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Abstract

Segmentation of tube-like biological structures, e.g., neurons and blood vessels,
allows extraction of structural measurements supporting quantitative studies ranging
from understanding neural growth to cancer research. While automated segmentation
algorithms minimize subjectivity associated with tedious manual segmentation, they
generally have parameter settings to cope with high variability in image data across
applications. Currently, these settings are chosen empirically, formulated heuristically,
or by trial-and-error with no assurance towards optimality. This work is motivated by the
need to automatically select parameter settings for segmentation algorithms since they
directly affect segmentation accuracy.

An objective trade-off between a probabilistic measure of image-content coverage
of a segmentation and its conciseness is based on the minimum description length
principle (MDL). The recursive random search (RRS) optimization algorithm is used to
efficiently explore combinations of segmentation algorithm parameter settings. For 3-D
images, computation time is reduced by coordinated-optimizations on non-empty,
representative subimages based on intensity and structural information.

The method is initially applied to 223 2-D images of human retinal vasculature and
cultured neurons, from four different sources, using a single segmentation algorithm
with 8 parameters. Relative to default settings, improvements in the proposed MDL-
based segmentation quality metric are strongly correlated with improvements in
agreement with ground truth (7 =0.78), ranging between 4.7 — 21% using 1000 function
evaluations. Paired #-tests showed that improvements are statistically significant

( p <0.0005). Most of the improvement occurred in the first 44 function evaluations. For

223 images, RRS outperforms other optimization algorithms (controlled random search,
multi-start pattern search, simulated annealing, and genetic algorithm) on average at all
1000 function evaluations. RRS with 1000 function evaluations is on average within
3.56% of the global optimum (6,804,000 function evaluations). The proposed
coordinated subimage-optimization method results in average speedup of 11.2X for 22
3-D neurons images.

This enables non-expert users to use segmentation algorithms without knowledge of

underlying algorithms, increases objectivity, and broadens applicability of the

XV



segmentation algorithm. It simplifies the user interface to just one optional parameter,
creating a consistent interface that allows developers to freely modify the algorithms.
The method allows adaptation of parameters across batches of images and delivers

higher morphometric accuracy.
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1. Introduction

A solution to the problem of automatically selecting segmentation algorithm
parameters/settings for tube-like biological structures such as neurons and vasculature is
presented using an optimization algorithm and the minimum description length (MDL)
principle to construct the objective function.

The primary goal is to enable a non-expert user to select parameters effectively, and
objectively, treating the segmentation software as a “black box.” The secondary goal is
to enable the algorithm developer to modify the internal details while maintaining a

consistent and simple external interface; and to minimize the cost of technical support.

1.1 Motivation

Segmentation partitions an image into its constituent elements or objects [1].
Segmentation is performed to obtain morphometrics, or structural measurements, of
structures captured in the images. It is one of the main components of image analysis
systems used in image-based biological studies. An image analysis system accepts
images as input and produces morphometrics. It may be fully-automated or one that
require user interactions. In this work, image analysis systems are limited in scope to
those that segment the structures and report morphometrics based on the segmented
structures (e.g., [2-6]).

The reported morphometrics allow image-based studies to answer biological
questions in a quantitative manner. For example, Figure 1 displays an image from a
study that investigates the guidance of neurite outgrowth by non-neural cells [7]. This is
possible because images contain spatial information, an advantage absent in other
quantitative study methods such as the rapid flow cytometry (up to 10,000 cells/sec [8,
9]) that requires the specimen tissue to be broken up. Furthermore, image-based studies
allow locations of specific responses or activities or structures of interest to be

pinpointed rather than quantified for an entire cell or a population of cells.
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Figure 1. Illustrates the effect of non-neuronal cells (Schwann cells) in guiding
neural outgrowth (Image source: D. Thompson, M. Cross, RPI). Schwann cells
shown in red are grown on microlithographically-patterned substrates. The
angular histogram (right) displays the extracted orientation of the Schwann cells
and the outgrowth direction of the neurites shown in green (cell analysis: G. Lin).

(a) (b)

Figure 2. Image-based biological studies allow spatial structures to be investigated
in association with each other. (a) A 512x480x%51 3-channel image of the
neurovascular unit containing vasculature (red), cell nuclei (green) and cytoplasm
(blue) shown in x-y, x-z and y-z maximum intensity projections. (Image source: C.
Bjornsson, K.L.. Smith, W. Shain, J. Turner, Wadsworth Center). (b) A 3-D
rendering of the segmented data, showing neuronal (cyan) and non-neuronal
(green) nuclei after associating the segmented structures in all 3 channels.
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In addition, imaged-based biological studies allow spatial structures to be
investigated in association with each other, i.e., investigation of functional and structural
relations among elements of a complex system [10]. For example, Figure 2a displays a
512x480x51 3-channel image of the neurovascular unit containing vasculature (red), cell
nuclei (green) and cytoplasm (blue). Panel (b) displays a 3-D rendering of the segmented
data, showing neuronal (cyan) and non-neuronal (green) nuclei after associating the
segmented structures in all 3 channels [10].

For this work, the structures of interest are neurons and vasculature. Neurons and
vasculature represents a broad range of quantitative studies in biology and medicine. As
an example for neurons, the morphometric study of directing and promoting neuronal
growth is important to understand the requirements to establish defined neural networks
[11]. For vasculature, the study of tumor vasculature morphometrics reveals insights on
controlling tumor growth and eventually shutting down the vasculature to starve the

cancer cells [12].

Figure 3. Displays a 3-D 512x480x301 image containing a dye-injected neuron in a
thick brain slice. Over a short distance, the dendritic and axonal segments resemble
tubes. (Image source: S. Lasek, D. Szarowski, J. Turner, Wadsworth Center).
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Neurons and vasculature are categorized as tube-like structures because they can be
locally’ approximated as a tube® throughout the structure [13], with exception of the
soma (cell body) of a neuron (Figure 3). In terms of representing these structures, they
can be represented as centerlines’ containing width information [13], or simply called as
traces [14].

Segmentation of neurons and vasculature can be done manually by a human
observer (e.g., [15-18]). Manual segmentation, not limited to neurons and vasculature, is
tedious and subjective. In addition to inter-observer disagreements, the same observer
may produce different results at different times, referred to as intra-observer variability.
On the other hand, automated segmentation algorithms produces fast and objective
results [3, 6]. Within the previously-defined scope of image analysis systems in this
work, automated segmentation algorithms are the critical components of automated
image analysis systems since they directly affect the accuracy of resulting
morphometrics.

Despite the advantages offered, one practical barrier to more widespread adoption of
automated image analysis systems in quantitative biomedicine is the need to
adapt/customize them to cope with biological variability (illustrated in Figure 4). To
achieve this, algorithm designers are forced to incorporate user-settable parameters. As a
result, users are faced with the difficulty of selecting these parameters without sufficient
knowledge of the internal mechanisms. Time-consuming manual trial-and-error, as well
as extensive developer support is often necessary to properly configure the software for a
given application. Even then, these settings are subjective, and there is no assurance of
optimality. Currently, settings for these algorithms are chosen empirically (e.g., [2, 3, 19,

20]) or formulated heuristically (e.g., [21]).

! The term “local” is defined as “within a short distance”, e.g., 2-3 pixels.

? The term “generalized cylinder” used by Al-Kofahi ef al. may be more appropriate for
structures that vary in width such as neuronal dendrites and vasculature.

3 Also called as “medial axes” in the literature.
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(b)

Figure 4. Inter- and intra-application variability that exists in neuron/vasculature
images, in panel (a) and (b) respectively. From left, panel (a) displays images of: (i)
neurons grown on topographically-modified semiconductor surface; (ii) human
retinal vasculature; (iii) fluorescently-labeled neuron in 3-D; (iv) brain vasculature.
Panel (b) displays 12 neuron images captured within the same study.

Accuracy of extracted measurements may also be affected by different algorithm
settings. For example, Figure 5a shows a phase contrast image of cultured neurites
grown on an imprinted surface with known orientations of 45° and 90°. Panel (b)
displays the automatically-generated traces using default settings. Panel (c) displays the
traces obtained with automatically selected parameters using the method presented in
this dissertation. The normalized angular histogram of measured segment orientations
extracted from the automatically-generated traces is displayed in panel (d). Note the
correct peak at 45° obtained using automatically-selected settings vs. 34° using default

settings.
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Figure 5. Improved segmentation settings lead to more accurate measurements. (a)
A phase contrast image of cultured neurites grown on an imprinted surface with
known orientations of 45° and 90°. (b) Automatically-generated traces using default
settings. (c) Traces obtained with automatically selected parameters using the
method presented in this dissertation. (d) The normalized angular histogram of
measured segment orientations extracted from the automatically-generated traces.
Note the correct peak at 45° obtained using automatically-selected settings vs. 34°
using default settings. (Image source: G. Banker, OHSU).

1.2 Groundwork

To date, this group has designed and implemented a segmentation algorithm to trace

tube-like structures, with a wide range of successful application areas including
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neurobiology [3, 19], ophthalmology [14], and angiogenic tumor vasculature studies [2].
In principle, this algorithm is broadly applicable to the segmentation of tube-like
structures. In practice, the segmentation performance depends upon the characteristics of
the image data. For instance, different levels of noise, structural irregularities, and
imaging artifacts are encountered in different applications.

To cope with the challenges posed by a novel application, the simplest approach to
generalize the algorithm is to vary certain constant values such as tracing step size and
sizes of correlation kernels [19]. This simple-minded approach was often adequate when
performed by an experienced algorithm designer, who had strong intuitions as well as
specific knowledge of the segmentation algorithm. However, it proved unacceptable in
the hands of an end user, especially a user from a different discipline who did not have
knowledge of the internal workings of the segmentation algorithm. A practical trade-off
to assist the user is to provide “default” settings that are known to produce acceptable
results over a broad range of applications. Even these are quite limiting. They are, in
essence, merely a non-systematic accumulation of the empirical temporary solutions for
previously-studied applications.

A somewhat more expensive approach to adapt an algorithm to a novel application
is to modify the algorithm itself. This proved necessary in some cases. For instance, the
tracing algorithm of Can et al. [14] was extended by Al-Kofahi et al. [19] to incorporate
variable-length correlation kernels in order to cope with the discontinuities encountered
in images of neurons grown on topographically-modified surfaces [11]. Subsequently,
the 3-D tracing algorithm of Al-Kofahi et al. [3] was extended by Abdul-Karim et al. [2]
to incorporate a median-based kernel instead of the standard correlation kernel (e.g., as
in [3]) in order to cope with the irregularity of tumor microvasculature. While such
extensions are inevitable and desirable, they pose a practical difficulty to the non-
specialist user. The newer algorithms are more complex and introduction of additional
parameters to handle diverse cases is unavoidable. The problem of selecting these
parameters has now become even more challenging to the user.

Interestingly, the end user is not the only affected party. This occurs even when the
number of parameters goes down due to advancements in the algorithm design. The

designer of graphical user-interfaces for the segmentation software is faced with the
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challenge of encapsulating and hiding the algorithm details from the external user
interface. This is harder to do with changing number and type of parameters required by
the algorithm.

With the above considerations in mind, it is helpful to identify key application-
specific aspects of the segmentation algorithm. In this work, four such elements are
identified: (i) mathematical model describing the local anatomic structure of the objects
of interest ¢ ; (i1) mathematical model describing the local intensity profile of the
objects of interest 7 ; (iii) parameters related to the fitting of the local model (items 1
and 2 above) to the image data; (iv) parameters related to global (image-wide) model
fitting.

Models, in the context of this work, are assumptions in precise mathematical forms
specific to the biological structure to be segmented. Locally, models are associated with
the structural/geometrical/anatomical characteristics of the biological object and/or
based on observable image features such as intensity profile and texture. Then the local
models are fitted to the image using strategies such as matched-filtering, generalized
likelihood-ratio test, regression analysis, or by formulations of goodness-of-fit measures
between the models and the image content. Then the structures are segmented from the
image by a global fitting strategy, which can be a pixel-wise operation [20, 22, 23],
exploratory [2, 3, 13, 14, 21, 24], or by minimum-cost path estimations [25-27]. These

concepts will be further clarified with respect to the current literature in Chapter 2.

1.3 Systematic Approach to Select Parameters

Borrowing the feedback-loop concept from signal processing, a segmentation-
optimization framework is proposed, coupling a segmentation algorithm with an
optimization algorithm. To guide the optimization algorithm, the framework
incorporates an automatic evaluation/assessment of the quality of a segmentation
resulting from a given combination of the algorithm parameter settings. Figure 6
illustrates the traditional approach to segmentation of biological images in contrast to
this framework. In the latter, the automated segmentation quality assessment drives the

parameter selection process. Ideally, the optimal segmentation algorithm parameters—a

vector éeQ in the space of all possible algorithm parameter combinations—
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corresponds to an optimal segmentation and is the one that we look for. In practice, the
search for the optimal parameter settings 2:; may be limited by certain computational

budget. In either case, the notion of segmentation optimality is made precise in the next
section. In other words, given 2 segmentations, it tells how to quantitatively conclude

one is better than the other.

Parameter Vector
EeQ
Segmentation Algorithm
zZ — e
Image fAZ.&->M Segmentation
(a)
Structural Welghtmi ?calar Parameter
Model G ae(0,1) Space O
Segmentation Segmentation ! Global i

7 - Algorithm N Quality Assessment Qi

Image f(j,él) Segmentation Q( A

N =M E =8
Final Output

i T i‘ Optimization
RS ,a,g) Quali yi Algorithm

éi «— gi+l e Q
Updated Parameters

(b)

Figure 6. Illustrates the proposed self-optimizing image segmentation approach.
Panel (a) shows a traditional segmentation algorithm in which the parameter
settings & are set empirically for each input image 7 . Panel (b) illustrates the

proposed method in which a global optimization algorithm efficiently explores the
parameter space ) driven by a segmentation quality assessment value based on
trading off conciseness of the segmentation versus its image-content coverage. The
user optionally specifies a single universal parameter o to override the trade-off.

1.4 Segmentation Optimality

We are in effect deciding which segmentation .47 to be optimal among the set of
all computable segmentations {M}—obtained by varying the algorithm parameters.

The traditional maximum-a-posteriori (MAP) criterion that minimizes the probability of
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error [28] can be opted if prior probabilities on the segmentations can be specified. In

this work, error is defined as the disagreement between a segmentation and the ground

truth* at each image pixel. The MAP criterion is to choose the segmentation /l}/, that

maximizes the posterior probability P(M| zZ ):

P(Z\M)P(M
Ploar|7) -2 |P(;)( ) (1)
such that:
/l}li=argmaXP(Z|./l//i)P(./f//i), (2)
A

for the input image Z , dropping the constant P(Z ) term. Unfortunately, the prior
probability P(.A7)is not well defined [29]. Furthermore, if a uniform probability

distribution for the prior probability P(.47) is assumed, then the MAP criterion reduces

to the maximum-likelihood (ML) criterion that measures only the goodness-of-fit and has
a tendency to overfit models to the data.

It turns out that the MAP criterion can still be used if optimal descriptive languages
for a segmentation and the image given the segmentation are specified. Then the
minimum description length (MDL) [30, 31] criterion can be adopted to choose the
optimal segmentation. In other words, the MDL principle is chosen in this work because
it has been shown to be equivalent to the MAP method that minimizes the probability of
error [29].

MDL is a principle for statistical model selection and statistical inference based on
the simple idea that the best way to capture regular features in data is to construct a
model in a certain class which permits the shortest description of the data and the model
itself [32]. It guides the trade-off between model overfit and model simplicity in an
objective manner. For the purpose of this work, it guides the trade-off between
segmentation coverage of image structural content and conciseness of the segmentation

itself. As an illustrative example for fitting a polynomial to a set of n points (reproduced

* To avoid introducing further subjectivity in this work, ground truth is obtained from
public-domain databases of manual segmentations and by consensus of manual
observers when provided by these databases.
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from [33]), Figure 7 displays fit with a line (1*-degree polynomial), a complex fit with

(n —1)th degree polynomial’, and a trade-off fit with a 3™ degree polynomial. Figure 8

illustrates an analogous example to image segmentation. Given the amount of structure
shown in panel (a), panel (b) displays a complex segmentation, and panel (c) displays
the trade-off segmentation. Both segmentations were obtained using different parameter

settings for a segmentation algorithm [19].

Figure 7. Demonstrates the MDL principle in guiding model selection, with an
example to polynomial fitting to a set of n points. The plots show a simple, a
complex, and a trade-off (3rd degree) polynomial. (Figure reproduced from [33]).

(b) (c)

Figure 8. Given an image displayed in panel (a), panel (b) displays a complex
segmentation, and panel (c) displays a trade-off segmentation.

Once the descriptive languages are specified, the MDL criterion is equivalent to the

MAP criterion. This was first presented in the context of image partitioning by Leclerc

> For everyn points, there exist a polynomial of the (n-1) ™ degree that goes through all
n points.
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[29]. By taking the negative log of the probabilities in (1) the MDL criterion becomes to

choose the segmentation /l;ll that minimizes:
~log, P(M| Z)=~log, P(Z| M)-log, P(M]). (3)
Now, let || to be the description length in bits. Given an optimal descriptive

language £ to describe the segmentation .47 , we need

m

£, (M) ==log, P(A1) bits (4)
to describe the segmentation .47 [29]. Likewise, given the optimal descriptive language
£, to describe the image Z given the segmentation .47, the description length
becomes:

|, (7| A1) =—log, P(Z| A1) bits. (5)
Then we can see that the MDL criterion is equivalent to the MAP criterion, which is to

choose the segmentation .47 such that

M=argmin‘4,(]|ﬂ//i)‘+‘4n(ﬂ/li)‘. (6)
M,

In Chapter 3 we will describe the methods to exactly compute the description

length. Experimental results for segmentations that minimize the description length are

presented in Chapter 4.

1.5 Summary of Contributions

The primary contribution of this work is to the field of automated segmentation of
biological imagery—specifically of tube-like structures such as neurons and vasculature.
The related literature is summarized in Chapter 2. The detailed contributions of this
work are summarized below along with brief mentions of the state of the art:

1. Automated parameter selection for segmentation of tube-like biological
structures.
a. Minimizes subjectivity associated with hand-tunings of parameter settings
for automated image segmentation algorithms for tube-like structures. Currently,

parameters for these algorithms are chosen empirically (e.g., [2, 3, 14, 19, 20, 27]) or
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formulated heuristically (e.g., [21, 34]). Unlike related works in computer vision
applications by Min et al. [35] for range image segmentation and the closed-loop
reinforcement learning framework by Peng and Bhanu [36], the proposed parameter
selection method is fully unsupervised.

b.  The segmentation computed with the automatically-obtained optimal algorithm
parameters reveals limitations of the segmentation algorithm. This can be used as
an objective measure when choosing a segmentation algorithm to use for the specific
application at hand. Currently, segmentation accuracy reports in the literature were
of segmentations computed with empirical parameters, with no notion of optimality
in terms of the parameters and the resulting segmentation (e.g., [2-4, 11, 13, 14, 19,
20]).

c.  Segmentation algorithms in their optimal configurations can be used in a high-
throughput batch execution system for large amount of similar images—acquired
within the same study and may be of different specimens. To date, other than for
time-series images [4, 37], batch segmentation for images containing tube-like
biological structures has not been explicitly presented in the surveyed literature
(Chapter 2).

2. Formulation of a segmentation quality metric, or optimality measure, associated
with each segmentation originating from segmentation algorithm parameter
settings. Specifically, the MDL-optimality criterion [29] is specialized for biological
image segmentation using a local structure-indicator function that measures the
goodness-of-fit of local models and effectively captures the pixel correlation under
the modeling assumptions. Currently, segmentation quality metric and optimality
measures has been devised for low-level computer vision tasks such as edge-
detection [38-40] and image-partitioning [29, 41-44]. Unlike the published methods
for biomedical images (e.g., [44-46]), the presented MDL-optimality criterion for
tube-like biological structures does not require manual (or estimated [46]) ground
truth segmentation.

3. Systematic speedup method using image subvolumes. A method to minimize
computations is introduced by performing parameter selection on a representative

subvolume, or a set of subvolumes containing a representative subvolume in a
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coordinated manner. This is inspired by related work by Shen et al. [47] and Lin et
al. [48] that prioritizes segmentation to achieve real-time performance for subsequent
tasks. The proposed measure for being representative is based on both intensity and
structural information. Representative measures presented in the literature for
content-based image retrieval systems (e.g., [49-52]) are mainly based only on image
intensity such as gradient and texture (e.g. [52]) with future research heading

towards using structural information [51].

4. Systematic reduction of the many parameters of image segmentation algorithms
into one parameter that trades off segmentation coverage and segmentation
conciseness. This minimizes the guesswork on the behalf of the non-expert user in
choosing segmentation algorithm parameters. In practical terms, all segmentation
algorithm parameters are mapped to a single parameter that adjusts the
“aggressiveness” of the algorithm, coherent to the users’ intuitive sense. This creates
a consistent user interface that allows algorithm designers to freely modify the
underlying algorithms. This has not been reported or proposed in the surveyed
literature (Chapter 2) for tube segmentation algorithms.

5. Breaking down an image segmentation algorithm into modular components: (i)
local structure model; (ii) local intensity model; (iii) local model fitting; and (iv)
global model fitting. This allows these modular components to be interchanged for
specific applications at hand. Modularity enables algorithm designers to modify and
improve each component independently. To date, segmentation algorithms reported
in the literature (summarized in Chapter 2) are often application-specific with no
explicit proposition for modularity in terms of these components.

All of these contributions are incorporated within a modular segmentation-
optimization framework to ensure wide applicability with current image analysis
systems and also current optimization algorithms. For applications of interest,
modularity ensures that existing algorithm implementations can be interchanged and
interfaced (Figure 6b) to fulfill their specific requirements such as computation time
constraints and robustness to imaging artifacts. This is the key idea that will further

generalize an image analysis system to a wider range of applications.



INTRODUCTION 15

To summarize, this work does not propose a new image analysis system or new
image segmentation algorithms within existing systems, but a systematic way to obtain
the optimal result from such existing systems. The resulting segmentations are not only
visually better than using default settings, we actually know for sure that they are as

good as they can get.



2. Summary of Related Literature

This work draws upon four main bodies of literature:
1. Automated segmentation algorithms for tube-like/curvilinear biological structures.
Automated/quantitative/objective evaluation of segmentation results.

The minimum description length (MDL) principle.

Sl

Global optimization.

The primary contribution of this work is to the field of automated segmentation of
biological imagery - specifically of tube-like structures such as neurons and vasculature.
Therefore, this field is given great emphasis in this chapter. As the surveyed literature is
vast, usage of synonyms are unavoidable, and are stated in the text separated by forward

slashes. These synonyms also may be interchanged throughout the text.

2.1 Segmentation of Tube-like Structures

Segmentation of tube-like/curvilinear structures in biological images is one specific
use of computer vision algorithms. Tube-like structures are defined as those of which
medial-axes/centerline/center-points can be locally approximated as a line [13]. These
structures include neurons, vasculature, pulmonary airways (e.g., [53]), and even certain
markers on endografts (e.g., [54]). Computer vision techniques and concepts applicable
to natural scene imagery are adapted to segment tube-like structures. They include edge
detection [55], image partitioning, region growing [56, 57], model fitting, surface
estimation, intensity ridge/valley [58, 59], and energy minimization techniques [42].
Segmentation algorithms may use the computer vision techniques in their general form
or include further constraints specific to tube-like structures—perhaps the imaging
modality/condition/environment as well. Currently, settings for these algorithms are
chosen empirically (e.g., [2, 3, 19, 20]) or formulated heuristically (e.g., [21]).

In a broad sense, tube-like segmentation algorithms can be classified based on the
modeling assumptions made about the presence or absence of tubes at each pixel in the
image, and how these models are fitted locally and fitted globally to the entire image
content. Locally, the assumptions are based on a structure model, and/or an intensity

model (referred collectively as a “local model”). For example, the simple intensity

16
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thresholding algorithms (e.g., [60]) and region growing algorithms (e.g., [56]) can be
thought of as fitting an intensity model at each pixel, but both usually have no explicit
structure  model. Using the local models, tube-like structures are
segmented/extracted/delineated from an image using various global/image-wide model-
fitting strategies in varying complexity from simple pixel-by-pixel operation to iterative
exploratory techniques.

At this point, the distinction between local models and the global fitting strategies
should be further distinguished. Two algorithms using the same local model may differ
in the global fitting strategy. For example, ridge-based [58] local models, described later,
can be applied either to all pixels (e.g., [61]), or iteratively in an exploratory manner
(e.g., [13]). Similarly, two algorithms using the same exploratory strategy, such as by
using the exploration path estimate from local model fittings, may differ in the
underlying local models (e.g., the generalized cylinder structure model in [3] vs. the

toroidal structure model in [27]).

2.1.1 Local Model: Structure Model and Intensity Model

For local models, the distinction between structure models and intensity models also
needs further clarification. Both of these models are often tightly coupled (e.g., a
Gaussian intensity model within a structure model that of a cylinder [13]), although
either one may not be explicitly specified/used. They are dichotomized here solely for
the purpose of classifying segmentation algorithms for tube-like structures in the
literature.

Structure models correspond to the geometrical shape of the tube-like structure.
Examples of structure models are parallel-edges in 2-D images (e.g., [14, 22]),
generalized cylinder in 3-D images (e.g., [2, 3, 13]), the 3-D toroid model (e.g., [27]),
and the n-D intensity ridge model (e.g., [59]). Weaker/more-relaxed models include
deformable models [62].

Intensity models, on the other hand, correspond to intensity variation within and
around the structure. The simplest form of intensity model is the intensity threshold [23,
60] used in intensity threshold-based segmentation algorithms. The intensity model used

in region growing methods employs intensity similarity, rather than an explicit intensity
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threshold, accompanied by spatial proximity criteria [63]. More restrictive intensity
models/profiles with structural/spatial variations include the Gaussian profile (e.g., [64,
65]) and the Gaussian-convolved-pulse profile [13]. Other than spatial assumptions, one
may use temporal assumptions as appropriate, e.g., when vessel structures are spatially
stationary over time and intensity model based on the temporal standard deviation is
suffice to segment the structures [37]. Regardless, these intensity models may go further

to incorporate imaging noise models [22].

2.1.2 Local Model Fitting

Given the local models, there are various strategies to fit them locally to the image
data, called “local fitting” strategies. They include matched filtering (e.g., [64]),
generalized likelihood ratio test (e.g., [22]), and formulations of measures that calculate
the goodness-of-fit of the models to the image content (e.g., [2, 3, 13, 24]). Also, the
way models are fitted differ when: (i) only structure boundary information is used (e.g.,
[3]), or when (i1) the entire local region is used (e.g., [21]). The latter approach is said to
be less sensitive to image noise since the local model-fitting step is performed by
integrating over a larger extent of the tube-like object rather than using small-scale
measures as in the former [21].

There are also differences in terms of the spatial locality/orientation of the model
being fitted. Active-contour/snakes/deformable-models are usually fitted on the plane
tangent to the vessel direction [27]. Intensity models (for the vessel cross section) are
also usually fitted to the aforementioned plane for methods that estimate the tube
boundary using a different method than the one used to estimate the tube direction, such
asin [13, 21].

The scales of the tube structures to be detected may be relatively constant as in
neuronal axon images specifically those of hippocampal pyramidal neurons since they
are known not to biologically vary in diameter throughout their lengths [66]. The tube
structures may also exhibit known scale changes, e.g., tapering of dendrite diameters
starting from the soma [66]. On the other extreme, the scales may vary significantly in
images containing pathological vasculature, e.g., those in close proximity to a tumor

[12], or in vascular stenosis images [27]. Therefore, in these cases, single-scale methods
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(e.g., [67-73]) must be extended to cope with width variability [24, 34, 74-76], and the
multi-scale analyses need to be normalized with respect to scale [27, 61, 77-81]. Note

that the size scale is just a parameter of the local structure model.

2.1.3 Global Model Fitting

To fit the local models to the entire image content, called “global fitting,” the
segmentation algorithm fits the local models either: (i) to every image pixel, also known
as pixel-wise/pixel-by-pixel/image-wide algorithms (e.g., [20, 22, 23]); (ii) iteratively by
“exploring” the image regions containing the tube-like structure of interest, also known
as tracing/tracking/traversing/vectorization/exploratory algorithms (e.g., [2, 3, 13, 14,
21, 24]), which includes region growing methods as well (e.g., [82]); or, (iil) by wave
front propagation methods, also known as least-cost/energy-minimizing path methods
(e.g., [25-27, 83])).

Another way to classify these global fitting strategies is whether the fitting is
performed directly on the intensity image (e.g., [2, 3, 14, 37, 84]), or on a synthesized
image where the pixel values correspond to likelihood of being part of a tube-like
structure, sometimes called the “vessel-enhanced image” (e.g., [21, 34, 74]). The vessel-
enhanced image may be obtained by replacing the pixel intensity values with the
(normalized) response of goodness-of-fit measures of local models.

In terms of what is actually segmented, it can either be the medial axis/centerline, or
the entire tube volume/network, or any one of these initially and then followed by an
estimation of the other. They are also termed as indirect/skeleton-based and
direct/nonskeleton-based methods®, respectively [85]. For example, the centerlines are
extracted/detected first in [21, 27] followed by boundary estimates and refinements to
the estimates. Conversely, the boundaries are detected first in [2, 3] followed by the
centerline/center-point estimations. In methods that extract the entire tube
volume/network, skeletonization steps (e.g., [37, 86]) and (sometimes) branch point

analyses (e.g., [20, 87]) are required to extract the medial axis [82].

® In indirect methods, the structures are reconstructed by computing the cross-section
from the centerlines and width information.
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On the question of structure scale, the same global fitting can be performed either
on a “scale-projection” image containing the maximal local fitting response across all
scales [88], or on each scale individually [89]. Using the latter approach, scale selection

is postponed from the local fitting step to the global fitting phase [89].

2.1.4 Level of Automation

Given the modeling assumptions above, there exist several levels of automation in
executing the algorithm implementation, ranging from user-interactive/semi-automated
methods (e.g., [89]) to fully automated ones (e.g., [14, 34]). When viewing image
analysis systems as an estimation system that estimates which pixel belongs to the
biological structures, initial estimates can be provided by the user as in the interactive
methods, or obtained automatically [3]. Also, automation can be performed either at the

local or global model fitting stages, or both.

2.2 Segmentation Evaluation

The traditional approach to evaluating segmentation algorithms is by visual
inspection [90]. Some progress has been made on more automated approaches [91].
Metrics for segmentation evaluation [39, 42, 46, 90, 92-98] can be either goal-oriented,
i.e., evaluation based on the performance of post-segmentation analyses [95, 99, 100],
based on other application-guided criteria, such as the probability of false detection [39,
93, 96], or based on mismatch with manually obtained ground truth segmentations (e.g.,
[35, 44, 45, 98]). A majority of them are specifically tuned for low-level vision tasks,
such as edge detection [38-40, 90, 92, 94, 96] and region growing [29, 41-43] but are
mentioned here nevertheless since they usually form the foundations of the more
complex and specialized image segmentation algorithms (e.g., [14, 101]).

Specific to biomedical images, segmentation evaluation using ground truth
segmentations has been identified as a trade-off between accuracy of the ground truth
segmentations and how much they reflect the characteristics of segmentation problems
in practice [46]. For example, synthetic images have high accuracy but typically lack
characteristics encountered in practice [46]. On the other end, manual segmentation by
experts suffers from inter-expert and intra-expert variability [44]. Somewhere in the

middle is the use of physical and digital phantoms, but it is acknowledged that creating
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such realistic phantoms remains a difficult task [102, 103]. Using expert manual
segmentations as the ground truth, the comparison between ground truth and automated
segmentation ranges from measuring spatial overlap (e.g., [104]), inter-expert
comparisons (e.g., [44, 46, 105]), and assessment of boundary differences (e.g., [106]).
Another method to evaluate segmentations is in terms of the description length of
the image, given a particular segmentation or image partition [29]. This is introduced

next.

2.3 MDL Principle

The MDL principle [32] offers a systematic way to obtain an objective balance
between segmentation conciseness and coverage [29, 30, 41]. The search of optimal
parameters is analogous to the variational/energy formulation for image segmentation
[42, 43], where the energy term to be minimized is evaluated using the description
lengths [29, 41]. Descriptive languages and representations to encode both the
segmentation and the image given the segmentation vary between applications [41, 107-
110]. Since this is the underlying principle used to measure the segmentation optimality

in this work, the detailed description is deferred to the next chapter.

2.4  Global Optimization

To ensure modularity of the segmentation-optimization framework, the choice is
focused on optimization methods that require little a priori domain-specific information.
For this, genetic algorithms [111], simulated annealing methods [112], controlled
random search [113, 114], and multi-start pattern search [115, 116] are widely used
[114, 117, 118]. These are also known as stochastic optimization algorithms, mainly
based on random sampling methods [119, 120], as opposed to deterministic algorithms
(e.g., [121]). To improve efficiency, they are normally combined with local search
techniques, such as steepest descent [122], and pattern search [115] despite that these
local search methods being very susceptible to noise [123].

Limitations of global optimization algorithms are reviewed in [124, 125], known as
the “no free lunch” theorem for optimization. It states that any elevated performance

over one class of problems is offset by performance over another class [125].
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2.5 Chapter Summary

Although this work draws upon four large bodies of literature, its primary focus is
on automated segmentation of tube-like biological objects. Instead of identifying
strengths/weaknesses of existing segmentation algorithms to create another one, the
literature was surveyed to identify the key components of a biological image
segmentation algorithm in general terms and how to obtain the optimal segmentation
from such existing algorithms.

The survey of segmentation evaluation in the literature, both general to broad
computer vision algorithms to the specific applications in biomedical images, eventually
led to the MDL principle for automated (unsupervised) segmentation optimality
measure. Then, to ensure modularity of the segmentation-optimization framework, the
choice of optimization methods is focused to those that require little a priori domain-

specific information.



3. Methods

We are in effect attempting to decide which segmentation to be optimal among the
set of all computable segmentations—obtained by varying segmentation algorithm
parameters. When concretely specified, the notion of optimality becomes a metric that
compares between segmentations and decides which one is better than the other. This
permits the execution of the segmentation algorithm within the presented segmentation-
optimization framework (Figure 6).

Following the previous introduction in Section 1.4, the traditional maximum-a-
posteriori (MAP) criterion that minimizes the probability of error' [28] can be opted if
prior probabilities on the segmentations can be specified, but unfortunately these priors
are not well defined [29]. If a uniform probability distribution is assumed for the priors,
then the MAP criterion reduces to the maximum-likelihood (ML) criterion that measures
only the goodness-of-fit and has a tendency to overfit models to the data.

Let us step back and consider an automated image analysis system to be a system
that performs a non-trivial data reduction using a segmentation algorithm. These systems
are designed to extract as much of the structural content in the image as possible and
concisely expressing it in terms of instances and descriptive parameters of object
models. In other words, the resulting segmentation is expected to model the biological
structures present in an image. In the fitting of these models to the image data, a
systematic trade-off must be made between the fitting error, and conciseness of the
representation. This requires a quantitative metric to evaluate the segmentation
quality/optimality along these two terms.

Returning to the problem at hand, it turns out that the MAP criterion can still be
used if optimal descriptive languages for a segmentation and the image given the
segmentation can be specified. Then the minimum description length (MDL) [30]

criterion can be adopted to choose the optimal segmentation as these two criteria have

" In this work, error is defined as the disagreement between a segmentation and the
ground truth at each image pixel. To avoid introducing further subjectivity in this work,
ground truth is obtained from public-domain databases of manual segmentations and by
consensus of manual observers when provided by these databases.

23
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been shown to be equivalent by Leclerc [29] once the descriptive languages are
specified.

Next, the vague notion of optimality is progressively made concrete from the
general-purpose image partitioning problems to segmentation of tube-like structures in

biological images.
3.1 Notion of Optimality

First, let a segmentation algorithm be a function f :{Z ,?;[} — /. that maps an
image Z to a segmentation .47, consisting of a set of objects in the image, using a

parameter vector (“settings”) &, € Q (see Figure 6a). The goal is to automate the search
for the optimal é that yields the optimal M . In practice, the goal is to be approached

the other way around, where the optimal segmentation A is searched, and the
corresponding set of segmentation algorithm parameters é is obtained.

As introduced and explained earlier in Section 1.4, both MDL and MAP strategies
are equivalent [29]. For the problem at hand, the more straightforward MDL strategy by

specifying a descriptive language for the segmentations is chosen.

3.1.1 MDL Criterion for Optimality

An image segmentation algorithm partitions an image into foreground and
background regions, where foreground pixels belongs to the structure of interest [44].
Therefore, finding the optimal segmentation is equivalent to finding the optimal
partitioning of the image.

Let £, be the optimal descriptive language to describe the partitioning .47 and £,

be the optimal descriptive language to describe the image Z given the partitioning A7,

the MDL strategy is to choose .47 that minimizes

|4 (Z]40)|+| 4, (M)

coverage conciseness

. Q)
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where || denotes the description length in bits. After specifying the optimal descriptive

languages, we only need to calculate the number of bits had we used them to
describe/represent/encode both the partitioning and the image given the partitioning [29].

To describe the image given a particular partitioning, a certain regularity
characteristic within each partition is assumed. As an example, assume that each region

has constant intensity. Then, after specifying the constant intensity, only the differences
between the pixel intensity values 7 (x) at pixel x and the region’s constant intensity
value need to be encoded. Note that the constant intensity value is described later by the
language £, . Without loss of generality, let each region % be a region of constant
intensity value of zero, and the differences that need to be encoded becomes the

observed image intensity value Z (x) itself. To encode the intensity value Z (x) for a
pixel X in a region 72, the optimal descriptive language £, (Z (x).47) can be
designed such that the resulting description length is given Dby
|£,(Z (x)| 41| =~1og, | P(Z (x)|xe&,) |, where P(Z (x)[xe ) is the probability

of observing the intensity value 7 (X) at pixel x in the region 7. However, there is no

need to do so. The number of bits had this optimal descriptive language been used is all
that is needed [29]. Then, assuming pixel independence, with identical distribution
assumption within a region, the first term in (7) becomes:

‘L;(Z|/l//l.)‘:7jz]z7;—log2 [P(z(x)\xexzj)] (8)

Now, the optimal descriptive language £ to describe the partitioning .47 needs to
be specified. Leclerc suggested the use of the pixel-chain code to optimally describe the
region boundaries [29]. The description length to describe the partitioning | £, (/l//)‘ is

1

then the number of bits needed to represent the regions of the partitioning .47 using the

pixel-chain code.
At this point, the description length in (7) fully defined, and can be used as an

optimization metric for currently-available optimization algorithms.
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3.1.2 Adapting Criterion to Biological Image Segmentation

A partitioning A7 of the image Z is equivalent to the segmentation .47 of the

image Z —it gets simpler since an image segmentation algorithm for biological images
partition an image into only two regions, the foreground region .# and the background

region £ . Therefore, two probability distribution functions (pdf) must be specified:

(i)P(Z(x)‘xef); and (ii)P(Z(x)‘xeb’). However, at this point, notice that the

local structure and intensity models are still absent from the MDL-optimality criterion.
To account for a neighborhood of pixels N(x) around x—implicitly capturing

inter-pixel correlations—the pdf at each pixel x can be estimated using Besag’s pseudo-

likelihoods [126]. Therefore the pdf’s at each pixel becomes:

P(Z(x)‘xef,N(x)), and o
P(Z(x)‘xeb’,N(x)),

for the foreground and background regions respectively. These pdf’s as a function of a
neighborhood of pixels preferably indicate the likelihood of the object of interest to be
present at that pixel given that the pixel belongs to the foreground or the background

region.

3.1.3 Local Structure-Indicator Function and Computable Segmentations

To incorporate the local structure and intensity models, a local structure-indicator
function & (x, g, 7 ) , defined at each pixel x, is proposed to indicate the likelihood of
the pixel belonging to the biological object. The object is locally modeled by the
structure model & and the intensity model 7~ in a neighborhood N (x) . The likelihood

value is obtained by measuring the goodness-of-fit of the models, requiring us to find the
best fit models and their corresponding parameters. By doing this, we have the pixel
pdf’s previously defined in (9) to be:

P(Z(x)‘x e/-",N(x)) :P(S(X,Q’,T)‘xe f), and

P(.Z'(X)‘X € B,N(x)) :P((S'(X,g,f)‘x € 6’),
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where the neighborhood N (x) is now one of the parameters of the local structure-

indicator function & (x, g, 7 ) through the local structure model & . Given this, the

first term in (7) becomes:

|4,(Z1M1)|= X ~log,| P(5 (x. 0.7 )| xe 7 ) |+ X ~log, | P(5(x. 4.7 ) xe £) ] (10)

xeF xel5

for the special case of biological image segmentation. Notice that the first term in (7)
now incorporates three out of four components of an image analysis system, namely the
local structure model, the local intensity model, and the local fitting.

To incorporate the last component of image analysis systems, i.e., the global fitting
component, the search space for the optimal segmentation /l;/l can simply be limited to

the set of segmentations {,/l//1 } that are computable’ by a segmentation algorithm that

(number of pixels

incorporates the other three components. After all, there are up to 2 ) possible

partitions of an image.
3.1.4 MDL-Optimality Criterion Adapted to Tube-like Biological Objects

In essence, the local structure-indicator function & (x, g,7 ) specializes the

abstract MDL-optimality criterion in (7) to the structures of interest in the image, where
the structures are specified in terms of the local structure model ¢ and the local
intensity model 7~ —around a neighborhood N (X) . At each pixel x, it tells how much
structure content that can be inferred from the neighboring pixels. The local structure-
indicator function & (x, 9.7 ) can also be generalized to segmentation problems for

other image types such as texture images by incorporating the texture model into the

intensity model 7~ of & (x,&,77).

Two different approaches to compute the local structure-indicator function are
described next. The first approach is adapted from the statistical robust generalized log-

likelihood ratio test formulation described by Mahadevan et al. [22]—to improve

A segmentation is computable if it satisfies the local structure model, local intensity
model, and the local fitting strategy used by the segmentation algorithm.
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computation speed for practical use, it is approximated down to a matched filter
formulation. If the single-vessel-in-a-neighborhood assumption is limiting for the
application at hand, multiple-vessel models can be specified and a model selection
formulation using the Akaike Information Criterion can be used, as shown by Wang and
Bhalerao [127]. The second approach is the multi-scale vesselness formulation by Frangi
et al. [74]. Either way, the range of the local structure-indicator function values must be
normalized to allow interchangeability of these approaches to the specific application at

hand.

Figure 9. Displays the intensity profile in a 40 x40 window using structure model of
two parallel edges, and the Gaussian intensity model. One of the variances of the 2-

2
D Gaussian is empirically set to o’ :( % ) for the radius =5, and the other

variance was set arbitrarily high. The direction of the Gaussian is defined in terms
of the eigenvectors of the covariance matrix of the 2-D Gaussian function.

3.1.4.1 Generalized Log-Likelihood Ratio Test

Figure 9 displays an instance of the local model in a 40x40 neighborhood. Here,

the generalized log-likelihood formulation is used to evaluate the local structure-
indicator function &' (x,&,77).
To fit the parallel-edge structure model and Gaussian intensity model, a faster non-

censored version of the robust vessel detection work in noisy retinal vasculature images

by Mahadevan et al. [22] is proposed, motivated by practical reasons. Two hypotheses,
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77, (structure absent), and /7 (structure present), are tested at each pixel using the
generalized log-likelihood ratio test. Using Poisson noise model for the observed image
intensity at pixel x, denoted Z (x), the two hypotheses are:

7, :f(x)~P0(,uO),xeN(x0)
7, :Z(x)~Po(u),xeN(x,) ,

given a window (local neighborhood) N (xo) such that x, is the window’s center pixel.

For a particular pixel x,€Z the likelthood ratio L at the pixel x, assuming

independent pixels is:

_ by [Z(X)|N(Xo)]
B [ZWIN(x,)]

L(x,)

The decision now becomes, reject 7, if L(x,)>1, or reject 7 if

I(x,) £In(L(x,))> 0. Next, the test statistic (log-likelihood value /(x,)) is derived as

follows:

= -Z'(X)ln[ll_/:ﬁ_ Z -Z'(X)lnl[lo_/:‘o

xeN(xp) xeN(x)

foreground fit background fit

Next, the foreground intensity estimate for pixel x e N (XO) is locally modulated in

the neighborhood N(x,) using the vessel profile ¥, (x)[0,1]:

A= i (%) = iy (%) + (41 (%0) = 2 (%) )V (%), x € N(x,)
The vessel profile has two parameters, i.e., ¥, (x) =¥, (x;6.r), where @ is the angle, and
r is the radius. Figure 9 displays a vessel profile with =74 and r=5.

Next, let é(x,) = (x,)—i,(x,) be the contrast estimate at pixel x,. Then, the

log-likelihood term becomes,
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I(Xo)z( > Z(X)ln[/}O(XO)JFé(Xo)Vl(X)]_I:/}O(Xo)JrCA(XO)Vl(X)]J

To simplify, let /(x,)=1,(x,)+1,(x,), where

()= ¥ )(ﬂx)m{ﬂo(xo)[u ;fo((";j)n<x>j}—[ﬁo<xo>+e<xo>zM}

xeN(x,

and

L(x)= 2 Z(x)In (%)= /(%)

xeN(xp)

Without loss of generality, let ¢(x,)=4,(x,) to permit the use Taylor series

approximation (1* order) for the term ln£1+ ¢(%) Vl(x)len(1+Vl(x))le(x).

Using these, the test statistic becomes:

(%)~ > Z(X)(ln/}O(XO)“LVI(X))_[/:‘O(XO)"'/}O(XO)Vl(X):I'

xeN(xO)

After term cancellations, the test statistic is:

(%)~ 2 (Z(x)= 4 (x))V(%)-

xeN(xU)

This effectively reduces the log-likelihood ratio to a single convolution operation.
Interestingly, it reduces the log-likelihood ratio to a matched-filter with 7 (x)— 41, (x,)
as the input signal and V] (x) as the known/deterministic signal.

Therefore, using the log-likelihood ratio formulation, the local structure-indicator

function becomes:

S(x,,7)=1(x) (11)
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3.1.4.2 The Vesselness Formulation

Here the intensity ridge local structure model is adopted for tube-like biological
structures, treating the pixel intensity at each pixel as the pixel height, and viewing the

image as a “landscape.” In the n— Dimensional Euclidean space, for values 1<d <n,
the pixel x e R” is a ridge point of type n—d if and only if [v,--v,] VZ(x)=0 and
A; <0, where {Vl.}ie[l . are the eigenvectors of the Hessian matrix evaluated at x with

the corresponding ordered eigenvalues A <---<A and VZ (x) is the image gradient

evaluated at x (for review, see [59]). The eigenvector of the Hessian with the largest
eigenvalue tells the direction of highest gradient, i.e., the direction perpendicular to the
tube’s medial axis, where the other eigenvector with the smaller eigenvalues is oriented
in the direction of the tube’s medial axis—the latter eigenvector must be perpendicular
to the image gradient at that pixel to qualify the pixel as a ridge point.

No intensity model is explicitly assumed, but can be incorporated into the
vesselness formulation by a multiplicative factor that relates the scale (read: the standard
deviation of the differential Gaussian kernel) and the radius of the object.

Using the intensity ridge local structure model, the multi-scale vesselness

formulation [27, 74, 128] is adopted in this work. It has formed the basis for numerous

tube-segmentation algorithms [6, 21, 129]. Denoted )] (x)e[0,1), it measures the

likelihood that a local group of pixels centered at x belong to a tube of size scale o [27,
74, 128]. The range of size scales specified in the vesselness formulation is a parameter
of the intensity ridge structure model—the search for ridges are limited to these scales.
No intensity model is explicitly assumed, but can be incorporated into the vesselness
formulation by a multiplicative factor that relates the scale [13]. For the Gaussian
intensity model the relation between the scale o and the actual vessel radius » has been
derived analytically by Krissian ef al. [13] as o =0.5/", and will be used throughout to
translate between scale and radius values.

The vesselness formulation inspects second-order features [59] of the image 7 , at

scale o, at each pixel x, which is obtained from the Hessian matrix

H_ (x)=0" [VZ(Z(X)*GG(X))]. In the n—Dimensional Euclidean space,
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eigenvalues of the corresponding nxn H_(x) matrix are denoted A,,d =1,2,..n and

arranged in increasing magnitude, i.e.,

l,| < |2,2| <. < |}tn| . The Gaussian function with
standard deviation o is denoted as G_, the Lindeberg constant [81] for a family of
scale-normalized derivatives is denoted y, and “*” is the convolution operator.

For 3-D images, the vesselness measure at scale o, denoted }/ (x) , 1S given by:

0,if 4, >0

el o S E]

where R, =/, / 1/|/1223| distinguishes between blob-like and other structures,

R, =|A]|/|4| distinguishes between plate-like and tube-like structures, and S= > 4]

d<D
is the image intensity contrast factor (D =3 for 3-D images). The terms a,b, and ¢ in

(12) are weighting parameters for R,, R,,and S.

For 2-D images, }/ (x) is given by:

8 iy B
2b 2¢?

R.=2,/4, is the likelihood of being on a tube in 2-D images. The terms b and ¢ in
(13) are weighting parameters for R. and S.

The multi-scale vesselness measure, denoted ){G om] (x) , 1s then defined as

A
){Umin ’UmaX] (X) - O'miygloa'gg'max )/0' (X) ’ (14)
for a given range of size scales [o,;,,0,.. | Which is essentially one of the parameters of

the structure model & .

As a side note, Frangi et al. [74] have described approaches to adapt this measure to

other key structure models in biological images. Table I is a simplified summary linking

the models and the corresponding eigenvalues. In 3-D, the 3x3 H_ ( x) matrix has three
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cigenvalues, similarly ordered as |4|<|4,|<|4|. Notice that the vesselness value in

Table I increase with decreasing magnitude of R, , effectively capturing the eigenvalues-

shape associations for tube-like objects. This suggests that (13) can be modified

accordingly for other geometrical models.

Table I. Indicates the relationship between the eigenvalues of the Hessian matrix
with common structure models in biological cell and tissue-level imagery [74]. For
dark objects on bright backgrounds, the signs are reversed. In 2-D plate-like
structures can not be detected. The first two eigenvalues 4, and A, are used in 2-D.

All three eigenvalues are used in 3-D.

Structure Model & A A, A
Tube-like ~ <0 <0
Blob-like <0 <0 <0
Plate-like ~ =0 <0

Returning to the specific case for tube-like biological objects, the local structure-
indicator function that indicates the likelihood that a pixel x belongs to a tube-like

structure is defined as:

S(x,é’,f)é)/['a . ](x). (15)

min >~ max

3.1.5 Universal Parameter and Segmentation Quality Metric

At this point, the problem of image segmentation is ready to be wrapped into an
optimization framework using the optimization metric based on (7). Before proceeding,
the users’ desire to override/bias the trade-off between conciseness and segmentation
coverage is acknowledged. For this, a “universal parameter,” denoted « , is incorporated
in the optimization metric based on the MDL principle:

a(M)9.T.0.8)=a|£, (2] M) +(1-a)
- 7

coverage conciseness

1

£, (M), (16)
Ayl
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for a given structure model & and intensity model 7 . From this point onwards, we
will refer instances of the evaluated optimization metric simply as the “¢ -values.” For
segmentation of tube-like biological structures, the segmentation coverage term is as

defined in (10), with the local structure-indicator function & (x, 9.7 ) defined in (11)

or (15). When a =0.5, the conciseness-coverage trade-off is a balanced one.

With this, the segmentation quality metric Q is defined as:

Qé_Q5 (17)
to equate objectives of minimizing the o -weighted description length ¢ and

maximizing the segmentation quality Q.

3.2 Recursive Random Search Strategy

Several considerations motivate the selection of the recursive random search (RRS)
as a preferred strategy compared to other available alternatives. First, exhaustive search
is time-prohibitive. Second, the objective function is not differentiable with respect to
the parameter vector, mainly because the mapping between parameter settings and the
resulting segmentation itself is not differentiable. Third, for the image segmentation
problems of interest, it is rational to seek approximate solutions within a defined time
frame, rather than truly global optima. Fourth, it is common for segmentation software to
have several irrelevant/ineffective settings for a given application, and search algorithms
that are able to minimize the computational effort in such dimensions are preferable.
Finally, we expect the search algorithm to be robust to minor noise-like fluctuations in
the objective function. Interestingly, Ye et al. [119] developed this algorithm motivated
by similar parameter spaces encountered in computer networking — specifically,
automatic and dynamic configuration of network components to maximize network
throughput.

As indicated by the name, the RRS algorithm is based on random sampling. This
algorithm searches the parameter space in two recursive steps: exploration and
exploitation, respectively. The exploration step examines the macroscopic features of the
objective function (e.g., globally convex or “big valleys” structure [64]) and attempts to

identify promising areas in the parameter space ) that are subsequently “exploited”
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intensively by the second step, called the exploitation step. For the random sampling, a
uniform distribution over Q is used. This has been shown to be the simplest search
technique for similar non-linear problems, and is widely used [113, 119, 120, 130]. It has
been shown to be more efficient for exploring high-dimensional parameter spaces
compared to deterministic exploration methods [119, 131], and can be shown to
converge to the global optima [132].

We show below that random sampling is in fact very efficient in its initial steps and

only starts to become inefficient in the later sampling steps. Given a measurable

objective function ¢(&) over the parameter space Q, we can define the distribution of

objective function values for some 9o € [Din> T | as
¢ (q,)= m({F, eQlq(g)< qo})/m(Q) , where m(.) is the Lebesgue measure. Hence,

the distribution function ¢, (qo) represents the portion of the points in the parameter
space whose objective function values are smaller than a certain level g,. Furthermore,

it has a maximum value of 1 when ¢, =¢,_, and a minimum value of 0 when ¢, =gq_.

corresponding to the (set of) global optimum (optima). Without loss of generality,

assume that q (&) is a continuous function and

m({z; € Q | q(%) = qo}) = 0’ qu € [qmin’Qmax] :
Assuming a ¢, €[¢,., 9. | Value such that ¢, (g,)=r, r<€[0,1], an r-percentile
subspace &,(r) in the parameter space can be defined as S,(r)={<Q|q(€)<4q,}.

Note that (1) is just the whole parameter space and }sirr(} &, (0) converges to the global

optima. Suppose the sample sequence generated by n steps of random sampling is {F,}"

i=1
and é’;(i) is the one with the minimum objective function value, then the probability of
é’;(i) in S, (r) is given byP({é’;m € ‘5;2(;/)}) =1-(-r)" = p. Stated in another way, the
value of r for which &” will be reached with probability p is given by

r=1_(1_p)l/n.
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For any O0< p<1, r will tend to 0 with increasing n, implying that random
sampling will converge to the global optima with increasing numbers of samples. Since
r decreases exponentially with increasingn , the efficiency of random sampling is high
at initial samples but falls sharply at later samples. This observation led to the idea of
restarting the sampling before its efficiency drops off [119], either by moving or resizing
the sample space according to sample history.

Specifically, RRS performs exploitation in two iterative steps: (i) random sampling
within the current space, and (ii) realign or shrink. As illustrated in Figure 10a, after
drawing a certain number of random samples (we used 7 in this paper) within the current

space &, if a superior sample &, is found, then & centered at the current sample &, is
realigned (moved) to the sample space &,. If no better sample is found during the
random sampling, the parameter space <& is shrunk to &, instead of realigning to 5, as

shown in Figure 10b.

(a) Re-align (b) Shrink

Figure 10. Venn diagrams illustrating the re-align and shrink operations in the
exploitation step of the recursive random search (RRS) algorithm. The current
sample is denoted &, and the local exploitation subspace is depicted as an

unshaded circle around it. After drawing a certain number of random samples
within the current space 5, if a better sample &, is found, then the search is re-

aligned to the sample space 5. If no better sample is found during the random

sampling, the parameter space ¢ is shrunk to ; instead of realigning to 5,.
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The strategy for limiting the exploitation step to promising subspaces is based on
identifying an r -percentile subspace for exploitation, as described above. In this way,
most trivial subspaces will be excluded from exploitation, improving the overall
efficiency of the search. In contrast, algorithms such as multi-start [130], do not
distinguish between subspaces and hence may waste time in trivial areas.

The RRS is efficient at handling an objective function with a subset of ineffective
parameters [119] because random samples maintain a uniform distribution within the
subspace composed of only the effective parameters, minimizing the computational
effort invested on negligible parameters. In contrast, local search methods are affected
by unimportant parameters because of their high dependency on dimensionality of the

search space. For more details, the interested reader is referred to [119].

Table II. The components of the parameter vector &< Z® , their respective ranges,
default values, and constraints on their values for the tracing algorithm.

Parameter Range Default Constraint on
Value Values

Grid spacing g 10-30 15 divisible by 5
Minimum template length L, 8-20 10 L.<L..
Maximum template length L 8 -30 18 L. <L
Relative shift distance n,, 2-10 2 none
Directional degree of freedom n,, 3-7 7 odd-numbered
Maximum step size s, 3-10 8 Smax < Liin
Contrast threshold multiplier 7, 1-10 3 none
Maximum allowed stopping violations v 1-10 1 none

3.3 Automated Tracing Algorithm

The tracing algorithm [3, 14], used in generating all experimental results, is briefly
summarized here with graphical illustrations of several key intermediate steps taken by
the algorithm. In principle, the tracing algorithm models tube-like biological structures

locally as piecewise-linear generalized cylinder segments (Figure 11) [3, 14]. In 2-D, the
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generalized cylinder model reduces to the parallel-edge model (Figure 12). Parameter

settings for this algorithm are denoted:
g = (g Lmin Lmax nshift nrotate Smax ,0 V) .
They are summarized in Table II along with their default values. The traces are not

merged for illustrative purposes since the traced segments are merged after tracing, i.e.,

as a post-processing step in the implementation of the tracing algorithm [87].
Hlj+1
Tteration j +1

V/+1
0‘\\ bj+1
)

TN

7--@ -5

- LRSS

Figure 11. Illustrates, in 3-D, the generalized cylinder model and the iterative
procedure of the tracing algorithm. Starting with initial seeds, the algorithm
estimates the next location based on a robust estimates of the local boundaries of
the cylinder. In 2-D, illustrated separately in Figure 12, only the left and the right
templates are needed, collapsing the generalized cylinder model to the parallel-edge
model.
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Left Template
(angle =
length —10)

ﬂ .
T g
2[2] [1]1] {m

Right Template
(angle = 45°,
length =9)

Figure 12. Illustrates, in 2-D, the generalized cylinder model (effectively reduced to
the parallel-edge model) and the iterative procedure of the tracing algorithm. The
3-D version is illustrated separately in Figure 11.
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Figure 13. Illustrates the intermediate steps/stages of the automated tracing
algorithm. Results displayed are of default algorithm parameters. (a) Input image
(displayed is a partial view of a 512x480x151 image) of a neurovascular cast
imaged using confocal microscopy (Image source: C. Bjornsson, K. Smith, W.
Shain, The Wadsworth Center). (b) The detected seed candidates in magenta, along
with the detected width in green relative to the grid used to detect the seeds. (¢) The
verified seed candidate, after being fitted to the generalized cylinder model. The
verified seeds are displayed in green with the width estimates in magenta. The
direction of the verified seeds—to initiate tracing from—is perpendicular to the
magenta lines. (d) The resulting traces in green, with the detected branch points in
magenta.
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Figure 13 illustrates the intermediate steps/stages of the automated tracing
algorithm. Results displayed are of default algorithm parameters. Panel (a) displays the
input image containing a neurovascular cast imaged using confocal microscopy. First,

seed points are detected along rectangular grids g pixels apart overlaid on the image. A

pair of 1-D edge-detector kernels of the form (—1, -2,0, +2,+1)T are correlated to the

pixel intensity values along each 1-D grid profile, and correlation values less than an

adaptive threshold times the contrast threshold multiplier p are discarded. Then the

remaining seeds are called as “seed candidates.” Panel (b) displays the detected seed
candidates, along with the detected widths in green relative to the grid used to estimate
the seed locations. Second, the seed candidates are verified using the generalized
cylinder model (3-D: Figure 11, 2-D: Figure 12), turning them into “verified seeds.”
Panel (c) displays the verified seeds in green, with the width estimates in magenta. The
direction of the verified seeds—to initiate tracing from—is perpendicular to the magenta
lines. Panel (d) displays the resulting traces in green, with the detected branch points in
magenta.

In the 3-D implementation of the algorithm, seed detection is performed on the axial
maximum-intensity-projection image. The axial coordinate is found later by using the
same previously-described correlation method axially at each seed point’s coordinate in

the x-y plane of the 3-D image.

Next, at each tracing iterationj, four boundary points {bi,b{e,b;,bg}
(only {bi,b{e} in 2-D) corresponding to the left, right, top, and bottom tube boundaries

are each found using directional correlation kernels called templates (3-D: Figure 11, 2-
D: Figure 12). The center point ¢’ is simply defined as the center of these boundary
points. Each template consists of linearly stacked 1-D edge-detector kernels of the form
(—1, -2,0, +2,+1)T anchored at the image point b’ along a particular direction u’. The
edge-strengths from each 1-D edge detector kernel » are averaged through the entire
template length /e L, using median statistics [133] for robustness. The set

L=[L,,.L

‘min > ““max ]

contains all template lengths. The correlation between the templates and

the image is called the “template response,” denoted R, as below:
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R(b'i,U'i,L) = argl r?ax {T?czlia;la {r(b*/ +tu’ )}} . (18)
c =12,..,

Each boundary point corresponds to the maximal response template parameters
{bf ull’ }:

(b’ ,u’/,l’')= arg max R(b,u,L), (19)
{(b,u,]) | b=¢/ +mu l,m:l,..,%,ueu,zeL}
where U is the set of unit vectors along directions in the neighborhood of w’. The

radius of the widest expected vasculature is denoted as M —specified earlier as one of
the parameters of the local structure model. Each template is elongated, shifted from ¢’

and rotated about two axes H;H; and V;/V;’ to find the corresponding boundary points.

To save computation, the template is only shifted in a neighborhood =, . of previously

shift

calculated width at iteration j—1 and rotated in a neighborhood »n around previously

rotate

Jj+l

calculated tracing direction u’~'. The next center point ¢/*' is estimated by scaling u’

with the adaptive step-size s/, limited by the parameter s _, . The same boundary-

finding process is repeated until a stopping criterion containing a contrast-based

threshold multiplier p is met v consecutive times. The interested reader is referred to

[3, 14] for details of the algorithm.
3.4 Improving Execution Speed for 3-D Images

Practical difficulties are expected for 3-D images when incremental changes in the
segmentation algorithm parameters do not translate to incremental changes in the
segmentation, i.e., each RRS function evaluation corresponds to complete re-
segmentation of an image. Given the closed-loop design in Figure 6, speeding up the
segmentation algorithm directly reduces the overall execution time. In practice,
computing segmentations for smaller images are faster than for larger images due to
reduction of access time (disk and memory). This section presents a systematic way to
create image subvolumes and using them to automatically find the segmentation

algorithm parameters for the entire image.
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Two approaches are proposed to achieve this goal. The first approach is to obtain
the segmentation algorithm parameters from a single subvolume. A similarity measure
using image and structural characteristics is presented to systematically choose among
possible subvolumes. The second approach generalizes the first by obtaining
segmentation algorithm parameters from multiple subvolumes. This enables adaptation
of segmentation algorithm parameters originally designed for the entire image (called as
the non-adaptive parameters), effectively making the segmentation algorithm spatially

adaptive.

3.4.1 Creating the Subvolumes

Tube-like structures may not be present at all parts of the image. Therefore, simple
uniform image partitioning into non-overlapping subvolumes of similar size may
produce empty subvolumes. To avoid this, the local model-fitting stage of the
segmentation algorithm is used to obtain non-empty subvolumes.

The local model-fitting stage of the 3-D segmentation algorithm [3] (Section 3.3)
used in generating the experimental results, is the seed verification, where each seed
candidate obtained from the grid-search is verified using the generalized cylinder model
(Figure 11, p. 38). These seed points are clustered into k£ clusters using the k-means

clustering algorithm [134]. The bounding-boxes of the clusters define the subvolumes

k . . . .
{v j} . that are structure-wise non-empty. A subvolume, instead of the entire image, is
=

used as the input image for the loop in Figure 6 (p. 9).

3.4.2 Representative Subvolume

A distance measure between two image volumes, e.g., a subvolume and the entire
image is needed in order to measure the similarity between the two. More importantly, it
will measure how representative the subvolume is to the whole image. The distance
measure should ideally incorporate both image intensity information and structural
information. Given the modular approach of this work, this can be obtained from the
local model fitting stage of the segmentation algorithm. For this particular algorithm [3],

it is the seed verification step.
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Each verified seed point contains information that characterizes the locally best-

fitted model. Referring to the generalized cylinder model shown in Figure 11, let |||

denote the Euclidean distance and the following best-fitted model information are used:

e Horizontal width w,, , computed as ||b ,—b R|| .

e Vertical width w, , computed as ||bT -b B” .

e Cylinder orientation characterized by the unit vector u defined by two angles 6, ,
and 6, [3]. The horizontal angle 6, is the rotation around the z axis. The vertical
angle 6, is the rotation angle around the y axis that has been rotated by &, around

the z axis.

e Estimated local contrast ¢ :é(% z R(b p,u)] from the four best-fit template
pel

L,R.T.B)

at boundary points {b,,b,,b,,b,} using the template-response to contrast

. . 1 .
conversion ratio of 3 as presented in [3].

The next step is to construct a feature (column) vector m that summarizes the
information obtained from each seed point:
m=[c w, w, cos20, sin260, cos26, sin2<9V]T. (20)

The angles are doubled since anti-parallel angles separated by 7 are considered equal
for the purpose of characterizing the tube/cylinder orientation [47] as adapted from
angular statistics [135].

The mean feature vector, denoted m, is used to characterize a set of N seeds. For

the set of all seeds in the image 7 , the (sample) image mean feature vector m , is:

lN
m,=— ) m,, 21
rEym 21

and the (sample) covariance matrix C, is computed as:

N
lz m, m] m; m]] (22)
i=1
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For a subvolume v containing n seeds, the mean feature vector for the subvolume,

denoted m , is defined as:

m, :lZml_ : (23)

The squared Mahalanobis distance between a subvolume v and the image 7 is
computed as:

d(v,7)=[m,-m,] C}[m,-m,]. (24)

Using the distance measure in (24), the representative volume v* among &k subvolumes

is defined as the one that minimizes the squared Mahalanobis distance:

V¥ = arg min [d(v,f)] , (25)
and the corresponding optimal number of subvolumes, denoted £ *, is defined as:

k*=a£g[v*e{vj}k :| (26)

Jj=1

Although intuitively the larger subvolumes should be more representative compared
to the smaller ones, experimental observations (Chapter 4, Figure 22, p. 63) have shown
that this is not always the case. Recall that the subvolumes are defined as the bounding
boxes of the seed clusters. Increasing the number of seed clusters, &, results in smaller
seed clusters, and hence, smaller subvolumes. Therefore, to find the representative
subvolume v*, the number of subvolumes £ 1is varied until the number of seeds in the
smallest seed cluster is too low, e.g., less than 12 seeds. While varying &, the subvolume

v* is updated as more representative subvolumes are found.

3.4.3 Single Representative Subvolume Parameter Selection
A representative subvolume v* as defined in (25) is chosen between £k*

k* . . .
subvolumes {vj}' . The subvolume v* is then used as the input image for the
J=

segmentation-optimization framework (Figure 6, p. 9). Automatically-selected
segmentation algorithm parameters for this subvolume are applied for the entire image.
Next, rather than using just one subvolume, a systematic method to use all k£*

subvolumes is described.
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Detect seed points;
Cluster seed points into & * clusters;
Obtain bounding-boxes of the clusters;

s

. k
Create circular array of £ * subvolumes {v j} L
J=
J1,i< 1,85« 038,,, <&, /IS isthe counter for the stopping criteria

while S <kt* do
for all subvolumes ;j do

next

ifg, . = 3 ;then // the best parameter in circulation is not new

if i >1 then //to allow the first iteration to complete
S« S+1;

endif

else

Explicitly include § _, in RRS exploration stage;

next

// Execute the loop in Figure 6 with subvolume v; as input to obtain &

jai
g, arg max Q(&,v, ) ;

ge
if Q(ém,vj) > Q(é/,vj) then // found improved parameters

8 <85
Crew <843
S«0;
else
S« S+1;
endif
endif
if S >k*then
exit while loop;
endif
endf
i<« i+1; //nextiteration of the circle
endw

Choose %j such that Q(éj,Z)< Q(éa,Z) forall a # j,ael,...,k* to be applied to the entire image 7 ;

Figure 14. The pseudo-code for systematically obtaining the segmentation
algorithm parameters using a set of subvolumes. Subscript / denotes the i
iteration, i.e., for each complete circle. Optimization is performed on each
subvolume in a circular ring where each subvolume contributes its best parameters
to the optimization step in the next subvolume. The search for segmentation
parameters terminates when the subvolumes are not benefiting from each other.
The last step can be skipped to produce adaptive settings.
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3.4.4 Multiple-Subvolumes Coordinated Parameter Selection
The idea is to automatically obtain segmentation algorithm parameters for all £ *

k* . . .
subvolumes {v j} o denoted § ;»ina coordinated manner and then choose between their
J=

best parameters to be applied for the entire image. Ideally the set of subvolumes {v j}lf*
J

should contain the representative subvolume v* found by varying k.

The pseudo-code for the coordination procedure is displayed in Figure 14. Before
proceeding, note that given the same number of function evaluations per subvolume, i.e.,
number of iterations of the loop in Figure 6, using more subvolumes will result in an
increase in computation time. Therefore, for this section, the limit on the number of
function evaluations per subvolume must be reduced.

First, recall that the global optimization algorithm in Figure 6 (p. 9) performs
exploration of the entire space of possible segmentation algorithm parameter
combinations Q and exploitation of the local characteristics. The RRS algorithm used in
this work performs random sampling for exploration and realign-shrink random
sampling for local exploitations, mainly to maintain the high search efficiency of the
exploration step [119]. Search efficiency is important given the limited computing
resources. During the realign-shrink procedure, after drawing a certain number of
locally-confined random samples, the current local sample space is either: (i)
realigned/moved if a better sample is found; or (ii) shrunk if no better solution is found.

From experimental results (Section 4.3.3, p. 68), it was the exploration step that
yielded the largest amount of improvement in segmentation quality, while the
contribution of the exploitation step was less significant. With this, the exploration step

performed on subvolume ; is followed by minimal exploitation, and the best estimate

A

€, is passed on to the next subvolume j+1 to be included as one of points in its

exploration step. This is performed in a circular ring, i.e., j+1=1 if j=4k. This
terminates when no better parameters are found for all subvolumes, i.e., the subvolumes
are not benefiting from each other. Then each subvolume parameters are applied to the
image Z and the one that gives the best segmentation is chosen. The last step can be

skipped if the parameters are to be used adaptively within the image 7 . Then, the entire
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image can be segmented using nearest-neighbor lookup, or if possible, interpolation, for

the segmentation algorithm parameters.

3.5 Chapter Summary

We are attempting to decide and choose the optimal segmentation among the set of
all computable segmentations—obtained by varying segmentation algorithm parameters.
The optimal segmentation can be chosen using the traditional MAP criterion that
minimizes the probability of error if prior probabilities on the segmentations can be
specified. Since it is more practical to specify the optimal descriptive language for the
segmentation and the image given the segmentation, the equivalent MDL criterion is
chosen.

Since the MDL criterion was first applied to the problem of image partitioning, the
vague notion of optimality is progressively made concrete from that general-purpose
computer vision application to the field this work—segmentation of tube-like structures
in biological images. In adapting the MDL criterion to tube segmentation, a local
structure-indicator function is proposed and presented to replace the intensity value at
each pixel with a neighborhood-based formulation that indicates how likely the pixel to
belong to the biological structure of interest. It also implicitly captures the correlation
between pixels. Two ways to evaluate the local structure-indicator function are
described—the generalized log-likelihood ratio test and the vesselness formulation.

In essence, the MDL-optimality criterion in (7) incorporates the local structure and
intensity models along with the local fitting strategy in the first term of (7) through the
local structure-indicator function. In addition, the set of segmentations is limited to those
computable by a segmentation algorithm that globally fits predefined local models.

To choose the optimal segmentation—to explore the parameter space of the
segmentation algorithm—the RRS algorithm was chosen since it was developed along
requirements similar to those of the segmentation-optimization framework. Given the
context and wide applicability of this framework, suboptimal solutions within a
reasonable time frame are acceptable. This emphasizes the need for the optimization

algorithm to be efficient, i.e., capable to get closer to the global optimum quickly.
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Since a single function evaluation for RRS corresponds to executing the
segmentation algorithm from start to finish, execution time for 3-D images may take
much longer than 2-D images. A systematic method to speed up computations in
obtaining the segmentation algorithm parameters for 3-D images is described using non-
empty image subvolumes. The notion of representative subvolume is defined using
image intensity information and structural information obtained from the local model
fitting stage of a segmentation algorithm. Two approaches on using the subvolumes to
obtain the parameters for the entire image are presented, either using one representative
subvolume or using a set of subvolumes containing the representative subvolume. When
a set of subvolumes is used, a procedure to coordinate the parameter selection process is
presented where the subvolumes collaborate in a circular array until they no longer
benefit from each other. Rather than choosing between the subvolume segmentation
algorithm parameters to be applied to the entire image, these parameters can be used
adaptively by the segmentation algorithm. This enables adaptation of segmentation
algorithm parameters originally designed for the entire image (called as the non-adaptive

parameters), effectively making the segmentation algorithm spatially adaptive.



4. Experimental Results

This chapter provides a series of examples of progressively increasing complexity,
starting with the simplest case of segmentation by global image thresholding [60]. The
thresholding example is followed by a neuron tracing algorithm [2, 3] in which just two
parameters out of eight are optimized, and concluded with a full eight-dimensional
parameter search. In all examples, a=0.5 is chosen for pure MDL-balanced
optimization. Also in all examples: (i) the size scales are manually obtained from the
image content; and, (ii) the parameters for the vesselness measure are set to the values
published in [74].

The vesselness measure described in Section 3.1.4.2 (p. 31) is chosen as the local
structure-indicator function (see Sections 3.1.3-3.1.4, pp. 26-27) for all presented results
since it is readily generalized to both 2-D and 3-D images [74], unlike the currently 2-D
[22] generalized log-likelihood ratio method in Section 3.1.4.1 (p. 28). The vesselness
measure also exhibits faster computation speed compared to the generalized log-
likelihood ratio method since the latter requires more computations per pixel [22, 74].

To evaluate the segmentation quality metric Q (Section 3.1.5, p. 33) using the

description length in (16), the probability distribution function (pdf) of the vesselness
values are estimated using 20 ground truth segmentations from the Digital Retinal
Images for Vessel Extraction (DRIVE) database [136] and used in generating all
presented results. Figure 15 displays empirical and best-fit pdf of the vesselness values
at the background regions /4 in Panel (a) and at the foreground regions .# in Panel (b).
Ranked by the Kolmogorov-Smirnov (KS) test statistic (e.g., see [137]), the exponential
distribution for & (KS value 0.27) and the generalized-beta distribution for /# (KS
value 0.05) were determined to be the best fit out of 15 distributions considered. Table
IIT and Table IV list the detailed fitting results. Values of KS statistic close to 0 suggest
accepting the hypothesized distribution and values close to 1 suggest rejecting it. The
parameters of the best-fitted distributions were obtained using maximum-likelihood
estimation.

Due to the limited scope to tube-like structures, the tracing algorithm’s soma

detection module was disabled. Therefore, somas in neuron images were manually

50
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segmented and supplied to the tracing algorithm. Furthermore, the trace merging step of
the algorithm was also disabled since it is a post-processing step [87].

The recursive random search (RRS) algorithm was limited to 1000 function
evaluations. This computational budget/limit was chosen empirically. An exhaustive
search—without constraints on the parameter values—would require 6,804,000 function

evaluations using the parameter ranges in Table II (p. 37).
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Figure 15. Displays empirical and best-fit probability distribution function (pdf) of
the vesselness values at the background regions /5 in Panel (a) and at the
foreground regions .7  in Panel (b). Ranked by the Kolmogorov-Smirnov (KS) test
statistic, the exponential distribution for 5 (KS value 0.27) and the generalized-
beta distribution for /# (KS value 0.05) were determined to be the best fit out of 15
distributions considered. The parameters of the best-fitted distributions were
obtained using maximum-likelihood estimation.
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Table III. Lists the results for fitting distributions to the observed histogram of the
local structure-indicator function (vesselness) values at the background

region, P (V (x)‘x els ), where the best fit is displayed in Figure 15a. Only valid fits

are listed. There were 8 invalid fits. The Kolmogorov-Smirnov goodness-of-fit
measure was used and fits were ranked according to the KS statistic.

Distribution  Fitting Rank 3 tgii tic Fitted Distribution Parameters 0
Exponential 1 0.2698 0=(0.0142)
Extreme value 2 0.3224 0 =(0.0062 0.0106)
Logistic 3 0.3759 0=(0.0090 0.0094)
Jverse 4 0.3980 0=(0.0148 0.0019)

aussian
Normal 5 0.4246 0=(0.0142 0.0313)
Triangular 6 0.7847 6=(0.0000 0.0000 0.5061)
Uniform 7 0.8578 0=(0.0000 0.5061)

Table IV. Lists the results for fitting distributions to the observed histogram of the

local structure-indicator function (vesselness) values at the foreground

region, P (V (x)‘x e~ ) , where the best fit is displayed in Figure 15b. Only valid fits

are listed. There were 7 invalid fits. The Kolmogorov-Smirnov goodness-of-fit

measure was used and fits were ranked according to the KS statistic.

Distribution Fégﬁ}(g S teléii tic Fitted Distribution Parameters 0
Generalized beta 1 0.0490 0=(4.7771 0.6462 —0.4354 1.0000)
Normal 2 0.1791 0=(0.8302 0.1848)

Logistic 3 0.1857 0=(0.8615 0.0937)
Extreme value 4 0.2811 0=(0.7254 0.2477)
Triangular 5 0.3366 6=(0.0188 1.0000 1.0000)
Exponential 6 0.4033 0 =(0.8106)

Uniform 7 0.5153 0=(0.0191 1.0000)

Pareto 8 0.5156 0=(0.2698 0.0196)
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Figure 16. Displays a plot of segmentation quality versus segmentation complexity.
Increased segmentation complexity means less concise segmentation, and vice-
versa. (a) The input image, containing segments of neurons grown on
topographically-modified semiconductor surface (Image source: N. Dowell,
Wadsworth Center). (b) Traces obtained with 1000 RRS function evaluations
(18.5% improvement in segmentation quality metric ( versus using default

segmentation algorithm settings). (c) The plot of the segmentation quality O in
megabits versus the segmentation complexity ‘41 (/l//,)‘ in kilobits, obtained from

1000 RRS function evaluations. A polynomial trend line is also plotted. As expected,
the segmentation quality increases as segmentation complexity increases up until a
point where segmentation quality decreases since the segmentation becomes overly
complex.
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Segmentation quality is expected to increase as the segmentation gets more complex
up until a point of diminishing return where more complex segmentations exhibit
degrading quality. Figure 16 displays a plot of segmentation quality versus segmentation
complexity. Increased segmentation complexity means less concise segmentation, and
vice-versa. Panel (a) displays the input image, containing segments of neurons grown on
topographically-modified semiconductor surface. (b) The optimal trace obtained with

1000 RRS function evaluations. (c) The plot of the segmentation quality O in megabits
versus the segmentation complexity ‘4,, (M )‘ in kilobits, obtained from 1000 RRS

function evaluations. A polynomial trend line is also plotted. As expected, the
segmentation quality increases as segmentation complexity increases, up until a point

where segmentation quality decreases since the segmentation becomes overly complex.

4.1 Global Thresholding Example

This is intended to illustrate the automated parameter selection method in a trivial
and readily-understood context — global intensity thresholding [60]. A global intensity
threshold 7 is applied to images containing tube-like structures, and the goal is to find
the optimal threshold value 7 that yields the optimal segmentation/l;/ . For objects
brighter than the background, the segmentation function is given by:

f(f(x),&)={

xe F ifZ(x)2t

) (27)
xel5 otherwise

For 8-bit grayscale images, Z (x) € [0,255] , the global intensity threshold
E=re€ [0,255] is a one-dimensional parameter vector in the parameter space QeZ'.

Figure 17 shows the results of applying the proposed methodology to this case. Panel (a)
shows an image of neuronal dendrites captured by fluorescence microscopy. The

vesselness measure }/(x) is displayed in Panel (b). Panel (c) is a plot of the

segmentation quality metric O versus the threshold value 7. The optimal segmentation

M (using the optimal threshold value 7 =55) is shown in Panel (d).
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Figure 17. Trivial automatic thresholding example illustrating the behavior of the
segmentation quality metric Q. (a) Image of a fluorescently labeled neurite

captured by a widefield microscope. (b) The multi-scale vesselness measure. (¢) Plot
of the segmentation quality metric O against the threshold z value. (¢) The

optimal segmentation .47 using 7 =55.

4.2 Tracing Algorithm: Two Parameters

In this example, the use of the proposed methodology is demonstrated in choosing

A

the parameters & for an automated neuron tracing algorithm [2, 3] (summarized in

Section 3.3, p. 37). The parameter settings for this algorithm can be combined into a

vector & as follows:

&= (g L Lo Maip Moowte  Smax Te V)-
They are summarized in Table II (p. 37), along with their default values. Note that the
traces are not merged for these examples since the segments are merged after tracing by
the tracing software, i.e., as a post-processing step.

Figure 18 shows the result of an exhaustive search for just two parameters, grid
spacing g in the range [10,30] , and contrast threshold multiplier 7, in the range [1,10]
with other parameters set at default values (Table II, p. 37). Panel (a) shows the input
image containing fluorescently-labeled neurites imaged using a multi-photon
microscope. Panel (b) shows the computed vesselness values. Panel (c) displays the

entire segmentation quality metric O versus g and .. Panel (d) displays the traces

obtained using the default parameter values ( g=157, :3). The worst under-
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segmentation (g =26,7, =10), is displayed in panel (e). Panel (f) displays the worst
over-segmentation (g=10,7, =1). The optimal segmentation (g=217,=8) Iis

displayed in panel (g). Since only two parameters are being searched here, it is feasible
to search exhaustively. These two parameters are related directly to the initial sampling
of the image and the stopping criteria of the tracing algorithm. They are chosen to

illustrate the effect of these aspects of the tracing algorithm on trace conciseness and

coverage.

Segmentation Quality
QO (megabits)

(d) (e) ® (8)
Figure 18. An example varying just two parameters, g<[10,30] and 7, €[1,10],

with others fixed at default values (Table II). Panel (a) shows a maximum intensity
projection of a 512x512x55 multi-photon microscope image of fluorescently-labeled
neurites. Panel (b) displays the vesselness measure. Panel (c¢) displays the entire
segmentation quality metric (, demonstrating the nontrivial optimization

landscape, versus the parameters g and z,. (d) Using the default parameter values
(g=15,7,=3). (¢) The worst under-segmentation (g =26,7, =10). (f) The worst
over-segmentation (g =10,7, =1). (g) The optimal segmentation (g =21,7, =8).
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4.3 Tracing Algorithm: Eight Parameters

This example shows the search in the full eight-dimensional parameter space of the
tracing algorithm, using at most 1000 RRS function evaluations. To begin, 40 2-D test
images of human retinas (with ground truth), and 183 2-D images of neurites were
gathered from four sources (Table V). Results for 3-D images are reported separately in
Section 4.3.2. For the retinal images, the pixel-wise agreement to the ground truth was
also computed (See Section 4.4, p. 70). Improvements in description lengths and
agreement with the ground truth were found to be strongly correlated (7 =0.78), and
statistically significant (p < 0.0005 to reject the hypothesis »=0). All reported

improvements in this section are in terms of the segmentation quality metric Q

compared to using the algorithm’s default parameter settings (Table II, p. 37).

Figure 19 displays the applications of the proposed method to a human retinal
vasculature image shown in panel (a) and to images of cultured neurons in panels (b)-
(d). Traces using default settings are shown in panels (e)-(h). Traces using
automatically-selected settings using 1000 RRS function evaluations are shown in panels
(1) through (I). The quality improvement is 4% for the retina image in panel (a), 6% for
the neuron image in panel (b), 7% for the neuron image in panel (c), and 38% for the

neuron image on the micro-fabricated surface in panel (d).

4.3.1 Segmentation of Image Batches

Table V summarizes the results for all 223 test images. The first column lists the
image source followed by the number of images in the second column. The third column

shows the improvements in segmentation quality metric O when the parameter settings

are automatically-selected for each image using the parameter selection method
presented in this work. The fourth column shows the improvements when automatically-
selected settings for the first image from the same source are applied to the rest of the
images. Reported improvements are statistically significant (p < 0.0005) as concluded

from paired #-tests on all 223 test images (see Section 4.4.2, p.72).
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Figure 19. Illustrating applications of the proposed method to: (a) a human retinal
vasculature image; (b)-(d) images of cultured neurons. Default traces are shown in
panels (e) through (h). Traces using automatically-selected settings using 1000 RRS
function evaluations are shown in panels (i) through (I). The quality improvement is
4% for the retina image in panel (a), 6% for the neuron image in panel (b), 7% for
the neuron image in panel (c), and 38% for the neuron image on the
topographically-modified surface in panel (d).
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Table V. Summary of experimental results with 223 images from four sources. The
first two columns list the image sources, and number of images. For all
experiments, 1000 RRS function evaluations were used, and an 8-dimensional
parameter space was searched. The third column shows the improvements in the
segmentation quality metric O when parameter settings are automatically-selected
for each image. The fourth column shows the improvements when settings are

optimized for just one randomly selected image, and then applied to the rest of the
images in the batch.

Improvement in segmentation
quality metric Q with 1000 RRS

function evaluations, compared to

Image Source and Reference Number of default settings
Images Improvement
Improvement .
when just one

when each image

is optimized (%) tllrnn;‘zg: dli% |
Directionality of Neurite
Outgrowth Study (Neuron) 154 213 185
The STARE Project (Retina) 20 4.7 1.3
The DRIVE Database (Retina) 20 9.0 4.1
Synaptic Distribution Study 29 10.9 10.0

(Neuron)

Figure 20 graphically displays the segmentation quality improvements on the batch
of images from the Synaptic Distribution Study [138] as summarized in Table V. The
fourth image from this batch is shown in Figure 19b. The shaded bars show the
percentage improvements in the segmentation quality metric when parameter settings
automatically selected for each image. Twelve images were found to share the same
settings after 1000 function evaluations. The blank bars show the percentage
improvements when settings are optimized for just one randomly selected image, and

then applied to the rest of the images in the batch.
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Figure 20. Displays the segmentation quality improvements on the batch of images
from the Synaptic Distribution Study [138] as summarized in Table V. The fourth
image from this batch is shown in Figure 19b. The shaded bars show the percentage
improvements in the segmentation quality metric when optimal parameter settings
are computed for each image. The blank bars show the percentage improvements
when settings are optimized for just one randomly selected image, and then applied
to the rest of the images in the batch.

Table VL The automatically-selected parameter vector
é:( g L. L Ay 1 S0 P 19) values specific to each image. Notice

min max rotate

that only 11 distinct parameter vectors were obtained.

Image number g L. L. Age A S P v
1,4,5,6,7,8,9,16,19,23,25,28 2 10 14 3 3 5 2 10
2,13,15.21,24 2 16 28 3 3 5 3 10

3 2 10 14 3 5 6 1 10

10 2 12 14 3 5 4 2 15

11,12,26 2 10 18 3 4 4 1 15

14 2 20 2 3 5 4 3 15

17,20 2 16 26 3 4 3 3 15

18 2 10 24 3 6 5 2 10

2 2 8 14 3 9 4 1 10

27 2 10 28 3 7 7 2 10

29 2 10 22 3 6 7 2 10
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Table VI displays the values of the automatically selected parameter vector

A

é:(g L. L Ay 1 Sioe P \9) specific to each image from the

min max rotate

Synaptic Distribution Study [138] as summarized in Table V. Only 11 distinct parameter
vectors were obtained. In one case, 12 out of 29 images in the set resulted in the same
optimal parameters. These images are displayed in Figure 4b. This may suggest that
these 12 images exhibit similar underlying characteristics from which the parameters are
derived, i.e., they “look similar” to the tracing algorithm, given that their automatically
selected parameters are identical.

The optimized parameter settings vary from one application to another. For
example, when the parameter settings from the DRIVE database containing retinal
images are applied to the neuron images from the Synaptic Distribution Study, the

observed segmentation quality metric O worsens 30% on average.

4.3.2 Using 3-D Images

A total of 22 3-D images are used. To create image subvolumes, seed points are
generated using the default segmentation algorithm settings (Table II, p. 37) and
clustered. The bounding boxes of the seed clusters define the subvolumes. Computation
times to execute 1000 RRS function evaluations for different non-empty subvolume
sizes obtained with seed clusters are plotted in Figure 21. The resulting plot seems
clustered too, where the right-most cluster corresponds to using 1 seed cluster, the
middle cluster corresponds to using 2 seed clusters, and the left-most cluster corresponds
to using between 3 to 10 seed clusters. Execution times and subvolume sizes are found
to be almost-perfectly linearly related (correlation coefficient value »=0.98). This
motivated the subvolume-based speedup methods as described in Section 3.4 (p. 42).

The two subvolume-based methods in Section 3.4 are compared by observing both

speedup and improvements in segmentation quality metric Q. The optimal number of

subvolumes £ * is found to vary between 2 to 5 for the test images. Parameter selection
performed on the entire image averages at 61 minutes and improvements in

segmentation quality metric Q averages at 1.30%. The single representative subvolume

method (Section 3.4.3, p 45) produces on average 3.1X speedup with 1.07% average
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improvement in segmentation quality metric Q. The multiple-subvolumes coordinated

parameter selection method (Section 3.4.4 p. 47) produces comparable average
segmentation quality improvement of 1.05%, but with much higher speedup of 11.2X on

average.

80

Execution Time
for 1000 RRS
Function
Evaluations
(minutes)

0 T T T 1
0 2 4 6 8

Image Size (millions of voxels)

Figure 21. Displays execution times for the automated parameter selection method
using 1000 RRS function evaluations and non-empty 3-D subvolumes of different
sizes. A linear trend line is also plotted. Execution time and image size is almost-
perfectly linearly related (correlation coefficient » =0.98).

Based on this observation, the multiple-subvolumes coordinated parameter selection
is chosen to speed up the parameter selection process for 3-D images and also to
investigate the results of using spatially adaptive segmentation algorithm parameters.
Using this speedup method, 65 RRS function evaluations are performed on each
subvolume before the best parameters are passed on to the next subvolume that will
conduct another 65 RRS function evaluations. The 99% confidence-level used by RRS
limits the number of function evaluations in the exploration step to 44. The number of
function evaluations for RRS exploitation stage is limited to 21, corresponding to 3

realign-shrink steps with 7 function evaluations each [119].
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Figure 22. Displays the observed Mahalanobis distance for & subvolumes
corresponding to & seed clusters, where the optimal number of subvolumes is
k*=4 since it contains the subvolume v* with the smallest Mahalanobis distance
to the entire image. The input image is shown in Figure 24a. Beyond 10 clusters, the
smallest seed cluster contains less than 12 seeds. Notice that larger subvolume sizes
(smaller &) do not necessarily correspond to smaller distance to the entire image.

The optimal number of subvolumes £ * is determined by varying the number of
seed clusters k£ until the smallest seed cluster contains less than 12 seeds. While varying
k , the representative subvolume v* is updated. Once the process completes, the optimal

number of subvolumes k* corresponds to the cardinality of the set of subvolumes

M

k . . .
{v/.} g that contains v*. Recall that v* is defined as the closest subvolume to the entire
S rJ=

image based on the Mahalanobis distance of the seed point characteristics and image
contrast. Figure 22 displays the observed Mahalanobis distance for & subvolumes as &
is varied using the 3-D image shown later in Figure 24a, where k*=4. Using the
multiple-subvolume coordinated parameter selection method for the same input image,
Figure 23 displays the improvements in segmentation quality metric Q using different
number of subvolumes. Most improvement is observed when the set of subvolumes

contain the most representative subvolume v*. In this case, it is when k*=4.
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Figure 23. Displays the amount of improvement in segmentation quality O using

different number of subvolumes using the multiple-subvolumes coordinated
parameter selection method. Notice that most improvement occurs at t*=4 when
the set of subvolumes contain the most representative subvolume v*.

Figure 24 displays a 512x512x50 image of a neuron captured using multiphoton
microscopy. For this image, the number of seed clusters is computed to be k* =4 . Panel
(b) displays the detected seed points on the maximum intensity projection of the 3-D
image along with the subvolumes obtained from seed point clusters. Panel (c) shows the
traces obtained using default segmentation algorithm settings. Panel (d) shows the traces
obtained using the automatically-selected (non-adaptive) settings, with 1.92%

improvement in segmentation quality Q. Recall that by default, the segmentation

algorithm settings are non-adaptive since they are used for the entire image. When using

adaptive settings, improvement in segmentation quality metric Q is almost similar at

1.90%. Computational speedup using multiple subvolumes versus using the entire image
averages at 12.8X (average reduction from 77 minutes to 6 minutes) on a 2 GHz AMD
Opteron processor. More detailed progress of the multiple-subvolumes coordinated

parameter selection method is described next.
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Figure 24. Results using a 512x512x50 3-D image of a neuron captured using
multiphoton microscopy. (Image source: J. Trachtenberg, UCLA). (b) Detected
seed points on the maximum intensity projection of the 3-D image along with the
four regions obtained by clustering the seed points. (¢) Traces obtained using
default segmentation algorithm settings. (d) Traces obtained using the automated
parameter selection method (coordinated multiple-subvolumes). The improvement
in segmentation quality metric Q is 1.92%.
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Figure 25. Multiple-subvolumes coordinated parameter selection, during the first
iteration. The input 512x512x50 3-D image is displayed in Figure 24a. Results are
displayed on the x-y maximum intensity projection image. Panel (a) displays the
first subvolume. It begins with the default parameter settings, and searches for its
best parameters &, , where the result is shown in panel (b). Panel (c) displays the

traces for the second subvolume, using & _,. It includes &, as part of its
exploration stage, and obtains the traces with its updated parameters &,_, in panel
(d). Panel (e) displays the traces in the third subvolume with & _,. Its updated
traces using & _, is shown in panel (f). Similarly, panel (g) displays the traces in the
fourth subvolume with & _,. Its updated traces using &,_, is shown in panel (f).
Next, the first subvolume will include §,_, in its exploration stage. Note that each

subvolume may not always obtain updated/better parameters. The process
terminates when all subvolumes no longer produce better parameters.

For the input 512x512x50 3-D image displayed in Figure 24a, observed progress of
the multiple-subvolumes coordinated parameter selection during the first iteration is

displayed in Figure 25. Recall that subscript j denotes the subvolume index and
subscript i denotes the iteration number. Panel (a) displays the first subvolume. It begins

with the default parameter settings, and searches for its best parameters § where

Jj=li=1?

the result is shown in panel (b). Panel (c) displays the traces for the second subvolume,
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using &, . It includes §,_, _, as part of its exploration stage, and obtains the traces

with its updated parameters & in panel (d). Panel (e) displays the traces in the third

j=2,i=1
subvolume with §,_, ,_, . Its updated traces using &,_,,_, is shown in panel (f). Similarly,
panel (g) displays the traces in the fourth subvolume with §,_, .. Its updated traces
using §,_, ., is shown in panel (f). Next, the first subvolume will include §,_, ., in its

exploration stage. Note that each subvolume may not always obtain updated/better
parameters. The process terminates when all subvolumes no longer produce better
parameters.

Segmentation quality for 3-D images is also expected to increase as the
segmentation gets more complex up until a point of diminishing return where more
complex segmentations exhibit degrading quality, similar to the case for 2-D images
(illustrated in Figure 16, p. 53). Figure 26 displays a plot of segmentation quality versus
segmentation complexity for the image shown in Figure 24a, obtained from 1000 RRS

function evaluations. The behavior of segmentation quality Q is found to be similar

between 2-D and 3-D images.

-10.0 ~
-10.1 ~
Segmentation -10.2 -
quality Q
. -10.3 ~
(megabits)
-10.4 - .
<
_10.5 T T T T T 1

50 100 150 200 250 300 350

Segmentation complexity (kilobits)

Figure 26. Displays a plot of the segmentation quality versus segmentation
complexity for the image shown in Figure 24a obtained from 1000 RRS function
evaluations. As seen for 2-D images (Figure 16, p. 53), the segmentation quality
increases as segmentation complexity increases, up to a point until the segmentation
quality decreases since the segmentation becomes overly complex.
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Figure 27 displays the improvements in segmentation quality for a time-series of
eight 3-D images (first image shown in Figure 24a). The first bar in Figure 27 displays
the improvement when each image in the time-series is optimized separately, using
k* =4 subvolumes and non-adaptive segmentation settings. The second bar displays the
improvement obtained when the non-adaptive settings obtained for the first image are
applied to the rest of the series. The third bar displays the improvement using the
adaptive settings obtained from the first image applied adaptively to the rest of the

series.
2% A
O thimized for each
Improvement in image
(Iglrl:;g:;ng) 7 lUsing imagell non-
adaptive settings
0% B Using image 1 adaptive

settings

Image Number

Figure 27. Displays the improvements in segmentation quality for a time-series of
eight 3-D images (first image shown in Figure 24a). The first bar displays the
improvement when each image is optimized separately, using £*=4 subvolumes
and non-adaptive segmentation settings. The second bar displays the improvement
obtained when the non-adaptive settings obtained for the first image are applied to
the rest of the series. The third bar displays the improvement using the adaptive
settings obtained from the first image applied adaptively to the rest of the series.

4.3.3 RRS Performance

A full eight-dimensional exhaustive search, comprising of 6,804,000 function
evaluations using the parameter values in Table II (p. 37), is conducted using the image
shown in Figure 18a (p. 56). The exhaustive search took 9 days to complete on three
servers each with two 700 MHz Pentium III processors, a total of six processors running
in parallel. On average of 50 RRS runs with 1000 function evaluations each, RRS is

within 3.56% from global optimum.
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The execution time is dependent on the time for one RRS function evaluations, i.e.,
one run of the segmentation algorithm. Execution times for 1000 RRS function
evaluations to obtain the optimal parameter settings vary from 12 minutes per image on
average from the DRIVE database [136] to 53 minutes on average for images from the
Synaptic Distribution Study [138] on a 2GHz AMD Opteron processor.

The performance of the RRS algorithm is plotted in Figure 28, displaying the
segmentation quality improvement in percentage relative to using default segmentation
algorithm parameter settings, on average, for all 223 test images (Table V, p. 59). The
average improvement relative to default settings increases only by 0.22% beyond 500
RRS function evaluations up to 1000 RRS function evaluations. This plot also illustrates
the high efficiency of RRS during its exploration of the global parameter space.
Furthermore, it shows that the default parameter settings are very unsuitable for the
majority of the test images, especially from the neurite outgrowth directionality study
[11] (see Table V). The minimum number of RRS function evaluations is determined by
the confidence-level of finding the optimal value within the global sample space, i.e.,
during its exploration step. For the 99% confidence-level used for all presented
examples, RRS needs 44 function evaluations [119] before it can begin identifying the

promising subspaces for the exploitation step.

20% -

Percentage
Improvement
Relative ~ 10%

to Default
Settings

0% ‘ ‘ \ \ \
1 100 200 300 400 500

Number of Function Evaluations

Figure 28. Average percentage improvement in segmentation quality for all 223 test
images (Table V). This plot illustrates the high efficiency of RRS during its early
exploration of the global parameter space. The improvement between S00 and 1000
RRS function evaluations is only 0.22%.
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4.4 Validation

In the context of validating the automatically-selected segmentation algorithm
parameters, the reported improvements in segmentation quality O need to be shown to
relate to improvements in terms of agreement between automated segmentation and
manual segmentation. Once the relation is validated and improvement in segmentation

quality Q is concluded to be meaningful, then the statistical significance of observed

improvements in Q for the test images needs to be validated.

4.4.1 Relationship between Improvement in Segmentation Quality and Agreement
with Ground Truth

Improvements in segmentation quality metric Q must be validated in terms of its

relationship to improvements in agreement between automated segmentation. 47 _ and

auto

ground truth segmentation .47.,.. Recall that both improvements are relative to using the

segmentation algorithm default settings. Currently, the widely used method to obtain the
ground truth segmentation is by using human observers, i.e., manual segmentation [39,
44]. Manual segmentation, other than being tedious and very time consuming, suffers
from intra-observer and inter-observer subjectivity and disagreements [3]. Since the

segmentation quality metric Q is based on partition of the image, the ground truth must

label all pixels in the image, not just the centerlines (as in [3]). This makes manual
segmentation more tedious. Rather than introducing more subjectivity, the validation is
performed on currently-available, published sets of 40 manual segmentations, from the

STARE Project [65] and the DRIVE Database [136].
Let A1

auto

(é defauh) be the automated segmentation using default segmentation

auto

algorithm settings §,,,, and A7, (f;) be the automated segmentation using

automatically-selected algorithm settings % The number of pixels where the automated

segmentation A7

auto

agrees with the ground truth segmentation .47, is denoted

|'A4auto

m/l//GT|. The improvement in agreement between automated segmentation and

ground truth segmentation becomes:
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‘ auto &deﬁmlt ) M 'A//GT
gdeﬁmlt M MGT‘

44, (é)mMGT

AGT =

(28)

‘ auto

The segmentation quality metric Q of A7 (& defa“,t) is denoted Q(E’; Mauh), and the

segmentation quality metric of A7 (%) is denoted Q(é) Since Q is negative valued,

the improvement in segmentation quality is computed as:

0 (édefault ) -0 (é)
O (&)

The (Pearson) correlation between two variables X and Y, each with N observations

AQ = (29)

| S AT
. (30)
) B |z B

Substituting in (30) the variables AQ and AGT, and the value N =40 for the 40

images with ground truth used in this validation section, the correlation is computed to

be »=0.78. A scatter plot showing observed AQ and AGT pairs is shown in Figure 29.

Next, a two-sided hypothesis test is conducted with the following hypotheses:
H,:r=0
H :r+0

where the significance level of the test is set at 0.05. The significance level is the
probability of rejecting a true H,, i.e. concluding that there is a linear relationship
between AQ and AGT where there is actually no linear relationship between the two.
The p -value for this test is computed to be less than 0.0005. The p -value tells the
smallest significance level of the test at which /| can be rejected. Since it is lower than
the significance level of 0.05, hypothesis H|, saying that there is no linear relationship

between observed improvements in segmentation quality and improvements in

agreement with ground truth can be rejected.
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Figure 29. Displays a scatter plot of observed improvements in segmentation
quality metric O and improvements in agreement to ground truth. A linear trend

line is also plotted. The improvements are strongly correlated with correlation
coefficient » =0.78.

4.4.2 Significance of Improvement in Segmentation Quality

Significance of the improvements observed for all 223 test images (Table V, p. 59),

can be determined by conducting a paired #-test using the observed values for
segmentation quality using default segmentation settings Q(ﬁmuh) and segmentation
quality using automatically-selected settings Q(é) Paired #-test is used because it is

reasonable to expect dependence between observations within a pair because they are

measurements from the same image.

First the difference between Q(F, defauh) and Q(é) needs to be tested to see whether

the distribution of the differences is normally distributed. Using the Anderson-Darling
test for normality [139], we can reject the hypothesis that the differences are not

normally distributed with p <0.005.

The paired #-test is conducted using the pair of Q(& defﬁzult) and Q(%) values for each

of the 223 test images. The null hypothesis says that the difference between Q(é’; defa“,t)
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and Q(é) is zero, and the alternative hypothesis says that the difference is greater than

zero. In other words, the null hypothesis says that the automatically-selected parameters

result in no improvement in segmentation quality metric Q. From the observed pairs of
Q(é’; Mault) and Q(%) values, the null hypothesis is rejected at the 0.05 significance level

with p <0.0005.

4.5 Comparison of Optimization Algorithms

Comparative performance evaluation for the optimization algorithm is conducted
using four other global optimization algorithms. Other than the RRS algorithm used to
generate all results reported in this work, the four evaluated optimization algorithms are:
(1) controlled random search; (ii) multi-start pattern search; (iii) simulated annealing; and
(iv) genetic algorithm. These algorithms are chosen since they are recommended for

black-box optimization problems [114, 117, 118, 140]. They are briefly described next.

4.5.1 Optimization Algorithm Descriptions

Controlled random search, also called as Price’s algorithm [113, 114, 141],
randomly generates a population of » points, randomly chooses a subset of the n points
and performs a downhill simplex move with that subset. The population of n points is
updated by removing the worst element as better points are obtained in the downbhill
simplex moves. A simplex move is used to find the local optima. The simplex, a
generalization of a triangle in high dimensional space, is moved using systematic
reflections, expansions, and contractions [142].

Multi-start pattern search performs random sampling to generate new starting
points whenever it reaches local optima [115]. Pattern search is an exploitation method
that maintains a pattern (information) that guides the speed of convergence to the local
optima [116]. A pattern is updated by performing a series of exploratory steps, one in
each dimension of the search space [115].

Simulated annealing [112], also known as Monte Carlo annealing, statistical
cooling, probabilistic hill-climbing, stochastic relaxation, and probabilistic exchange

algorithm [140], is based on the concept of annealing in metallurgy (study of metals and
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their mixture, alloys, in materials science and materials engineering). Annealing in
metallurgy is a method involving heating and controlled cooling of a material for
allowing a system such as atoms in an alloy to find a low-energy configuration to
increase the size of its crystals and reduce defects. To avoid local optima, simulated
annealing begins with a pure random search and gradually resembles hill-climbing
methods [140], where the transition from random search to hill-climbing is achieved by
varying its “temperature” (e.g., see [143]).

The genetic algorithm is based on the theory of evolution, driven by the survival of
the fittest [144-146]. An initial random population of individuals is created, and each
individual’s fitness value is a scaled version of the optimization objective function [147].
To create new generations of the population, multiple individuals are stochastically
selected from the current population based on their fitness to create new members of the
population, either by breeding (crossover of two parent individuals) or by mutation.

The interested reader is referred to the cited references for further details on these

algorithms.

Controlled random search Multi-start pattern search Genetic algorithm

= Recursive random search = Simulated annealing
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Figure 30. Average percentage improvement in segmentation quality for all 223 test
images (Table V) using controlled random search, multi-start pattern search,
genetic algorithm, simulated annealing, and RRS. RRS outperforms all other
optimizations tested at all 1000 function evaluations.
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4.5.2 Experimental Results for Comparative Study

This is similar to the result shown earlier in Figure 28 (p. 69) for RRS, but here the
performances of other optimization algorithms are included. Figure 30 displays the
average percentage improvement in segmentation quality for all 223 test images (Table
V) using controlled random search, multi-start pattern search, simulated annealing,
genetic algorithm, and RRS. This plot illustrates the relatively higher efficiency of RRS
during its early exploration of the global parameter space compared to the other
optimization algorithms. It also demonstrates the relatively higher efficiency of RRS
during later function evaluations compared to the others. RRS outperforms the other 3

optimization algorithms at all function evaluations for all 223 test images.

4.6 Chapter Summary

Since the goal is to obtain the optimal result from a segmentation algorithm, and
therefore automatically obtain the segmentation algorithm parameter settings,
segmentation algorithms ranging from as simple as the global thresholding [60] to the
eight-parameter exploratory tracing algorithm [3, 19] are adopted to demonstrate the
applicability of the automatic parameter selection method. A gallery of results that
extends across applications is displayed. These results also demonstrate that a single
implementation/version of the tracing algorithm can be used across applications just by
using different parameter settings. Capability for 3-D images is also demonstrated using
a systematic method to speed up computation since incremental changes in the tracing
algorithm parameters do not translate to incremental changes in the traces—each RRS
function evaluation corresponds to complete retrace of an image.

The method is validated by investigating the relationship between improvements in
the proposed segmentation quality metric and improvements in agreement to ground
truth segmentation. The reported improvements in segmentation quality are found to be
statistically significant and strongly correlated (»=0.78) with improvements in
agreement between automated and ground truth segmentation.

Performance of the RRS algorithm used in finding the segmentation algorithm
parameters is compared with four other search algorithms generally recommended for

black-box optimization: (i) controlled random search; (ii) multi-start pattern search; (iii)
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simulated annealing; and (iv) genetic algorithm. On average for 223 test images, RRS

outperforms the other four optimization algorithms at all 1000 function evaluations.



5. Discussion and Conclusions

An automated method to select segmentation algorithm parameter settings is
presented and demonstrated across applications based on the core idea of trading off
segmentation conciseness and segmentation coverage. Using automatically selected
parameters resulted in improved segmentations on all test images. This translates to
more accurate analyses performed on the improved segmentations. Current parameter
selection methods using empirically-chosen parameters (e.g., [2, 3, 19, 20]) or heuristic
formulations (e.g., [21]) are not only time-consuming but are also application-specific

with no assurance towards optimality.

5.1 Automated Parameter Selection

Using an optimization algorithm, possible combinations of segmentation algorithm
parameter settings are efficiently searched using an objective function based on
segmentation quality. This is performed in an unsupervised manner, unlike in other
methods such as in reinforcement-learning segmentation systems [36]. This is possible
because the segmentation quality assessment module is an online component of the
automated parameter selection. Current segmentation quality assessment methods

performs offline evaluations of the segmentations (e.g. [44, 46]).

5.1.1 Segmentation Quality Metric

The segmentation quality metric is based on the minimum description length (MDL)
principle [32]. It objectively trades off segmentation coverage of image content and its
conciseness. The optional universal parameter ¢ allows a user to bias the trade-off. This
effectively reduces the many number of parameters to one that intuitively adjusts the
aggressiveness of the segmentation algorithm. Improvements in this metric are
demonstrated to strongly correlate with improvements in agreement with ground truth

segmentations.

5.1.2 Recursive Random Search Algorithm

Use of direct search methods is necessary to avoid excessive function evaluations

needed for estimating objective function derivatives through finite differences. Direct

77
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search methods involve only examining trial solutions coupled with a strategy for the
next trial [115]. This is necessary for the presented automated parameter selection
method since one function evaluation, or one trial, corresponds to one complete
execution of a segmentation algorithm. This becomes the computational bottleneck
especially for slower segmentation algorithms involving 3-D images.

The recursive random search (RRS) optimization algorithm, used in generating all
presented experimental results is shown to outperform other optimization algorithms
recommended for black-box applications [114, 117, 118], such as the genetic algorithm
[144-146], multi-start pattern search [115, 116], and controlled random search [113, 114,
141]. As demonstrated from experimental results, it has the highest efficiency at
producing better solutions sooner than other algorithms compared, which is important

for this work.

5.2 Batch Segmentation

On batches of similar images, the experimental results demonstrated that significant
improvements can still be gained when the automated parameter selection method is
performed on a single representative image (or perhaps, a modest subset) and the
obtained parameter settings are applied to the rest of the images. This yields a better
operating point for the segmentation algorithm compared to application-independent

default values.

5.3 Speedup Methods

Even though the execution speed of the tracing algorithm used in producing
experimental results scales with image content, not with image size [3], disk and
memory access times for different image sizes are shown to make the execution time for
1000 RRS function evaluations (1000 runs of the segmentation algorithm each time
possibly with different parameters) to almost linearly scale with image size (correlation
coefficient »=0.98). This can also be explained by the observations that different
parameter settings produce different segmentations, ranging from overly-simple to

overly-complex, effectively canceling the image-content execution-time scaling factor.
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This motivated the idea of performing parameter selection on representative
subvolume of the image when the execution speed of the segmentation algorithm is the
bottleneck, as for 3-D images for example. The first method is to use a single most
representative subvolume. The second one generalizes this idea to use a set of
subvolumes containing the most representative subvolume in a coordinated manner.

Speedup of 11.2X on average is observed for 22 3-D images using the second
method, versus 3.0X using the first. Compared to performing parameter selection using
the entire image, both speedup methods on average sacrifice only 0.23%-0.25% of
segmentation quality improvements. The observed difference in segmentation quality
improvements between the two methods is only 0.02%. Although this speedup method

has been presented only for 3-D images, it can be adapted to 2-D images as well.

5.3.1 Representative Subvolume

The representative measure is inspired by related work of Shen et al. [47] and Lin et
al. [48] that prioritizes segmentation to achieve real-time performance for subsequent
analyses. The proposed representative measure is based on both intensity and structural
information. Use of the Mahalanobis distance measure effectively captures the dynamic
ranges of each component of the representative measure. Representative measures
presented in the literature for content-based image retrieval systems (e.g., [49-51]) are
mainly based only on image intensity with future research heading towards using

structural information [51].

5.3.2 Multiple-Subvolumes Coordinated Parameter Selection

This method recognizes the observation that image subvolumes are part of larger
data that are highly correlated, i.e., the subvolumes are not much different from each
other. Under this observation, it is expected that the subvolumes can “collaborate”
between each other towards achieving optimal entire-image segmentation. Simply by
sharing their automatically selected segmentation algorithm parameters, each subvolume
then includes received parameters as part of their search and notifies other subvolumes
when they have found better parameters for themselves. The entire process terminates

when the subvolumes are not benefiting from each other.
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5.3.3 Making a Global Segmentation Algorithm Spatially Adaptive

By using the multiple-subvolumes coordinated parameter selection method,
subvolume segmentation parameter settings can be used by themselves, i.e., by
dynamically changing and adapting the segmentation algorithm parameters as the image
is being segmented. If possible, the parameters can also be interpolated over the entire

image. This adapts the otherwise global segmentation algorithm parameters.

5.4 Future Research
5.4.1 Generalization to Other Geometrical Models

The core idea of trading off segmentation conciseness and segmentation coverage is
expected to be extensible to other applications and other geometrical models, which
remains as future work. Segmentation algorithms for other key biological objects types
such as blobs [148, 149] would require matching quality metrics. Nevertheless, the
modularity of the presented framework allows insertion of alternative segmentation
algorithms and/or global optimization algorithms, as long as the interfaces between

modules are maintained [150].

5.4.2 Selecting Parameters for Other Segmentation Algorithms

Beyond the global thresholding and tracing algorithms used in generating all
presented experimental results, other algorithms for automatically segmenting tube-like
structures need to have their interface modified to be able to use the presented parameter
selection method. Other than the interface, they may also use different local model
fitting methods than the tracing algorithm used in this work. This means that the seed-
clustering method used for constructing non-empty subvolumes for parameter selection

speedup may need to be adapted to their local model fitting stages.

5.4.3 Which Image to Use for Batch Segmentationg?

The batch segmentation method described in this work uses the automatically-

selected segmentation parameter settings for one image selected at random and applied

’ D. Thompson, BMED Dept., Rensselaer Polytechnic Institute, Troy, NY, USA,
personal communication, 2005.
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the parameter settings to the rest of the images in the batch. More systematic method of
using the most representative image in the batch, that can be obtained using methods
described in Section 3.4.2, can be used. The subimage-to-image distance used in that
method needs to be modified to correspond to image-to-image distance.

As a side note, if the segmentation algorithm is linear (incremental changes in
parameter settings correspond to incremental changes in resulting segmentation), then a
group of representative images can be used. When this is not the case, a joint estimation
of the segmentation algorithm parameter settings needs to be performed on the group of
representative images. This can be done by performing multiple-objective optimization
instead of single-objective optimization used in this work, where each objective
corresponds to each image in that group.

In addition, the distribution of the observed distances to the representative image
indicates whether batch segmentation can be performed with reasonable loss of potential
increase in segmentation quality, i.e., by selecting parameter for every image in the
batch. Recall that the representative measure is based on the local structure and intensity
models used by the segmentation algorithm. Intuitively the higher the variance of that
distribution, the higher the loss would be since the images are not very similar to each
other, i.e., “in the eye” of the segmentation algorithm based on the fitted local models.
On the other hand, lower variance indicates that the images in the batch are very similar

in terms of the fitted local models.

5.4.4 Improved Segmentation Quality Metric

The presented segmentation quality metric uses a local structure-indicator function
that measures the likelihood of a pixel to belong to structures of interest and implicitly
captures inter-pixel correlation. Currently, there exist a number of possibilities for the
local structure-indicator function, such as the vesselness measure [74], the generalized
log-likelihood ratio method [22], matched filters [64, 65], and the recent likelihood ratio
vesselness measure [151]. In this work, the use of the vesselness measure may be
improved in future research where more accurate local structure-indicator functions are
substituted in [151]. Once they are substituted, a comparative study between using

different local structure-indicator functions needs to be performed.
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5.4.5 Alternative Speedup Methods

Other methods for more efficient multiple-subvolume coordinated parameter
selection other than the presented circular array method remains to be explored in future
research. They may borrow ideas from computer networking (e.g. [152]) where the
parameters of each network component such as a router are optimized to the benefit of
the entire network.

As an alternative to using fixed subvolumes, the idea of systematic subvolume
growing/expansion as applied in view-based image registration problems [153] remains
to be investigated in future research. Applying that idea to this work essentially says that
increasing subvolume sizes will increase improvements in segmentation quality, using
the underlying assumption that larger subvolumes better represent the entire image.
However, since counter-examples are found in the presented experimental results, this
idea needs to be carefully refined and must be demonstrated to outperform the presented

method both in terms of segmentation quality improvement and in observed speedup.

5.4.6 Temporally Adaptive Segmentation Algorithm

Beyond spatial adaptation of segmentation algorithm parameters as demonstrated in
this work, temporal adaptation can be achieved in time-series images when the image-to-
image transformation parameters are available. Adaptive segmentation algorithm
parameters can then be transformed using the transformation parameters across the time
series. Multiple-passes may be needed however when feature-based image registration
algorithms are used (e.g., [153]) since the extracted features from which the image
transformation parameters are computed depend on segmentation accuracy (which

depends on segmentation algorithm parameters).

5.4.7 Comparative Studies

Comparative studies between segmentation algorithms on specific applications
using the proposed segmentation quality metric, without relying on time-consuming and
subjective manual segmentations as the ground truths [44-46], also remain as future
research. These studies will enable users to make informed decisions on comparing

between segmentation algorithms for their respective applications.
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5.4.8 Automated Feature Detection: Pathological Conditions and Landmarks'’

Disagreements between automated segmentations produced while performing
parameter selection, i.e., while segmenting 1000 times to produce the segmentation
algorithm parameters in this work, may be used to point out areas of interest to the user.
For example, the tracing algorithm used in this work [3, 19] will encounter difficulties at
image regions where the generalized cylinder model does not fit well. From
observations, these regions may contain pathological conditions such as aneurysms
(abnormal blood-filled dilatation of a blood vessel that may cause rupture) and also
branch/crossover points. Therefore, out of the 1000 segmentation produced while
searching for the segmentation algorithm parameters, finding locations where they

disagree may elucidate these regions of interest.

5.4.9 Estimation of the Distribution of Local Structure-Indicator Function Values
in Absence of Ground Truth Segmentations

Methods that estimate the ground truth segmentation (e.g., [46, 96]) can be used to
estimate the ground truth from a collection of segmentations, possibly obtained by
randomly varying the segmentation algorithm parameter settings. This will increase the
objectivity of the parameter selection method. Recall that in this work, the distribution of
the local structure-indicator function values are obtained from manual segmentations.
One may proceed one step further where the ground truths are estimated for each
application (image source, or image batches). With this, the distribution of the local
structure-indicator function values is specialized to each application. This leads to the

next item in potential future research.

5.4.10 Sensitivity Analysis for the Distributions of the Local Structure-Indicator
Function Values''

In this work, a single distribution of the local structure-indicator function is used

when automatically-selecting the segmentation algorithm parameters for all test images.

% A. Mercado, ECSE Dept., Rensselaer Polytechnic Institute, Troy, NY, USA, personal
communication, 2005.
1 Q. Ji, ECSE Dept., Rensselaer Polytechnic Institute, Troy, NY, USA, personal
communication, 2005.
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Ideally the structure-indicator function should be estimated for each image, or at the very
least, for a representative image or group of images from a particular application. It
remains to be investigated in future research on how sensitive the resulting (near-)
optimal segmentations are to changes in the distribution of the local structure-indicator

function values.

5.4.11 Post Hoc Validation"

For routine use of this application, post hoc validations need to be performed on the
resulting (near-) optimal segmentations. In other words, improvements in segmentation
quality must be validated in terms of its relationship to improvements in agreement with
ground truth for the specific application. Other criteria of importance to the application
beyond pixel-by-pixel agreement can be included in the validation process, such as
accuracy of branch point detection, or even the accuracy of extracted structural
measurements. This essentially makes sure that observed high correlation between
segmentation-quality-improvements and ground-truth-agreement-improvements in this
work holds for new applications in order for this method to be adapted for routine use in

those applications.

5.5 Conclusions

The presented experimental results have demonstrated the practicality of
automatically tuning complex segmentation algorithms, using automatic segmentation
quality assessment and global optimization, guided by the MDL principle. The proposed
approach can greatly simplify the external interface of segmentation software packages,
enable adaptation across large image batches, and reduce the need for expensive
technical support.

For segmentation algorithm users, the proposed parameter selection method enables
them use these algorithms without knowledge of the underlying algorithms. It also
reveals the limitations of the segmentation algorithms. Therefore, it allows segmentation

algorithm users to objectively compare between segmentation algorithms for their

2 W. Shain, Wadsworth Center, NYS Dept. of Health, Albany, USA, personal
communication, 2005.
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specific applications. This is a step forward than comparing segmentation results of
segmentation algorithms obtained using default settings. Instead, the comparison will be
performed on the best-possible result obtainable by each segmentation algorithm given
the limitation in computational time. Once the limit on accuracy is reached,
segmentation errors beyond acceptable rates then justify investing tedious efforts for
conducting the subjective manual segmentation for certain applications (e.g., [154]).

For image analysis systems that segments the structures of interest and extract
morphometrics based on the segmented structures, improved segmentation accuracy
directly translates into improved accuracy of the morphometrics. Obtaining
morphometrics quickly and objectively are the reasons why segmentation algorithms are
used in image-based biomedical studies in the first place. The proposed parameter
selection method frees the users from manual hand-tuning of segmentation algorithm

settings that does not guarantee increased accuracy of extracted-morphometrics.
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