal improvement in performance. This

is because, if the virtual buffer is large then most likely there is always space to

167

enque incoming packets or in other words the queue will drain fast. As such, the

virtual queue will rarely overflow and the network will operate with near full queues.

On the other hand, very small values of virtual buffer length will result in frequent

marking (or dropping) which might reduce the throughput and also cause consid-

erable oscillations in the queue size. Thus, configuration of virtual buffer length is

critical to good performance of vAVQ. In absence of reverse path congestion TCP

will send two back-to-back packets and thus its likely that the burst size will be 2

packets. The results presented in Chapter 3 Section 3.12.4 further substantiates our

hypothesis that the burst size in the network is 2 and rarely 3. As such taking into

account statistical multiplexing and burst size, two packets buffer per flow per path

will probably be an ideal virtual buffer length.

The proposal presented in this chapter conveys a modified price to the end-

user, i.e., instead of communicating the end-to-end price we are now communicating

a price which accrues out of matching path demand with path capacity. We con-

jecture that this modified price is representative of the maximum price on any link,

on the source’s path, in the network. This modified price will change the utility

function which a source will be modifying. Since every utility function is associ-

ated with a certain kind of fairness, this modification of utility function results in a

different fair distribution of equilibrium rates. We need to analytically analyze the

vAVQ scheme to characterize the equilibrium rate allocation in the network. Fur-

ther, through an analytical characterization of the model we can possibly find ways

to configure the virtual buffer length and comment on the steady state behavior of

the algorithm, specifically answer whether the proposed scheme is stable or not.

Current AQM proposals require deployment at all routers in the network,

which is not only requires significant network upgrade but is also expensive. More-

over, the core routers in the network are very fast and requirement to perform queue

management may slow them down beyond the line speed. Further, these routers were

designed to only store and forward packets and this also fits well with the end-to-end

design principle in the network. Also, this high speed of core routers makes them ill

equipped to do per-flow or per-stream based calculations. On the other hand, edge

routers are typically slow, have fewer flows (or streams) passing through them and

168

thus can easily manage flows. As such, the ability of vAVQ to operate at network

edge and still match the input rate to the network capacity (and thus intrinsically

perform queue management) makes it suitable for deployment. Further, as this the-

sis shows despite the limitations presented above, the initial results with vAVQ are

very encouraging. We believe this is a line of research which has not been explored

before and needs to be evaluated further.

6.5 Conclusions and Future Work

The Internet operates with TCP and Drop Tail queueing. Several studies have

shown that TCP’s and network’s performance degrades on a network of Drop Tail

queues. One of the main reasons behind this poor performance of Drop Tail queues

is that it does not manage queues and thus often operates with near full queues.

In this chapter we have proposed a framework called virtual AQM to man-

age bottleneck queue from the network edge. The most interesting aspect of this

proposal is that it does not require the placement of active queue management com-

ponent at the router. Thus it allows the management of bottleneck queues on a

network of Drop Tail queues. The framework uses packet probes to estimate the

maximum demand and minimum capacity of a path. Thereupon, it uses an edge

based AQM, based on AVQ, to match the demand estimates to some desired target

network utilization. Since the desired network utilization is often (slightly) less than

one, at steady state the input traffic in the network is less than the network capacity

and as such the steady state queue sizes should be close to zero.

We implemented virtual AQM framework in NS and evaluated it for both

single and multi-bottleneck topologies. Our initial results show that this framework

can reduce steady state queue size on a network. However, the model proposed in

this chapter is sensitive to errors in estimation of path capacity and demand. These

errors are especially important in a multi-bottleneck scenario. Further, in a multi-

bottleneck scenario the demand and path capacity estimate need not correspond

to the same physical bottleneck. As such, in these situations the gains in reducing

steady state queue size might not be as significant as those with single bottleneck.

The evaluation of the model, as presented in this chapter, is by no means thorough.

169

However, this line of work entails very interesting possibilities and needs to be

evaluated further.

The framework presented in this chapter, virtual AQM shows that we can

de-couple the task of management of bottleneck queues and it’s placement. In

other words, for managing queues in a network, we do not require an active queue

management component to be present at every bottleneck. We show that using

end-to-end packet probes and a virtual AQM module, we can manage the bottleneck

queues at the network edge.

170

Time in Seconds

Ins
tan

tan
eou

s Q
ueu

e L
eng

th

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

(a) Instantaneous Queue Length for Drop Tail Queue

Time in Seconds

Ins
tan

tan
eou

s Q
ueu

e L
eng

th

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

(b) Instantaneous Queue Length for AVQ

Ins
tan

tan
eou

s Q
ueu

e L
eng

th

Time in Seconds

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

(c) Instantaneous Queue Length for vAVQ

Figure 6.10: Multi-Bottleneck: Instantaneous Queue Length evolution at
the first Bottleneck

171

Time in Seconds

Ins
tan

tan
eou

s Q
ueu

e L
eng

th

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

(a) Instantaneous Queue Length for Drop Tail Queue

Time in Seconds

Ins
tan

tan
eou

s Q
ueu

e L
eng

th

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

(b) Instantaneous Queue Length for AVQ

Time in Seconds

Ins
tan

tan
eou

s Q
ueu

e L
eng

th

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

(c) Instantaneous Queue Length for vAVQ

Figure 6.11: Multi-Bottleneck: Instantaneous Queue Length evolution at
the second Bottleneck

CHAPTER 7

Conclusions and Future Work

Congestion control has been the mainstay of the stability and robustness of the

Internet. In 1980s, Internet suffered a series of failures which resulted in conges-

tion collapse and the event is commonly referred to as Internet meltdown. These

failure prompted increased efforts in understanding and solving the congestion con-

trol problem. As a result of this research, several end and network based solutions

for congestion avoidance and control were proposed. TCP’s congestion avoidance

and control algorithm is one such end system based proposal and has fast become

the most popular and widely used transport protocol. However, the other network

based proposals for congestion avoidance and control have not been so favored and

consequently lacked deployment on the Internet.

These network based proposals mainly include router based Active Queue

Management (AQM) schemes for proactively managing bottleneck queues (and link).

However these AQM schemes are beset with parameter configuration problem. This

leads to implementational complexities and is one of the major reason why the pro-

posed solutions are not implemented in real networks. In this thesis we have outlined

deployable end-system and edge based architectures for congestion service which can

bridge the gap between deployment concerns and desirability of congestion control

functionality. In order to develop deployable solution it is essential to separate the

congestion control tasks from their placement in the network. For example, man-

agement of selfish behavior is a congestion control task which is presently coupled

with router based Active Queue Management (AQM) design. In contrast,we show

that this task can be achieved at the end or the network edge by transparently

engineering congestion penalties.

In this thesis we propose Randomized TCP, an end-system based solution, to

emulate AQM behavior on a network of Drop Tail queues. Specifically, we propose

to randomize the packet sending times in TCP. In Randomized TCP successive

packets of a window are sent after an interval of RTT (1 + x)/cwnd, where cwnd is

172

173

the congestion window in packets and x is a random number drawn from an Uniform

distribution on [-1,1]. This solution is distributed, can be implemented at the end

systems and therefore is very attractive from an implementation perspective.

Randomized TCP introduces randomization in the network which helps break

flow synchronization. Loss of synchronization thereupon results in lesser burst losses,

reduction of phase effects, removal of Drop Tail’s bias against flows with longer RTT

flows and improvement in fairness in the network. We evaluated Randomized TCP

for a variety of single and multi-bottleneck topologies. Our results show that a

presence of even a single Randomized TCP at a bottleneck is helpful in improving

performance of the network. Thus even an incremental deployment of Randomized

TCPs would benefit the entire group of users. Finally, we extended the randomiza-

tion of sending times to other window based protocols, primarily Binomial conges-

tion control schemes. Again, randomization of sending times, improves the fairness

in the network and allows different TCP Friendly Binomial schemes to share band-

width equitably. Finally, through our proposal, Randomized TCP we show that

we can de-couple the need for introducing randomization in the network from AQM

schemes. Instead, we can do it through simple end system based modifications.

Though Randomized TCP improves performance of TCP and network there

is a limit to how much control that can be achieved by end-system schemes, espe-

cially in a network which operates with disparate congestion control schemes. These

different rate control schemes present us with the problem of congestion response

conformance which manifests itself as smaller problems of fairness and management

of selfish behavior in the network. As a first step towards addressing these issues,

we first define selfish behavior and conformance. In this thesis, different rate control

schemes are called conformant if they are maximizing the same utility function. In

this thesis, we define TCP Friendly schemes as the conformant schemes. There-

after we use this definition of conformance to define selfish end-system rate control

schemes.

In this thesis we propose, Uncooperative Congestion Control, an edge system

based re-marking framework to enforce congestion response conformance on the

Internet. We achieve this by transparently managing the effective range of user’s

174

utility functions. More specifically, users may choose arbitrary utility functions, but

the edge of the network can re-map these utility functions into a target range of

utility functions. This framework thus lets the network choose the target utility

functions and thereby allows it to distribute resources amongst users according to

some specified fairness criteria. Alternatively, this framework also considers provid-

ing fairness from a network’s point of view and thus effectively decouples the fairness

from user’s utility functions.

The proposed framework can be implemented on the network edges and can

work with either dropping or marking enabled network. Also the edge based re-

marking is independent of the buffer management policies in the network and there-

fore works even with a network of Drop Tail queues. Moreover, the flexibility of the

framework to map any utility function to any target utility function helps it provide

broad range of fairness criteria. This edge based re-marking model also suggests

that the management of selfish flows in the network need not be necessarily coupled

with AQM design, instead it can be achieved by simple edge based modules. Finally

the re-marking architecture proposed in this thesis can be thought of as a new class

of traffic conditioning scheme and can be leveraged to provide service differentiation.

We have evaluated the edge based re-marking framework for a variety of single

and multi bottleneck scenarios with both background web traffic and reverse path

congestion. Our results show that the framework can map utility functions in all

the cases, with either dropping or marking being used to convey penalties. However,

a limitation of the model is that it may not work well in cases of path asymmetry.

We believe that the uncooperative congestion control model, specifically the utility

function transformation, can be used to manage malicious behavior of sources on the

Internet; in particular, those constituting collusion of many sources (e.g., distributed

denial-of-service). Flash attacks like Slashdot effect, coordinated attacks to bring

down peer-to-peer or overlay networks and selfish behavior in online games are some

examples of users colluding to exploit network to their advantage. Modeling the

network and users as a multi-player cooperative game can capture such a behavior.

In this thesis we present an abstract framework for managing bottleneck queues

from the network edge or end system. We conjecture that for any flow, through end-

175

to-end probes, we can identify the capacity of the congested link and use it to control

the rate of the flow. Further, we can group flows according to the path they take in

the network, find the congested link on that path and run an AQM at the network

edge (ingress) to limit the rate of these flows. Moreover, any AQM schemes can be

run at the edge to limit the rate of the flows (to the corresponding bottleneck). In

this thesis we refer to this framework as virtual AQM (vAQM) and in this thesis

we outline a specific algorithm, virtual AVQ (vAVQ), which uses AVQ to limit the

rate of the flows at the network edge. The main advantage of this model is that

the underlying network can still use Drop Tail queuing while allowing us to manage

queues from network edges. The most interesting aspect of this proposal is that it

de-couples the placement of active queue management component at the router from

the task of managing bottleneck queues.

We have evaluated the vAVQ framework for both single and multi-bottleneck

scenarios. Our initial results suggest that the proposed framework can significantly

reduce bottleneck queue lengths without compromising on link utilization or fairness.

However, the model presented in this thesis is sensitive to errors in estimation and

the size of the virtual buffer. These errors becomes especially important in a multi-

bottleneck scenario. Moreover, in a multi-bottleneck setup, the path capacity and

demand estimates may not correspond to the same physical bottleneck. As a result,

the gains with vAVQ in a multi-bottleneck scenarios is less than that in a single

bottleneck setup. However, we believe that this is an area of research which has not

been explored before and needs to be investigated further as it could lead to novel,

interesting and deployable queue management algorithms.

176

[1] “Network simulator,” http://www.isi.edu/nsnam.

[2] “Utime: Microsecond resolution timers for linux,”

http://www.ittc.ku.edu/utime/.

[3] A. A. Abouzeid and S. Roy, “Analytic understanding of red gateways with

multiple competing tcp flows,” in IEEE Globecom, 2000.

[4] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the performance

of tcp pacing,” in IEEE Infocom, 2000.

[5] A. Akella, S. Seshan, R. Karp, S. Shenker, and C. Papadimitriou, “Selfish

behavior and stability of the internet: A game theoretic analysis of tcp,” in

ACM Sigcomm, 2002.

[6] M. Aron and P. Druschel, “Tcp: Improving startup dynamics by adaptive

times and congestion control,” 1999, tR98-318, Rice Univ. Techreport.

[7] S. Athuraliya, S. H. Low, and D. E. Lapsley, “Random early marking,” in

QofIS, 2000.

[8] H. Balakrishnan, V. Padmanabhan, and R. Katz, “The effects of asymmetry

in tcp performance,” in ACM/IEEE Mobicom, 1997.

[9] D. Bansal and H. Balakrishnan, “Binomial congestion control scheme,” in

IEEE Infocom, 2000.

[10] J. C. R. Bennett and H. Zhang, “Worst case fair weighted fair queueing,” in

IEEE Infocom, 1996.

[11] D. P. Bertsekas and J. N. Tsitsiklis, “Parallel and distributed computation:

Numerical methods,” 1989, prentice-Hall.

[12] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An

architecture for differentiated services,” December 1998, iETF RFC 2475.

[13] T. Bonald and L. Massoulie, “Impact of fairness on internet performance,” in

ACM Sigmetrics, 2001.

177

[14] B. Braden and et. al., “Recommendations on queue management and

congestion avoidance in the internet,” April 1998, iETF RFC 2309.

[15] L. Brakmo and L. Peterson, “Tcp vegas: End to end congestion avoidance on

a global internet,” IEEE Journal on Selected Areas in Communication, 1995.

[16] K. Chandrayana, K. Avrachenkov, E. Altman, and C. Barakat,

“Complementarity formulation for tcp/ip networks: Uniqueness of solution

and relation with utility optimization,” 2002.

[17] K. Chandrayana and S. Kalyanaraman, “On impact of non-conformant flows

on a network of droptail gateways,” in IEEE Globecom, 2003.

[18] ——, “Uncooperative congestion control,” in ACM Sigmetrics, 2003.

[19] K. Chandrayana, S. Ramakrishnan, B. Sikdar, S. Kalyanaraman, A. Balan,

and O. Tickoo, “On randomizing the sending times in tcp and other window

based algorithm,” Conditional Accept for Journal of Computer Networks,

2003.

[20] K. Chandrayana, B. Sikdar, and S. Kalyanaraman, “Scalable configuration of

red queue parameters,” in IEEE High Speed ¡witching and Routing, 2000.

[21] D. Chiu and R. Jain, “Analysis of the increase/decrease algorithms for

congestion avoidance in computer networks,” Journal of Computer Networks

and ISDN, vol. 17, issue = 1, pp. 1–14, 1989.

[22] M. Christiansen, K. Jaffay, D. Ott, and F. D. Smith, “Tuning RED for web

traffic,” in ACM Sigcomm, 2000.

[23] A. Das, D. Dutta, and A. Helmy, “Fair stateless aggregate marking

techniques using aqm techniques,” in IEEE/IFIP MMNS, 2002.

[24] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair

queuing algorithms,” in ACM Sigcomm, 1989.

[25] ——, “Analysis and simulation of fair queueing algorithm,” in ACM

Sigcomm, 1989.

178

[26] C. Dovrolis, P. Ramnathan, and D. Moore, “Packet dispersion techniques

and capacity estimation,” in IEEE Infocom, 2001.

[27] D. Dutta, A. Goel, and J. Heidemann, “Oblivious aqm and nash equilibria,”

in IEEE Infocom, 2003.

[28] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “Blue: A new class of

active queue management algorithms,” 1999, uM CSE-TR-387-99, Univ. of

Michigan Techreport.

[29] W. C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A self-configuring red

gateway,” in IEEE Infocom, 1999.

[30] ——, “Stochastic fair blue: A queue management algorithm for enforcing

fairness,” in IEEE Infocom, 2001.

[31] W.-C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A self-configuring

RED gateway,” in IEEE Infocom, 1999.

[32] S. Floyd, “Connections with multiple congested gateways in packet-switched

networks part 1: One-way traffic,” ACM Computer Communication Review,

vol. 21, pp. 30–47, 1991.

[33] ——, “Red: Discussions of setting parameters,,” 1997, rED Homepage,

http://www-nrg.ee.lbl.gov/floyd/REDparameters.txt.

[34] ——, “Congestion control principles,” September 2000, iETF RFC 2914.

[35] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control in

the internet,” IEEE/ACM Transactions on Networking, vol. 7, pp. 458–472,

1999.

[36] S. Floyd, M. Handley, and E. Kohler, “Problem statement of dcp,” 2002.

[37] S. Floyd and V. Jacobson, “On traffic phase effects in packet-switched

gateways,” ACM Computer Communication Review, vol. 21, 1992.

179

[38] ——, “On traffic phase effects in packet-switched gateways,”

Internetworking: Research and Experience, vol. 3, pp. 115–156, 1992.

[39] ——, “Random early drop gateways for congestion avoidance,” IEEE/ACM

Transactions on Networking, vol. 1, pp. 397–413, 1993.

[40] S. Floyd, J. P. M. Handley, and J. Widmer, “Equation-based congestion

control for unicast applications,” in ACM Sigcomm, 2000.

[41] R. Gibbens and F. Kelly, “Distributed connection acceptance control for a

connectionless network,” in 16th International Teletraffic Congress, 1999.

[42] S. Gorinsky, S. Jain, H. Vin, and Y. Zhang, “Robustness to inflated

subscription in multicast congestion control,” in ACM Sigcomm, 2003.

[43] R. Gupta, M. Chen, S. McCanne, and J. Walrand, “Webtp: A receiver driven

transport protocol,” 1999, check it out.

[44] A. Habib and B. Bhargava, “Unresponsive flow detection and control using

the differentiated services framework,” 2002.

[45] E. Hashem, “Analysis of random drop for gateway congestion control,” 1989,

report LCS TR-465, MIT.

[46] C. V. Hollot, V. Misra, D. F. Towsley, and W. Gong, “A control theoretic

analysis of RED,” in IEEE Infocom, 2001.

[47] N. Hu and P. Steenkiste, “Evaluation and characterization of available

bandwidth probing techniques,” IEEE Journal on Selected Areas in

Communication, vol. 21, 2003.

[48] S. Jacobs and A. Eleftheriadis, “Providing video services over networks

without quality of service guarantees,” in RTMW, 1996.

[49] V. Jacobson, “Congestion avoidance and control,” in ACM Sigcomm, 1988.

180

[50] R. Jain and S. Routhier, “Packet trains: Measurements and a new model for

computer network traffic,” IEEE Journal on Selected Areas in

Communication, vol. 4, pp. 1162–1167, 1986.

[51] S. Jin, L. Guo, I. Matta, and A. Bestavros, “TCP-friendly SIMD congestion

control and its convergence behavior,” Tech. Rep., 2001.

[52] J. Ke and C. Williamson, “Towards a rate based tcp protocol for the web,”

in MASCOTS, 2000.

[53] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks:

Shadow prices, proportional fairness and stability,” Journal of the

Operational Research Society, vol. 49, pp. 237–252, 1998.

[54] S. Keshav, “A control-theoretic approach to flow control,” in ACM Sigcomm,

1991.

[55] H. K. Khalil, “Non linear systems,” pp. 100–101, 1996.

[56] S. Kunniyur and R. Srikant, “End-to-end congestion control: Utility

functions, random losses and ecn marks,” in IEEE Infocom, 2000.

[57] ——, “Analysis and design of an adaptive virtual queue (avq) algorithm for

active queue management,” in ACM Sigcomm, 2001.

[58] A. Kuzmanovic and E. Knightly, “Low-rate tcp-targeted denial of service

attacks (the shrew vs. the mice and elephants),” in ACM Sigcomm, 2003.

[59] K. Lai and M. Baker, “Measuring link bandwidths using deterministic model

of packet delay,” in ACM Sigcomm, 2000.

[60] D. Lin and R. Morris, “Dynamics of random early detection,” in ACM

Sigcomm, 1997.

[61] S. Low, “A duality model of tcp and queue management algorithms,” in ITC

Specialist Seminar on IP Traffic Measurement, Modeling and Management,

2000.

181

[62] S. Low and D. Lapsley, “Optimization flow control, i: Basic algorithm and

convergence,” IEEE/ACM Transactions on Networking, vol. 7, pp. 861–975,

1999.

[63] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and

S. Shenker, “Controlling high bandwidth aggregates in the network,” ACM

Computer Communication Review, 2002.

[64] R. Mahajan and S. Floyd, “Red-pd: Controlling high bandwidth flows at the

congested router,” 2001.

[65] A. Mankin, A. Romanow, S. Bradner, and V. Paxson, “Ietf criteria for

evaluating reliable multicast transport and application protocols,” June

1998, iETF RFC 2357.

[66] M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to deploy red,” in

ACM IWQoS, 1999.

[67] M. May, T. Bonald, and J.-C. Bolot, “Analytic evaluation of red

performance,” in IEEE Infocom, 2000.

[68] M. Mehta, “On randomizing the sending times in tcp: An implementation,”

2001, masters Thesis, ECSE, R.P.I.

[69] J. Mo and J. Walrand, “Fair end-to-end window-based congestion,”

IEEE/ACM Transactions on Networking, vol. 8, pp. 556–567, 2000.

[70] J. Moghul, “Observing tcp dynamics in real networks,” in ACM Sigcomm,

1992.

[71] T. J. Ott, T. V. Lakshman, and L. Wong, “Sred: Stabilized red,” in IEEE

Infocom, 1999.

[72] Packeteer, “http://www.packeteer.com.”

[73] J. Padhye, V. Firoiu, D. F. Towsley, and J. Kurose, “Modeling tcp reno

performance: A simple model and its empirical validation,” IEEE/ACM

Transactions on Networking, vol. 8, pp. 133–145, 2000.

182

[74] J. Padhye and S. Floyd, “On inferring tcp behavior,” in ACM Sigcomm,

2001.

[75] V. Padmanabhan and R. Katz, “Tcp fast start: A technique for speeding up

web transfers,” in IEEE Globecom, 1998.

[76] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Approximate fairness

through differential dropping,” 2001,

http://www.research.att.com/simbreslau/papers/afd-techreport.ps.gz.

[77] R. Pan, B. Prabhakar, and K. Psounis, “Choke - a stateless queue

management scheme for approximating fair bandwidth allocation,” in IEEE

Infocom, 2000.

[78] C. Partridge, “Ack spacing for high bandwidth-delay paths with insufficient

buffering,” 1998.

[79] N. Plotkin and P. Varaiya, “The entropy of traffic streams in atm virtual

circuits,” in IEEE Infocom, 1994.

[80] J. G. Proakis, C. M. Rader, F. Ling, M. Moonen, I. K. Proudler, and C. L.

Nikias, “Algorithms for statistical signal processing,” 2002, prentice-Hall.

[81] S. Raghunath, “Modeling the tcp loss rate process for efficient congestion

control,” Tech. Rep., 2002.

[82] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end rate-based

congestion control mechanism for real-time streams in the internet,” in IEEE

Infocom, 1999.

[83] I. Rhee, V. Ozdemir, and Y. Yi, “Tear: Tcp emulation at receivers – flow

control for multimedia streaming,” 2000, nCSU Technical Report.

[84] N. R. Sastry and S. S. Lam, “CYRF: A framework for window-based unicast

congestion control,” in ICNP, 2002.

[85] S. Shenker, “Fundamental design issues for the future internet,” IEEE

Journal on Selected Areas in Communication, vol. 13, 1995.

183

[86] S. Shenker, L. Zhang, and D. Clark, “Some observations on the dynamics of

a congestion control algorithm,” ACM Computer Communication Review,

vol. 20, pp. 30–39, 1990.

[87] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round

robin,” in ACM Sigcomm, 1995.

[88] M. Shreedhar and G. Verghese, “Efficient fair queueing using deficit round

robin,” in ACM Sigcomm, 1994.

[89] B. Sikdar, “Network traffic modeling and transmission control protocol,”

Ph.D. dissertation, R. P. I., 2001.

[90] B. Sikdar, K. Chandrayana, K. Vastola, and S. Kalyanaraman, “On reducing

the degree of second order scaling in network traffic,” in IEEE Globecom,

2002.

[91] ——, “Queue management algorithm and traffic self similarity,” in IEEE

High Speed Switching and Routing, 2002.

[92] W. Stevens, “Tcp slow start, congestion avoidance, fast retransmit, and fast

recovery algorithms,” 1997, iETF RFC 2001.

[93] I. Stoica, S. Shenker, and H. Zhang, “Core stateless fair queueing: Achieving

approximately fair bandwidth allocations in a high speed networks,” in ACM

Sigcomm, 1998.

[94] ——, “Core-stateless fair queueing: Achieving approximately fair bandwidth

allocations in high speed networks,” in ACM Sigcomm, 1998.

[95] I. Stoica and H. Zhang, “Providing guaranteed services without per flow

management,” in ACM Sigcomm, 1999.

[96] V. Visweswaraiah and J. Heidemann, “Improving restart of idle tcp

connections,” 1997, tech Report 97-661, Univ. of South California.

[97] C. H. Xia and Z. Liu, “Queueing systems with long-range dependent input

process and subexponential service times,” in ACM Sigmetrics, 2003.

184

[98] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Measurement and modeling

of the temporal dependence in packet loss,” in IEEE Infocom, 1999.

[99] Y. R. Yang, M. S. Kim, and S. S. Lam, “Transient behaviors of TCP-friendly

congestion control protocols,” in IEEE Infocom, 2001.

[100] C. You and K. Chandra, “Time series models for internet data traffic,” in

24th Conf. on Local Computer Networks, 1999.

[101] L. Zhang, S. Shenker, and D. Clark, “Observations on the dynamics of a

congestion control algorithm: The effects of two-way traffic,” in ACM

Sigcomm, 1991.

