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Abstract 

Segmentation of tube-like biological structures, e.g., neurons and blood vessels, 

allows extraction of structural measurements supporting quantitative studies ranging 

from understanding neural growth to cancer research. While automated segmentation 

algorithms minimize subjectivity associated with tedious manual segmentation, they 

generally have parameter settings to cope with high variability in image data across 

applications. Currently, these settings are chosen empirically, formulated heuristically, 

or by trial-and-error with no assurance towards optimality. This work is motivated by the 

need to automatically select parameter settings for segmentation algorithms since they 

directly affect segmentation accuracy.  

An objective trade-off between a probabilistic measure of image-content coverage 

of a segmentation and its conciseness is based on the minimum description length 

principle (MDL). The recursive random search (RRS) optimization algorithm is used to 

efficiently explore combinations of segmentation algorithm parameter settings. For 3-D 

images, computation time is reduced by coordinated-optimizations on non-empty, 

representative subimages based on intensity and structural information.  

The method is initially applied to 223 2-D images of human retinal vasculature and 

cultured neurons, from four different sources, using a single segmentation algorithm 

with 8 parameters. Relative to default settings, improvements in the proposed MDL-

based segmentation quality metric are strongly correlated with improvements in 

agreement with ground truth ( 0.78r = ), ranging between 4.7 – 21% using 1000 function 

evaluations. Paired t-tests showed that improvements are statistically significant 

( ). Most of the improvement occurred in the first 44 function evaluations. For 

223 images, RRS outperforms other optimization algorithms (controlled random search, 

multi-start pattern search, simulated annealing, and genetic algorithm) on average at all 

1000 function evaluations. RRS with 1000 function evaluations is on average within 

3.56% of the global optimum (6,804,000 function evaluations). The proposed 

coordinated subimage-optimization method results in average speedup of 11.2X for 22 

3-D neurons images. 

0.0005p <

This enables non-expert users to use segmentation algorithms without knowledge of 

underlying algorithms, increases objectivity, and broadens applicability of the 
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segmentation algorithm. It simplifies the user interface to just one optional parameter, 

creating a consistent interface that allows developers to freely modify the algorithms. 

The method allows adaptation of parameters across batches of images and delivers 

higher morphometric accuracy.   

xvi  



1. Introduction 

A solution to the problem of automatically selecting segmentation algorithm 

parameters/settings for tube-like biological structures such as neurons and vasculature is 

presented using an optimization algorithm and the minimum description length (MDL) 

principle to construct the objective function.  

The primary goal is to enable a non-expert user to select parameters effectively, and 

objectively, treating the segmentation software as a “black box.” The secondary goal is 

to enable the algorithm developer to modify the internal details while maintaining a 

consistent and simple external interface; and to minimize the cost of technical support. 

1.1 Motivation 

Segmentation partitions an image into its constituent elements or objects [1]. 

Segmentation is performed to obtain morphometrics, or structural measurements, of 

structures captured in the images. It is one of the main components of image analysis 

systems used in image-based biological studies. An image analysis system accepts 

images as input and produces morphometrics. It may be fully-automated or one that 

require user interactions. In this work, image analysis systems are limited in scope to 

those that segment the structures and report morphometrics based on the segmented 

structures (e.g., [2-6]).  

The reported morphometrics allow image-based studies to answer biological 

questions in a quantitative manner. For example, Figure 1 displays an image from a 

study that investigates the guidance of neurite outgrowth by non-neural cells [7]. This is 

possible because images contain spatial information, an advantage absent in other 

quantitative study methods such as the rapid flow cytometry (up to 10,000 cells/sec [8, 

9]) that requires the specimen tissue to be broken up. Furthermore, image-based studies 

allow locations of specific responses or activities or structures of interest to be 

pinpointed rather than quantified for an entire cell or a population of cells.  
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Figure 1. Illustrates the effect of non-neuronal cells (Schwann cells) in guiding 
neural outgrowth (Image source: D. Thompson, M. Cross, RPI). Schwann cells 
shown in red are grown on microlithographically-patterned substrates. The 
angular histogram (right) displays the extracted orientation of the Schwann cells 
and the outgrowth direction of the neurites shown in green (cell analysis: G. Lin). 

 

(a) (b) 

Figure 2. Image-based biological studies allow spatial structures to be investigated 
in association with each other. (a) A 512×480×51 3-channel image of the 
neurovascular unit containing vasculature (red), cell nuclei (green) and cytoplasm 
(blue) shown in x-y, x-z and y-z maximum intensity projections. (Image source: C. 
Bjornsson, K.L. Smith, W. Shain, J. Turner, Wadsworth Center). (b) A 3-D 
rendering of the segmented data, showing neuronal (cyan) and non-neuronal 
(green) nuclei after associating the segmented structures in all 3 channels. 
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In addition, imaged-based biological studies allow spatial structures to be 

investigated in association with each other, i.e., investigation of functional and structural 

relations among elements of a complex system [10]. For example, Figure 2a displays a 

512×480×51 3-channel image of the neurovascular unit containing vasculature (red), cell 

nuclei (green) and cytoplasm (blue). Panel (b) displays a 3-D rendering of the segmented 

data, showing neuronal (cyan) and non-neuronal (green) nuclei after associating the 

segmented structures in all 3 channels [10]. 

For this work, the structures of interest are neurons and vasculature. Neurons and 

vasculature represents a broad range of quantitative studies in biology and medicine. As 

an example for neurons, the morphometric study of directing and promoting neuronal 

growth is important to understand the requirements to establish defined neural networks 

[11]. For vasculature, the study of tumor vasculature morphometrics reveals insights on 

controlling tumor growth and eventually shutting down the vasculature to starve the 

cancer cells [12].  

 

 

Figure 3. Displays a 3-D 512×480×301 image containing a dye-injected neuron in a 
thick brain slice. Over a short distance, the dendritic and axonal segments resemble 
tubes. (Image source: S. Lasek, D. Szarowski, J. Turner, Wadsworth Center). 
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Neurons and vasculature are categorized as tube-like structures because they can be 

locally1 approximated as a tube2 throughout the structure [13], with exception of the 

soma (cell body) of a neuron (Figure 3). In terms of representing these structures, they 

can be represented as centerlines3 containing width information [13], or simply called as 

traces [14].  

Segmentation of neurons and vasculature can be done manually by a human 

observer (e.g., [15-18]). Manual segmentation, not limited to neurons and vasculature, is 

tedious and subjective. In addition to inter-observer disagreements, the same observer 

may produce different results at different times, referred to as intra-observer variability. 

On the other hand, automated segmentation algorithms produces fast and objective 

results [3, 6]. Within the previously-defined scope of image analysis systems in this 

work, automated segmentation algorithms are the critical components of automated 

image analysis systems since they directly affect the accuracy of resulting 

morphometrics.  

Despite the advantages offered, one practical barrier to more widespread adoption of 

automated image analysis systems in quantitative biomedicine is the need to 

adapt/customize them to cope with biological variability (illustrated in Figure 4). To 

achieve this, algorithm designers are forced to incorporate user-settable parameters. As a 

result, users are faced with the difficulty of selecting these parameters without sufficient 

knowledge of the internal mechanisms. Time-consuming manual trial-and-error, as well 

as extensive developer support is often necessary to properly configure the software for a 

given application. Even then, these settings are subjective, and there is no assurance of 

optimality. Currently, settings for these algorithms are chosen empirically (e.g., [2, 3, 19, 

20]) or formulated heuristically (e.g., [21]).  

 

 

                                                 
1 The term “local” is defined as “within a short distance”, e.g., 2-3 pixels.  
2 The term “generalized cylinder” used by Al-Kofahi et al. may be more appropriate for 
structures that vary in width such as neuronal dendrites and vasculature. 
3 Also called as “medial axes” in the literature. 
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(a) 

 
(b) 

Figure 4. Inter- and intra-application variability that exists in neuron/vasculature 
images, in panel (a) and (b) respectively. From left, panel (a) displays images of: (i) 
neurons grown on topographically-modified semiconductor surface; (ii) human 
retinal vasculature; (iii) fluorescently-labeled neuron in 3-D; (iv) brain vasculature. 
Panel (b) displays 12 neuron images captured within the same study.  

 

Accuracy of extracted measurements may also be affected by different algorithm 

settings. For example, Figure 5a shows a phase contrast image of cultured neurites 

grown on an imprinted surface with known orientations of 45° and 90°. Panel (b) 

displays the automatically-generated traces using default settings. Panel (c) displays the 

traces obtained with automatically selected parameters using the method presented in 

this dissertation. The normalized angular histogram of measured segment orientations 

extracted from the automatically-generated traces is displayed in panel (d). Note the 

correct peak at 45° obtained using automatically-selected settings vs. 34° using default 

settings. 
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neurobiology [3, 19], ophthalmology [14], and angiogenic tumor vasculature studies [2]. 

In principle, this algorithm is broadly applicable to the segmentation of tube-like 

structures. In practice, the segmentation performance depends upon the characteristics of 

the image data. For instance, different levels of noise, structural irregularities, and 

imaging artifacts are encountered in different applications. 

To cope with the challenges posed by a novel application, the simplest approach to 

generalize the algorithm is to vary certain constant values such as tracing step size and 

sizes of correlation kernels [19]. This simple-minded approach was often adequate when 

performed by an experienced algorithm designer, who had strong intuitions as well as 

specific knowledge of the segmentation algorithm. However, it proved unacceptable in 

the hands of an end user, especially a user from a different discipline who did not have 

knowledge of the internal workings of the segmentation algorithm. A practical trade-off 

to assist the user is to provide “default” settings that are known to produce acceptable 

results over a broad range of applications. Even these are quite limiting. They are, in 

essence, merely a non-systematic accumulation of the empirical temporary solutions for 

previously-studied applications. 

A somewhat more expensive approach to adapt an algorithm to a novel application 

is to modify the algorithm itself. This proved necessary in some cases. For instance, the 

tracing algorithm of Can et al. [14] was extended by Al-Kofahi et al. [19] to incorporate 

variable-length correlation kernels in order to cope with the discontinuities encountered 

in images of neurons grown on topographically-modified surfaces [11]. Subsequently, 

the 3-D tracing algorithm of Al-Kofahi et al. [3] was extended by Abdul-Karim et al. [2] 

to incorporate a median-based kernel instead of the standard correlation kernel (e.g., as 

in [3]) in order to cope with the irregularity of tumor microvasculature. While such 

extensions are inevitable and desirable, they pose a practical difficulty to the non-

specialist user. The newer algorithms are more complex and introduction of additional 

parameters to handle diverse cases is unavoidable. The problem of selecting these 

parameters has now become even more challenging to the user.  

Interestingly, the end user is not the only affected party. This occurs even when the 

number of parameters goes down due to advancements in the algorithm design. The 

designer of graphical user-interfaces for the segmentation software is faced with the 
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challenge of encapsulating and hiding the algorithm details from the external user 

interface. This is harder to do with changing number and type of parameters required by 

the algorithm. 

With the above considerations in mind, it is helpful to identify key application-

specific aspects of the segmentation algorithm. In this work, four such elements are 

identified: (i) mathematical model describing the local anatomic structure of the objects 

of interest ; (ii) mathematical model describing the local intensity profile of the 

objects of interest ; (iii) parameters related to the fitting of the local model (items 1 

and 2 above) to the image data; (iv) parameters related to global (image-wide) model 

fitting.  

G

T

Models, in the context of this work, are assumptions in precise mathematical forms 

specific to the biological structure to be segmented. Locally, models are associated with 

the structural/geometrical/anatomical characteristics of the biological object and/or 

based on observable image features such as intensity profile and texture. Then the local 

models are fitted to the image using strategies such as matched-filtering, generalized 

likelihood-ratio test, regression analysis, or by formulations of goodness-of-fit measures 

between the models and the image content. Then the structures are segmented from the 

image by a global fitting strategy, which can be a pixel-wise operation [20, 22, 23], 

exploratory [2, 3, 13, 14, 21, 24], or by minimum-cost path estimations [25-27]. These 

concepts will be further clarified with respect to the current literature in Chapter 2.  

1.3 Systematic Approach to Select Parameters 

Borrowing the feedback-loop concept from signal processing, a segmentation-

optimization framework is proposed, coupling a segmentation algorithm with an 

optimization algorithm. To guide the optimization algorithm, the framework 

incorporates an automatic evaluation/assessment of the quality of a segmentation 

resulting from a given combination of the algorithm parameter settings. Figure 6 

illustrates the traditional approach to segmentation of biological images in contrast to 

this framework. In the latter, the automated segmentation quality assessment drives the 

parameter selection process. Ideally, the optimal segmentation algorithm parameters—a 

vector  in the space of all possible algorithm parameter combinations—ˆ∈Ωξ
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corresponds to an optimal segmentation and is the one that we look for. In practice, the 

search for the optimal parameter settings ξ̂  may be limited by certain computational 

budget. In either case, the notion of segmentation optimality is made precise in the next 

section. In other words, given 2 segmentations, it tells how to quantitatively conclude 

one is better than the other.  

 

Segmentation Algorithm

Segmentation:{ , }f →ξI MI M

Parameter Vector
∈Ωξ

Image
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(b) 

Figure 6. Illustrates the proposed self-optimizing image segmentation approach. 
Panel (a) shows a traditional segmentation algorithm in which the parameter 
settings ξ  are set empirically for each input image I . Panel (b) illustrates the 
proposed method in which a global optimization algorithm efficiently explores the 
parameter space  driven by a segmentation quality assessment value based on 
trading off conciseness of the segmentation versus its image-content coverage. The 
user optionally specifies a single universal parameter 

Ω

α  to override the trade-off. 

 

1.4 Segmentation Optimality 

We are in effect deciding which segmentation  to be optimal among the set of 

all computable segmentations 

iM

{ }iM —obtained by varying the algorithm parameters. 

The traditional maximum-a-posteriori (MAP) criterion that minimizes the probability of 
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error [28] can be opted if prior probabilities on the segmentations can be specified. In 

this work, error is defined as the disagreement between a segmentation and the ground 

truth4 at each image pixel. The MAP criterion is to choose the segmentation  that 

maximizes the posterior probability 

ˆ
iM

( )iP M I : 

 ( ) ( ) ( )
( )

i
i

P P
P

P
=

I M M
M I

I
i , (1) 

such that: 

 ( ) ( )ˆ arg max
i

i iP P=
M

M I M iM , (2) 

for the input image I , dropping the constant ( )P I  term. Unfortunately, the prior 

probability is not well defined [29]. Furthermore, if a uniform probability 

distribution for the prior probability 

( iP M )

( )iP M  is assumed, then the MAP criterion reduces 

to the maximum-likelihood (ML) criterion that measures only the goodness-of-fit and has 

a tendency to overfit models to the data.  

It turns out that the MAP criterion can still be used if optimal descriptive languages 

for a segmentation and the image given the segmentation are specified. Then the 

minimum description length (MDL) [30, 31] criterion can be adopted to choose the 

optimal segmentation. In other words, the MDL principle is chosen in this work because 

it has been shown to be equivalent to the MAP method that minimizes the probability of 

error [29]. 

MDL is a principle for statistical model selection and statistical inference based on 

the simple idea that the best way to capture regular features in data is to construct a 

model in a certain class which permits the shortest description of the data and the model 

itself [32]. It guides the trade-off between model overfit and model simplicity in an 

objective manner. For the purpose of this work, it guides the trade-off between 

segmentation coverage of image structural content and conciseness of the segmentation 

itself. As an illustrative example for fitting a polynomial to a set of  points (reproduced n
                                                 
4 To avoid introducing further subjectivity in this work, ground truth is obtained from 
public-domain databases of manual segmentations and by consensus of manual 
observers when provided by these databases.  
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from [33]), Figure 7 displays fit with a line (1st-degree polynomial), a complex fit with 
th degree polynomial5, and a trade-off fit with a 3rd degree polynomial. Figure 8 

illustrates an analogous example to image segmentation. Given the amount of structure 

shown in panel (a), panel (b) displays a complex segmentation, and panel (c) displays 

the trade-off segmentation. Both segmentations were obtained using different parameter 

settings for a segmentation algorithm [19].  

( 1n − )

 

 

Figure 7. Demonstrates the MDL principle in guiding model selection, with an 
example to polynomial fitting to a set of  points. The plots show a simple, a 
complex, and a trade-off (3rd degree) polynomial. (Figure reproduced from [33]). 

n

 

  

(a) (b) (c) 

Figure 8. Given an image displayed in panel (a), panel (b) displays a complex 
segmentation, and panel (c) displays a trade-off segmentation. 

 

Once the descriptive languages are specified, the MDL criterion is equivalent to the 

MAP criterion. This was first presented in the context of image partitioning by Leclerc 

                                                 
5 For every n  points, there exist a polynomial of the ( )1n − th degree that goes through all 

 points. n
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[29]. By taking the negative log of the probabilities in (1) the MDL criterion becomes to 

choose the segmentation  that minimizes:  ˆ
iM

 ( ) ( ) ( )2 2 2log log logi iP P− = − −M I I M MiP . (3) 

Now, let ⋅  to be the description length in bits. Given an optimal descriptive 

language  to describe the segmentation , we need mL iM

 ( ) ( )2logm i iP= −L M M  bits (4) 

to describe the segmentation  [29]. Likewise, given the optimal descriptive language 

 to describe the image 

iM

dL I  given the segmentation , the description length 

becomes:  

iM

 ( ) ( )2logd i P= −L I M I Mi bits. (5) 

Then we can see that the MDL criterion is equivalent to the MAP criterion, which is to 

choose the segmentation  such that  ˆ
iM

 ( ) ( )ˆ arg min
i

i d i m= +
M

M L I M L iM . (6) 

In Chapter 3 we will describe the methods to exactly compute the description 

length. Experimental results for segmentations that minimize the description length are 

presented in Chapter 4. 

1.5 Summary of Contributions 

The primary contribution of this work is to the field of automated segmentation of 

biological imagery—specifically of tube-like structures such as neurons and vasculature. 

The related literature is summarized in Chapter 2. The detailed contributions of this 

work are summarized below along with brief mentions of the state of the art:  

1. Automated parameter selection for segmentation of tube-like biological 

structures. 

a. Minimizes subjectivity associated with hand-tunings of parameter settings 

for automated image segmentation algorithms for tube-like structures. Currently, 

parameters for these algorithms are chosen empirically (e.g., [2, 3, 14, 19, 20, 27]) or 
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formulated heuristically (e.g., [21, 34]). Unlike related works in computer vision 

applications by Min et al. [35] for range image segmentation and the closed-loop 

reinforcement learning framework by Peng and Bhanu [36], the proposed parameter 

selection method is fully unsupervised. 

b. The segmentation computed with the automatically-obtained optimal algorithm 

parameters reveals limitations of the segmentation algorithm. This can be used as 

an objective measure when choosing a segmentation algorithm to use for the specific 

application at hand. Currently, segmentation accuracy reports in the literature were 

of segmentations computed with empirical parameters, with no notion of optimality 

in terms of the parameters and the resulting segmentation (e.g., [2-4, 11, 13, 14, 19, 

20]).  

c. Segmentation algorithms in their optimal configurations can be used in a high-

throughput batch execution system for large amount of similar images—acquired 

within the same study and may be of different specimens. To date, other than for 

time-series images [4, 37], batch segmentation for images containing tube-like 

biological structures has not been explicitly presented in the surveyed literature 

(Chapter 2).  

2. Formulation of a segmentation quality metric, or optimality measure, associated 

with each segmentation originating from segmentation algorithm parameter 

settings. Specifically, the MDL-optimality criterion [29] is specialized for biological 

image segmentation using a local structure-indicator function that measures the 

goodness-of-fit of local models and effectively captures the pixel correlation under 

the modeling assumptions. Currently, segmentation quality metric and optimality 

measures has been devised for low-level computer vision tasks such as edge-

detection [38-40] and image-partitioning [29, 41-44]. Unlike the published methods 

for biomedical images (e.g., [44-46]), the presented MDL-optimality criterion for 

tube-like biological structures does not require manual (or estimated [46]) ground 

truth segmentation.  

3. Systematic speedup method using image subvolumes. A method to minimize 

computations is introduced by performing parameter selection on a representative 

subvolume, or a set of subvolumes containing a representative subvolume in a 
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coordinated manner. This is inspired by related work by Shen et al. [47] and Lin et 

al. [48] that prioritizes segmentation to achieve real-time performance for subsequent 

tasks. The proposed measure for being representative is based on both intensity and 

structural information. Representative measures presented in the literature for 

content-based image retrieval systems (e.g., [49-52]) are mainly based only on image 

intensity such as gradient and texture (e.g. [52]) with future research heading 

towards using structural information [51]. 

4. Systematic reduction of the many parameters of image segmentation algorithms 

into one parameter that trades off segmentation coverage and segmentation 

conciseness. This minimizes the guesswork on the behalf of the non-expert user in 

choosing segmentation algorithm parameters. In practical terms, all segmentation 

algorithm parameters are mapped to a single parameter that adjusts the 

“aggressiveness” of the algorithm, coherent to the users’ intuitive sense. This creates 

a consistent user interface that allows algorithm designers to freely modify the 

underlying algorithms. This has not been reported or proposed in the surveyed 

literature (Chapter 2) for tube segmentation algorithms. 

5. Breaking down an image segmentation algorithm into modular components: (i) 

local structure model; (ii) local intensity model; (iii) local model fitting; and (iv) 

global model fitting. This allows these modular components to be interchanged for 

specific applications at hand. Modularity enables algorithm designers to modify and 

improve each component independently. To date, segmentation algorithms reported 

in the literature (summarized in Chapter 2) are often application-specific with no 

explicit proposition for modularity in terms of these components. 

All of these contributions are incorporated within a modular segmentation-

optimization framework to ensure wide applicability with current image analysis 

systems and also current optimization algorithms. For applications of interest, 

modularity ensures that existing algorithm implementations can be interchanged and 

interfaced (Figure 6b) to fulfill their specific requirements such as computation time 

constraints and robustness to imaging artifacts. This is the key idea that will further 

generalize an image analysis system to a wider range of applications.  
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To summarize, this work does not propose a new image analysis system or new 

image segmentation algorithms within existing systems, but a systematic way to obtain 

the optimal result from such existing systems. The resulting segmentations are not only 

visually better than using default settings, we actually know for sure that they are as 

good as they can get. 

 



2. Summary of Related Literature  

This work draws upon four main bodies of literature:  

1. Automated segmentation algorithms for tube-like/curvilinear biological structures.  

2. Automated/quantitative/objective evaluation of segmentation results. 

3. The minimum description length (MDL) principle. 

4. Global optimization. 

The primary contribution of this work is to the field of automated segmentation of 

biological imagery - specifically of tube-like structures such as neurons and vasculature. 

Therefore, this field is given great emphasis in this chapter. As the surveyed literature is 

vast, usage of synonyms are unavoidable, and are stated in the text separated by forward 

slashes. These synonyms also may be interchanged throughout the text. 

2.1 Segmentation of Tube-like Structures  

Segmentation of tube-like/curvilinear structures in biological images is one specific 

use of computer vision algorithms. Tube-like structures are defined as those of which 

medial-axes/centerline/center-points can be locally approximated as a line [13]. These 

structures include neurons, vasculature, pulmonary airways (e.g., [53]), and even certain 

markers on endografts (e.g., [54]). Computer vision techniques and concepts applicable 

to natural scene imagery are adapted to segment tube-like structures. They include edge 

detection [55], image partitioning, region growing [56, 57], model fitting, surface 

estimation, intensity ridge/valley [58, 59], and energy minimization techniques [42]. 

Segmentation algorithms may use the computer vision techniques in their general form 

or include further constraints specific to tube-like structures—perhaps the imaging 

modality/condition/environment as well. Currently, settings for these algorithms are 

chosen empirically (e.g., [2, 3, 19, 20]) or formulated heuristically (e.g., [21]). 

In a broad sense, tube-like segmentation algorithms can be classified based on the 

modeling assumptions made about the presence or absence of tubes at each pixel in the 

image, and how these models are fitted locally and fitted globally to the entire image 

content. Locally, the assumptions are based on a structure model, and/or an intensity 

model (referred collectively as a “local model”). For example, the simple intensity 

16 
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thresholding algorithms (e.g., [60]) and region growing algorithms (e.g., [56]) can be 

thought of as fitting an intensity model at each pixel, but both usually have no explicit 

structure model. Using the local models, tube-like structures are 

segmented/extracted/delineated from an image using various global/image-wide model-

fitting strategies in varying complexity from simple pixel-by-pixel operation to iterative 

exploratory techniques.  

At this point, the distinction between local models and the global fitting strategies 

should be further distinguished. Two algorithms using the same local model may differ 

in the global fitting strategy. For example, ridge-based [58] local models, described later, 

can be applied either to all pixels (e.g., [61]), or iteratively in an exploratory manner 

(e.g., [13]). Similarly, two algorithms using the same exploratory strategy, such as by 

using the exploration path estimate from local model fittings, may differ in the 

underlying local models (e.g., the generalized cylinder structure model in [3] vs. the 

toroidal structure model in [27]). 

2.1.1 Local Model: Structure Model and Intensity Model 

For local models, the distinction between structure models and intensity models also 

needs further clarification. Both of these models are often tightly coupled (e.g., a 

Gaussian intensity model within a structure model that of a cylinder [13]), although 

either one may not be explicitly specified/used. They are dichotomized here solely for 

the purpose of classifying segmentation algorithms for tube-like structures in the 

literature.  

Structure models correspond to the geometrical shape of the tube-like structure. 

Examples of structure models are parallel-edges in 2-D images (e.g., [14, 22]), 

generalized cylinder in 3-D images (e.g., [2, 3, 13]), the 3-D toroid model (e.g., [27]), 

and the n-D intensity ridge model (e.g., [59]). Weaker/more-relaxed models include 

deformable models [62].  

Intensity models, on the other hand, correspond to intensity variation within and 

around the structure. The simplest form of intensity model is the intensity threshold [23, 

60] used in intensity threshold-based segmentation algorithms. The intensity model used 

in region growing methods employs intensity similarity, rather than an explicit intensity 
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threshold, accompanied by spatial proximity criteria [63]. More restrictive intensity 

models/profiles with structural/spatial variations include the Gaussian profile (e.g., [64, 

65]) and the Gaussian-convolved-pulse profile [13]. Other than spatial assumptions, one 

may use temporal assumptions as appropriate, e.g., when vessel structures are spatially 

stationary over time and intensity model based on the temporal standard deviation is 

suffice to segment the structures [37]. Regardless, these intensity models may go further 

to incorporate imaging noise models [22].  

2.1.2 Local Model Fitting 

Given the local models, there are various strategies to fit them locally to the image 

data, called “local fitting” strategies. They include matched filtering (e.g., [64]), 

generalized likelihood ratio test (e.g., [22]), and formulations of measures that calculate 

the goodness-of-fit of the models to the image content (e.g., [2, 3, 13, 24]). Also, the 

way models are fitted differ when: (i) only structure boundary information is used (e.g., 

[3]), or when (ii) the entire local region is used (e.g., [21]). The latter approach is said to 

be less sensitive to image noise since the local model-fitting step is performed by 

integrating over a larger extent of the tube-like object rather than using small-scale 

measures as in the former [21]. 

There are also differences in terms of the spatial locality/orientation of the model 

being fitted. Active-contour/snakes/deformable-models are usually fitted on the plane 

tangent to the vessel direction [27]. Intensity models (for the vessel cross section) are 

also usually fitted to the aforementioned plane for methods that estimate the tube 

boundary using a different method than the one used to estimate the tube direction, such 

as in [13, 21].  

The scales of the tube structures to be detected may be relatively constant as in 

neuronal axon images specifically those of hippocampal pyramidal neurons since they 

are known not to biologically vary in diameter throughout their lengths [66]. The tube 

structures may also exhibit known scale changes, e.g., tapering of dendrite diameters 

starting from the soma [66]. On the other extreme, the scales may vary significantly in 

images containing pathological vasculature, e.g., those in close proximity to a tumor 

[12], or in vascular stenosis images [27]. Therefore, in these cases, single-scale methods 
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(e.g., [67-73]) must be extended to cope with width variability [24, 34, 74-76], and the 

multi-scale analyses need to be normalized with respect to scale [27, 61, 77-81]. Note 

that the size scale is just a parameter of the local structure model. 

2.1.3 Global Model Fitting 

To fit the local models to the entire image content, called “global fitting,” the 

segmentation algorithm fits the local models either: (i) to every image pixel, also known 

as pixel-wise/pixel-by-pixel/image-wide algorithms (e.g., [20, 22, 23]); (ii) iteratively by 

“exploring” the image regions containing the tube-like structure of interest, also known 

as tracing/tracking/traversing/vectorization/exploratory algorithms (e.g., [2, 3, 13, 14, 

21, 24]), which includes region growing methods as well (e.g., [82]); or, (iii) by wave 

front propagation methods, also known as least-cost/energy-minimizing path methods 

(e.g., [25-27, 83]).  

Another way to classify these global fitting strategies is whether the fitting is 

performed directly on the intensity image (e.g., [2, 3, 14, 37, 84]), or on a synthesized 

image where the pixel values correspond to likelihood of being part of a tube-like 

structure, sometimes called the “vessel-enhanced image” (e.g., [21, 34, 74]). The vessel-

enhanced image may be obtained by replacing the pixel intensity values with the 

(normalized) response of goodness-of-fit measures of local models.  

In terms of what is actually segmented, it can either be the medial axis/centerline, or 

the entire tube volume/network, or any one of these initially and then followed by an 

estimation of the other. They are also termed as indirect/skeleton-based and 

direct/nonskeleton-based methods6, respectively [85]. For example, the centerlines are 

extracted/detected first in [21, 27] followed by boundary estimates and refinements to 

the estimates. Conversely, the boundaries are detected first in [2, 3] followed by the 

centerline/center-point estimations. In methods that extract the entire tube 

volume/network, skeletonization steps (e.g., [37, 86]) and (sometimes) branch point 

analyses (e.g., [20, 87]) are required to extract the medial axis [82].  

                                                 
6 In indirect methods, the structures are reconstructed by computing the cross-section 
from the centerlines and width information. 
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 On the question of structure scale, the same global fitting can be performed either 

on a “scale-projection” image containing the maximal local fitting response across all 

scales [88], or on each scale individually [89]. Using the latter approach, scale selection 

is postponed from the local fitting step to the global fitting phase [89].  

2.1.4 Level of Automation 

Given the modeling assumptions above, there exist several levels of automation in 

executing the algorithm implementation, ranging from user-interactive/semi-automated 

methods (e.g., [89]) to fully automated ones (e.g., [14, 34]). When viewing image 

analysis systems as an estimation system that estimates which pixel belongs to the 

biological structures, initial estimates can be provided by the user as in the interactive 

methods, or obtained automatically [3]. Also, automation can be performed either at the 

local or global model fitting stages, or both.  

2.2 Segmentation Evaluation 

The traditional approach to evaluating segmentation algorithms is by visual 

inspection [90]. Some progress has been made on more automated approaches [91]. 

Metrics for segmentation evaluation [39, 42, 46, 90, 92-98] can be either goal-oriented, 

i.e., evaluation based on the performance of post-segmentation analyses [95, 99, 100], 

based on other application-guided criteria, such as the probability of false detection [39, 

93, 96], or based on mismatch with manually obtained ground truth segmentations (e.g., 

[35, 44, 45, 98]). A majority of them are specifically tuned for low-level vision tasks, 

such as edge detection [38-40, 90, 92, 94, 96] and region growing [29, 41-43] but are 

mentioned here nevertheless since they usually form the foundations of the more 

complex and specialized image segmentation algorithms (e.g., [14, 101]).  

Specific to biomedical images, segmentation evaluation using ground truth 

segmentations has been identified as a trade-off between accuracy of the ground truth 

segmentations and how much they reflect the characteristics of segmentation problems 

in practice [46]. For example, synthetic images have high accuracy but typically lack 

characteristics encountered in practice [46]. On the other end, manual segmentation by 

experts suffers from inter-expert and intra-expert variability [44]. Somewhere in the 

middle is the use of physical and digital phantoms, but it is acknowledged that creating 
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such realistic phantoms remains a difficult task [102, 103]. Using expert manual 

segmentations as the ground truth, the comparison between ground truth and automated 

segmentation ranges from measuring spatial overlap (e.g., [104]), inter-expert 

comparisons (e.g., [44, 46, 105]), and assessment of boundary differences (e.g., [106]). 

Another method to evaluate segmentations is in terms of the description length of 

the image, given a particular segmentation or image partition [29]. This is introduced 

next.  

2.3 MDL Principle 

The MDL principle [32] offers a systematic way to obtain an objective balance 

between segmentation conciseness and coverage [29, 30, 41]. The search of optimal 

parameters is analogous to the variational/energy formulation for image segmentation 

[42, 43], where the energy term to be minimized is evaluated using the description 

lengths [29, 41]. Descriptive languages and representations to encode both the 

segmentation and the image given the segmentation vary between applications [41, 107-

110]. Since this is the underlying principle used to measure the segmentation optimality 

in this work, the detailed description is deferred to the next chapter. 

2.4 Global Optimization 

To ensure modularity of the segmentation-optimization framework, the choice is 

focused on optimization methods that require little a priori domain-specific information. 

For this, genetic algorithms [111], simulated annealing methods [112], controlled 

random search [113, 114], and multi-start pattern search [115, 116] are widely used 

[114, 117, 118]. These are also known as stochastic optimization algorithms, mainly 

based on random sampling methods [119, 120], as opposed to deterministic algorithms 

(e.g., [121]). To improve efficiency, they are normally combined with local search 

techniques, such as steepest descent [122], and pattern search [115] despite that these 

local search methods being very susceptible to noise [123].  

Limitations of global optimization algorithms are reviewed in [124, 125], known as 

the “no free lunch” theorem for optimization. It states that any elevated performance 

over one class of problems is offset by performance over another class [125].  
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2.5 Chapter Summary 

Although this work draws upon four large bodies of literature, its primary focus is 

on automated segmentation of tube-like biological objects. Instead of identifying 

strengths/weaknesses of existing segmentation algorithms to create another one, the 

literature was surveyed to identify the key components of a biological image 

segmentation algorithm in general terms and how to obtain the optimal segmentation 

from such existing algorithms.  

The survey of segmentation evaluation in the literature, both general to broad 

computer vision algorithms to the specific applications in biomedical images, eventually 

led to the MDL principle for automated (unsupervised) segmentation optimality 

measure. Then, to ensure modularity of the segmentation-optimization framework, the 

choice of optimization methods is focused to those that require little a priori domain-

specific information.  

 



3. Methods 

We are in effect attempting to decide which segmentation to be optimal among the 

set of all computable segmentations—obtained by varying segmentation algorithm 

parameters. When concretely specified, the notion of optimality becomes a metric that 

compares between segmentations and decides which one is better than the other. This 

permits the execution of the segmentation algorithm within the presented segmentation-

optimization framework (Figure 6).  

Following the previous introduction in Section 1.4, the traditional maximum-a-

posteriori (MAP) criterion that minimizes the probability of error1 [28] can be opted if 

prior probabilities on the segmentations can be specified, but unfortunately these priors 

are not well defined [29]. If a uniform probability distribution is assumed for the priors, 

then the MAP criterion reduces to the maximum-likelihood (ML) criterion that measures 

only the goodness-of-fit and has a tendency to overfit models to the data.  

Let us step back and consider an automated image analysis system to be a system 

that performs a non-trivial data reduction using a segmentation algorithm. These systems 

are designed to extract as much of the structural content in the image as possible and 

concisely expressing it in terms of instances and descriptive parameters of object 

models. In other words, the resulting segmentation is expected to model the biological 

structures present in an image. In the fitting of these models to the image data, a 

systematic trade-off must be made between the fitting error, and conciseness of the 

representation. This requires a quantitative metric to evaluate the segmentation 

quality/optimality along these two terms.  

Returning to the problem at hand, it turns out that the MAP criterion can still be 

used if optimal descriptive languages for a segmentation and the image given the 

segmentation can be specified. Then the minimum description length (MDL) [30] 

criterion can be adopted to choose the optimal segmentation as these two criteria have 

                                                 
1 In this work, error is defined as the disagreement between a segmentation and the 
ground truth at each image pixel. To avoid introducing further subjectivity in this work, 
ground truth is obtained from public-domain databases of manual segmentations and by 
consensus of manual observers when provided by these databases. 
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been shown to be equivalent by Leclerc [29] once the descriptive languages are 

specified. 

 Next, the vague notion of optimality is progressively made concrete from the 

general-purpose image partitioning problems to segmentation of tube-like structures in 

biological images. 

3.1 Notion of Optimality 

First, let a segmentation algorithm be a function { }: , if →ξ iI M� that maps an 

image I  to a segmentation � consisting of a set of objects in the image, using a 

parameter vector (“settings”) 

iM

i ∈Ωξ  (see Figure 6a). The goal is to automate the search 

for the optimal ξ̂  that yields the optimal . In practice, the goal is to be approached 

the other way around, where the optimal segmentation  is searched, and the 

corresponding set of segmentation algorithm parameters 

M̂

M̂

ξ̂  is obtained.  

As introduced and explained earlier in Section 1.4, both MDL and MAP strategies 

are equivalent [29]. For the problem at hand, the more straightforward MDL strategy by 

specifying a descriptive language for the segmentations is chosen.  

3.1.1 MDL Criterion for Optimality 

An image segmentation algorithm partitions an image into foreground and 

background regions, where foreground pixels belongs to the structure of interest [44]. 

Therefore, finding the optimal segmentation is equivalent to finding the optimal 

partitioning of the image.  

Let  be the optimal descriptive language to describe the partitioning  and  

be the optimal descriptive language to describe the image 

mL iM dL

I  given the partitioning , 

the MDL strategy is to choose  that minimizes  

iM

iM

 ( ) ( )
concisenesscoverage

d i m+L I M L Mi��	�
���	��

, (7) 
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where ⋅  denotes the description length in bits. After specifying the optimal descriptive 

languages, we only need to calculate the number of bits had we used them to 

describe/represent/encode both the partitioning and the image given the partitioning [29].  

 To describe the image given a particular partitioning, a certain regularity 

characteristic within each partition is assumed. As an example, assume that each region 

has constant intensity. Then, after specifying the constant intensity, only the differences 

between the pixel intensity values ( )xI  at pixel  and the region’s constant intensity 

value need to be encoded. Note that the constant intensity value is described later by the 

language . Without loss of generality, let each region  be a region of constant 

intensity value of zero, and the differences that need to be encoded becomes the 

observed image intensity value 

x

mL jR

( )xI  itself. To encode the intensity value ( )xI  for a 

pixel  in a region , the optimal descriptive language x jR ( )(d xL I M )i  can be 

designed such that the resulting description length is given by 

( )( ) ( )( )2logd i P⎡ ⎤= − ∈⎣ ⎦x xL I M I Rjx , where ( )( )jP ∈x xI R  is the probability 

of observing the intensity value ( )xI  at pixel x  in the region . However, there is no 

need to do so. The number of bits had this optimal descriptive language been used is all 

that is needed [29]. Then, assuming pixel independence, with identical distribution 

assumption within a region, the first term in (7) becomes: 

jR

 ( ) ( )( )2log
j j

d i P
∈ ∈

j
⎡ ⎤= − ∈⎣ ⎦∑ ∑

x
x x

R I R
L I M I R . (8) 

Now, the optimal descriptive language  to describe the partitioning  needs to 

be specified. Leclerc suggested the use of the pixel-chain code to optimally describe the 

region boundaries [29]. The description length to describe the partitioning 

mL iM

( )m iL M  is 

then the number of bits needed to represent the regions of the partitioning  using the 

pixel-chain code.  

iM

At this point, the description length in (7) fully defined, and can be used as an 

optimization metric for currently-available optimization algorithms.  
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3.1.2 Adapting Criterion to Biological Image Segmentation  

A partitioning  of the image iM I  is equivalent to the segmentation  of the 

image 

iM

I —it gets simpler since an image segmentation algorithm for biological images 

partition an image into only two regions, the foreground region  and the background 

region . Therefore, two probability distribution functions (pdf) must be specified: 

(i)

F

B

( )( )P ∈x xI F ; and (ii) ( )( )P ∈x xI B . However, at this point, notice that the 

local structure and intensity models are still absent from the MDL-optimality criterion.  

To account for a neighborhood of pixels ( )N x  around —implicitly capturing 

inter-pixel correlations—the pdf at each pixel  can be estimated using Besag’s pseudo-

likelihoods [126]. Therefore the pdf’s at each pixel becomes: 

x

x

 
( ) ( )( )
( ) ( )( )

, ,  a

, ,

P N

P N

∈

∈

x x x

x x x

I F

I B

nd

)

 (9) 

for the foreground and background regions respectively. These pdf’s as a function of a 

neighborhood of pixels preferably indicate the likelihood of the object of interest to be 

present at that pixel given that the pixel belongs to the foreground or the background 

region.  

3.1.3 Local Structure-Indicator Function and Computable Segmentations 

To incorporate the local structure and intensity models, a local structure-indicator 

function , defined at each pixel , is proposed to indicate the likelihood of 

the pixel belonging to the biological object. The object is locally modeled by the 

structure model  and the intensity model  in a neighborhood . The likelihood 

value is obtained by measuring the goodness-of-fit of the models, requiring us to find the 

best fit models and their corresponding parameters. By doing this, we have the pixel 

pdf’s previously defined in (9) to be: 

( , ,xS G T x

G T ( )N x

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

, , ,

, , ,

P N P

P N P

∈ = ∈

∈ = ∈

x x x x x

x x x x x

I F S G T F

I B S G T B

,  and

,
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where the neighborhood ( )N x  is now one of the parameters of the local structure-

indicator function  through the local structure model . Given this, the 

first term in (7) becomes: 

( , ,xS G T ) G

 ( ) ( )( ) ( )( )2 2log , , log , ,d i P P
∈ ∈

⎡ ⎤ ⎡= − ∈ + − ∈⎣ ⎦ ⎣∑ ∑
x x

x x x x
F B

L I M S G T F S G T B ⎤
⎦ ,(10) 

for the special case of biological image segmentation. Notice that the first term in (7) 

now incorporates three out of four components of an image analysis system, namely the 

local structure model, the local intensity model, and the local fitting.  

To incorporate the last component of image analysis systems, i.e., the global fitting 

component, the search space for the optimal segmentation  can simply be limited to 

the set of segmentations {

ˆ
iM

}iM  that are computable2 by a segmentation algorithm that 

incorporates the other three components. After all, there are up to ( )number of pixels2  possible 

partitions of an image.  

3.1.4 MDL-Optimality Criterion Adapted to Tube-like Biological Objects 

In essence, the local structure-indicator function ( ), ,xS G T  specializes the 

abstract MDL-optimality criterion in (7) to the structures of interest in the image, where 

the structures are specified in terms of the local structure model  and the local 

intensity model —around a neighborhood 

G

T ( )N x . At each pixel , it tells how much 

structure content that can be inferred from the neighboring pixels. The local structure-

indicator function  can also be generalized to segmentation problems for 

other image types such as texture images by incorporating the texture model into the 

intensity model  of .  

x

( , ,xS G T )

                                                

T ( ), ,xS G T

Two different approaches to compute the local structure-indicator function are 

described next. The first approach is adapted from the statistical robust generalized log-

likelihood ratio test formulation described by Mahadevan et al. [22]—to improve 

 
2 A segmentation is computable if it satisfies the local structure model, local intensity 
model, and the local fitting strategy used by the segmentation algorithm. 
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computation speed for practical use, it is approximated down to a matched filter 

formulation. If the single-vessel-in-a-neighborhood assumption is limiting for the 

application at hand, multiple-vessel models can be specified and a model selection 

formulation using the Akaike Information Criterion can be used, as shown by Wang and 

Bhalerao [127]. The second approach is the multi-scale vesselness formulation by Frangi 

et al. [74]. Either way, the range of the local structure-indicator function values must be 

normalized to allow interchangeability of these approaches to the specific application at 

hand. 
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Figure 9. Displays the intensity profile in a 40 40×  window using structure model of 
two parallel edges, and the Gaussian intensity model. One of the variances of the 2-

D Gaussian is empirically set to ( )2
2

3
rσ = for the radius , and the other 

variance was set arbitrarily high. The direction of the Gaussian is defined in terms 
of the eigenvectors of the covariance matrix of the 2-D Gaussian function. 

5r =

 

3.1.4.1 Generalized Log-Likelihood Ratio Test 

Figure 9 displays an instance of the local model in a 40 40×  neighborhood. Here, 

the generalized log-likelihood formulation is used to evaluate the local structure-

indicator function .  ( ), ,xS G T

To fit the parallel-edge structure model and Gaussian intensity model, a faster non-

censored version of the robust vessel detection work in noisy retinal vasculature images 

by Mahadevan et al. [22] is proposed, motivated by practical reasons. Two hypotheses, 
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0H  (structure absent), and  (structure present), are tested at each pixel using the 

generalized log-likelihood ratio test. Using Poisson noise model for the observed image 

intensity at pixel , denoted

1H

x ( )xI , the two hypotheses are: 

 
( ) ( ) ( )
( ) ( ) ( )

0 0

1 1

: ,

: ,

Po N

Po N

µ

µ

∈

∈

x x

x x

H I

H I

∼

∼
0

0

x

x
, 

given a window (local neighborhood) ( )0N x  such that  is the window’s center pixel. 

For a particular pixel 

0x

0 ∈x I  the likelihood ratio  at the pixel  assuming 

independent pixels is: 

L 0x

( ) ( )
( )

1

0

0
0

0

( )
( )

P N
L

P N
⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

x x
x

x x
H

H

I
I

. 

The decision now becomes, reject  if 0H ( )0 1L >x , or reject  if 

. Next, the test statistic (log-likelihood value ) is derived as 

follows: 

0H

( )( )0 0( ) ln 0l L >x x� 0( )l x

 

( )

( )

( )( )
( )

( )( )

( )
( )

( )
( )

1

0

0

0

0 0

ˆ
1

0 ˆ
0

1 1 0
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ˆ
!

ln
ˆ

!

ˆ ˆ ˆ ˆln ln

N

N

N N

e

l
e

µ

µ

µ

µ

0µ µ µ

−

∈

−

∈

∈ ∈

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= − −

∏

∏

∑ ∑

x

x x
x

x x

x x x x

x
x

x

x x

I

I

I

I

I I
����	���
 ����	���


µ−

. 

Next, the foreground intensity estimate for pixel ( )0N∈x x  is locally modulated in 

the neighborhood  using the vessel profile ( )0N x ( ) [ ]1 0,1V ∈x : 

( ) ( ) ( ) ( )( ) ( ) (1 1 0 0 1 0 0 0 1 0ˆ ˆ ˆ ˆ ˆ ,V Nµ µ µ µ µ= = + − ∈x x x x x x x ) . 

The vessel profile has two parameters, i.e., ( ) ( )1 1 ; ,V V θ=x x r , where θ  is the angle, and 

 is the radius. Figure 9 displays a vessel profile with r 3
πθ =  and . 5r =

Next, let ( ) ( ) ( )0 1 0 0ˆ ˆ ˆc µ µ= −x x 0x  be the contrast estimate at pixel . Then, the 

log-likelihood term becomes, 

0x
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( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( )

0

0

0 0 0 0 1 0 0 0 1

0 0 0 0

ˆ ˆ ˆ ˆln

ˆ ˆln

N

N

l c Vµ µ

µ µ

∈

∈

⎛ ⎞
= + − + c V⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟
⎝ ⎠
⎛ ⎞

− −⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

x x

x x

x x x x x x x

x x x

I

I

x

. 

To simplify, let ( ) ( ) ( )0 0f bl l l= +x x 0x , where  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )0

0
0 0 0 1 0 0

0 0

ˆ
ˆ ˆln 1

ˆf
N

c
l Vµ µ

µ∈

⎛ ⎞⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= + − + 0 1ĉ V⎡ ⎤⎜ ⎟⎨ ⎬ ⎣ ⎦⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠
∑

x x

x
x x x x x x

x
I x , 

and 

( ) ( )
( )

( ) ( )
0

0 0 0ˆ ˆlnb
N

l µ µ
∈

= −∑
x x

x x x 0 0xI . 

Without loss of generality, let ( ) ( )0 0ˆ ˆc µ=x 0x  to permit the use Taylor series 

approximation (1st order) for the term ( )
( ) ( ) ( )( ) ( )0

1 1
0 0

ˆ
ln 1 ln 1

ˆ
c

V V
µ

⎛ ⎞
+ = + ≈⎜ ⎟⎜ ⎟

⎝ ⎠

x
x x

x 1V x . 

Using these, the test statistic becomes:  

( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )
0

0 0 0 1 0 0 0 0 1ˆ ˆ ˆln .f
N

l Vµ µ µ
∈

≈ + − + V⎡ ⎤⎣ ⎦∑
x x

x x x x x xI x  

After term cancellations, the test statistic is: 

( ) ( ) ( )( ) ( )
( )0

0 0ˆ
N

l Vµ
∈

≈ − 0 1∑
x x

x x x xI . 

This effectively reduces the log-likelihood ratio to a single convolution operation. 

Interestingly, it reduces the log-likelihood ratio to a matched-filter with ( ) ( )0 0µ̂−x xI  

as the input signal and  as the known/deterministic signal.  ( )1V x

Therefore, using the log-likelihood ratio formulation, the local structure-indicator 

function becomes: 

 ( ) ( ), , lxS G T � x  (11) 
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3.1.4.2 The Vesselness Formulation 

Here the intensity ridge local structure model is adopted for tube-like biological 

structures, treating the pixel intensity at each pixel as the pixel height, and viewing the 

image as a “landscape.” In the n Dimensional−  Euclidean space, for values 1 d n≤ ≤ , 

the pixel  is a ridge point of type nn∈x \ d−  if and only if [ ] ( )1 0t
d⋅ ⋅⋅ ∇ =v v xI  and 

0dλ < , where { } [ ]1,i i n∈
v  are the eigenvectors of the Hessian matrix evaluated at  with 

the corresponding ordered eigenvalues 

x

1 nλ λ≤ ⋅⋅⋅ ≤  and ( )∇ xI  is the image gradient 

evaluated at x  (for review, see [59]). The eigenvector of the Hessian with the largest 

eigenvalue tells the direction of highest gradient, i.e., the direction perpendicular to the 

tube’s medial axis, where the other eigenvector with the smaller eigenvalues is oriented 

in the direction of the tube’s medial axis—the latter eigenvector must be perpendicular 

to the image gradient at that pixel to qualify the pixel as a ridge point.  

No intensity model is explicitly assumed, but can be incorporated into the 

vesselness formulation by a multiplicative factor that relates the scale (read: the standard 

deviation of the differential Gaussian kernel) and the radius of the object.  

Using the intensity ridge local structure model, the multi-scale vesselness 

formulation [27, 74, 128] is adopted in this work. It has formed the basis for numerous 

tube-segmentation algorithms [6, 21, 129]. Denoted ( ) [ )0,1σ ∈xV , it measures the 

likelihood that a local group of pixels centered at  belong to a tube of size scale x σ  [27, 

74, 128]. The range of size scales specified in the vesselness formulation is a parameter 

of the intensity ridge structure model—the search for ridges are limited to these scales. 

No intensity model is explicitly assumed, but can be incorporated into the vesselness 

formulation by a multiplicative factor that relates the scale [13]. For the Gaussian 

intensity model the relation between the scale σ  and the actual vessel radius  has been 

derived analytically by Krissian et al. [13] as , and will be used throughout to 

translate between scale and radius values.  

r
20.5rσ =

The vesselness formulation inspects second-order features [59] of the image I , at 

scale σ , at each pixel , which is obtained from the Hessian matrix x

( ) ( ) ( )(2H Gγ
σ σσ ⎡ ⎤= ∇ ∗⎣ ⎦x xI )x . In the n Dimensional−  Euclidean space, 
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eigenvalues of the corresponding n n×  ( )Hσ x  matrix are denoted , 1, 2,...d d nλ =  and 

arranged in increasing magnitude, i.e., 1 2 nλ λ≤ ≤ ⋅⋅⋅ ≤ λ . The Gaussian function with 

standard deviation σ  is denoted as Gσ , the Lindeberg constant [81] for a family of 

scale-normalized derivatives is denoted γ , and “*” is the convolution operator. 

For 3-D images, the vesselness measure at scale σ , denoted , is given by: ( )σ xV

 ( )
2

2 2 2

2 2

0,  if 0

1 exp exp 1 exp 22
A B S

a b c
σ

λ >⎧
⎪

= ⎡ ⎤ ⎤

2 2
R R⎡ ⎡ ⎤⎛ ⎞ ⎞ ⎛ ⎞⎨ − − − − −⎢ ⎥ ⎥

⎛
⎢ ⎢ ⎥⎜ ⎟ ⎟ ⎜ ⎟⎪

⎝ ⎠⎝ ⎠ ⎠
⎜
⎝ ⎣ ⎦⎣ ⎦ ⎦⎩

xV , (12) 

⎣

where 1 2BR 3λ λ λ=  distinguishes between blob-like and other structures, 

2 3AR λ λ=  distinguishes between plate-like and tube-like structures, and 2
d

d D
S λ

≤

= ∑  

is the image intensity contrast factor ( 3D =  for 3-D images). The terms ,b , and c  in 

(12) are weighting parameters for 

a

AR , BR , and . S

For 2-D images,  is given by: ( )σ xV

 ( )
2

2 2

2 2

0,  if 0

exp 1 exp
2 2

CR S
b c

σ

λ >⎧
⎪

= ⎡ ⎤⎛ ⎞ ⎛⎨ − − −
⎞

⎢ ⎥⎜ ⎟ ⎜ ⎟⎪
⎝ ⎠⎝ ⎠ ⎣ ⎦⎩

xV , (13) 

1 2CR λ λ=  is the likelihood of being on a tube in 2-D images. The terms  and c  in 

(13) are weighting parameters for 

b

CR  and .  S

The multi-scale vesselness measure, denoted [ ] ( )
min max,σ σ xV , is then defined as  

 [ ] ( ) ( )
min max

min max
, max σσ σ σ σ σ≤ ≤

xV � xV , (14) 

for a given range of size scales [ ]min max,σ σ  which is essentially one of the parameters of 

the structure model . G

As a side note, Frangi et al. [74] have described approaches to adapt this measure to 

other key structure models in biological images. Table I is a simplified summary linking 

the models and the corresponding eigenvalues. In 3-D, the 3 3×   matrix has three ( )Hσ x
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eigenvalues, similarly ordered as 1 2 3λ λ λ≤ ≤ . Notice that the vesselness value in 

Table I increase with decreasing magnitude of BR , effectively capturing the eigenvalues-

shape associations for tube-like objects. This suggests that (13) can be modified 

accordingly for other geometrical models.  

 

Table I. Indicates the relationship between the eigenvalues of the Hessian matrix 
with common structure models in biological cell and tissue-level imagery [74]. For 
dark objects on bright backgrounds, the signs are reversed. In 2-D plate-like 
structures can not be detected. The first two eigenvalues 1λ  and 2λ  are used in 2-D. 
All three eigenvalues are used in 3-D.  
 

Structure Model  G 1λ  2λ  3λ  

Tube-like 0≈  0�  0�  

Blob-like 0�  0�  0�  

Plate-like 0≈  0≈  0�  

 

Returning to the specific case for tube-like biological objects, the local structure-

indicator function that indicates the likelihood that a pixel  belongs to a tube-like 

structure is defined as: 

x

 ( ) [ ] ( )
min max,, , σ σxS G T V� x . (15) 

3.1.5 Universal Parameter and Segmentation Quality Metric 

At this point, the problem of image segmentation is ready to be wrapped into an 

optimization framework using the optimization metric based on (7). Before proceeding, 

the users’ desire to override/bias the trade-off between conciseness and segmentation 

coverage is acknowledged. For this, a “universal parameter,” denoted α , is incorporated 

in the optimization metric based on the MDL principle: 

 ( ) ( ) ( ) ( )
concisenesscoverage

, , , 1 ,i d i mq α α α= + −ξ�M L I M L iM
��	�
���	��


G I  (16) 
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for a given structure model  and intensity model . From this point onwards, we 

will refer instances of the evaluated optimization metric simply as the “ -values.” For 

segmentation of tube-like biological structures, the segmentation coverage term is as 

defined in (10), with the local structure-indicator function 

G T

q

( ), ,xS G T  defined in (11) 

or (15). When 0.5α = , the conciseness-coverage trade-off is a balanced one.  

With this, the segmentation quality metric Q  is defined as: 

 Q q−� , (17) 

to equate objectives of minimizing the α -weighted description length  and 

maximizing the segmentation quality . 

q

Q

3.2 Recursive Random Search Strategy 

Several considerations motivate the selection of the recursive random search (RRS) 

as a preferred strategy compared to other available alternatives. First, exhaustive search 

is time-prohibitive. Second, the objective function is not differentiable with respect to 

the parameter vector, mainly because the mapping between parameter settings and the 

resulting segmentation itself is not differentiable. Third, for the image segmentation 

problems of interest, it is rational to seek approximate solutions within a defined time 

frame, rather than truly global optima. Fourth, it is common for segmentation software to 

have several irrelevant/ineffective settings for a given application, and search algorithms 

that are able to minimize the computational effort in such dimensions are preferable. 

Finally, we expect the search algorithm to be robust to minor noise-like fluctuations in 

the objective function. Interestingly, Ye et al. [119] developed this algorithm motivated 

by similar parameter spaces encountered in computer networking – specifically, 

automatic and dynamic configuration of network components to maximize network 

throughput.  

As indicated by the name, the RRS algorithm is based on random sampling. This 

algorithm searches the parameter space in two recursive steps: exploration and 

exploitation, respectively. The exploration step examines the macroscopic features of the 

objective function (e.g., globally convex or “big valleys” structure [64]) and attempts to 

identify promising areas in the parameter space Ω  that are subsequently “exploited” 
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intensively by the second step, called the exploitation step. For the random sampling, a 

uniform distribution over  is used. This has been shown to be the simplest search 

technique for similar non-linear problems, and is widely used [113, 119, 120, 130]. It has 

been shown to be more efficient for exploring high-dimensional parameter spaces 

compared to deterministic exploration methods [119, 131], and can be shown to 

converge to the global optima [132]. 

Ω

We show below that random sampling is in fact very efficient in its initial steps and 

only starts to become inefficient in the later sampling steps. Given a measurable 

objective function ( )q ξ  over the parameter space Ω , we can define the distribution of 

objective function values for some [ ]0 min max,q q q∈  as 

( ) ( ){ }( ) ( )0 0|q m q q mφΩ = ∈Ω ≤ξ ξ Ω , where ( ).m  is the Lebesgue measure. Hence, 

the distribution function ( )0qφΩ  represents the portion of the points in the parameter 

space whose objective function values are smaller than a certain level . Furthermore, 

it has a maximum value of 1 when 

0q

0 maq q x=  and a minimum value of 0 when 0 miq q n=  

corresponding to the (set of) global optimum (optima). Without loss of generality, 

assume that ( )q ξ  is a continuous function and 

( ){ }( ) [ ]0 0 min| 0,  ,m q q q q q∈Ω = = ∀ ∈ξ ξ max .  

Assuming a [ ]min max,rq q q∈  value such that ( )rq rφΩ = , [ ]0,1r∈ , an -percentile 

subspace  in the parameter space can be defined as . 

Note that  is just the whole parameter space and 

r

( )rΩS ( ) { | ( ) }rr qΩ = ∈Ω ≤ξ ξS q

(1)ΩS 0
lim ( )
δ

δΩ→
S  converges to the global 

optima. Suppose the sample sequence generated by n  steps of random sampling is { } 1

n

i=
ξ  

and ( )iξ  is the one with the minimum objective function value, then the probability of 

( )iξ  in  is given by( )rΩS
( ){ }( )( ) 1 (1 )i nP r rΩ p∈ = − − =ξ S . Stated in another way, the 

value of r  for which ( )iξ  will be reached with probability p  is given by 

. 1/1 (1 ) nr p−= −
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For any ,  will tend to 0 with increasing , implying that random 

sampling will converge to the global optima with increasing numbers of samples. Since 

 decreases exponentially with increasing , the efficiency of random sampling is high 

at initial samples but falls sharply at later samples. This observation led to the idea of 

restarting the sampling before its efficiency drops off [119], either by moving or resizing 

the sample space according to sample history.  

0 1p< < r n

r n

Specifically, RRS performs exploitation in two iterative steps: (i) random sampling 

within the current space, and (ii) realign or shrink. As illustrated in Figure 10a, after 

drawing a certain number of random samples (we used 7 in this paper) within the current 

space , if a superior sample 1S 2ξ  is found, then  centered at the current sample 1S 1ξ  is 

realigned (moved) to the sample space . If no better sample is found during the 

random sampling, the parameter space  is shrunk to  instead of realigning to  as 

shown in Figure 10b.  

2S

1S 3S 2S

 

 

Ω

1S

2S

1ξ

2ξ

 
(a) Re-align 

Ω

1S
3S 1ξ

 
(b) Shrink 

Figure 10. Venn diagrams illustrating the re-align and shrink operations in the 
exploitation step of the recursive random search (RRS) algorithm. The current 
sample is denoted 1ξ , and the local exploitation subspace is depicted as an 
unshaded circle around it. After drawing a certain number of random samples 
within the current space , if a better sample 1S 2ξ  is found, then the search is re-
aligned to the sample space . If no better sample is found during the random 
sampling, the parameter space  is shrunk to  instead of realigning to . 

2S

1S 3S 2S
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The strategy for limiting the exploitation step to promising subspaces is based on 

identifying an -percentile subspace for exploitation, as described above. In this way, 

most trivial subspaces will be excluded from exploitation, improving the overall 

efficiency of the search. In contrast, algorithms such as multi-start [130], do not 

distinguish between subspaces and hence may waste time in trivial areas. 

r

The RRS is efficient at handling an objective function with a subset of ineffective 

parameters [119] because random samples maintain a uniform distribution within the 

subspace composed of only the effective parameters, minimizing the computational 

effort invested on negligible parameters. In contrast, local search methods are affected 

by unimportant parameters because of their high dependency on dimensionality of the 

search space. For more details, the interested reader is referred to [119].  

 

Table II. The components of the parameter vector 8∈ξ ]  , their respective ranges, 
default values, and constraints on their values for the tracing algorithm.  

 

Parameter Range Default 
Value 

Constraint on 
Values 

Grid spacing  g 10 – 30 15 divisible by 5 
Minimum template length  minL 8 – 20  10 min maxL L≤  
Maximum template length  maxL 8 –30 18 min maxL L≤  
Relative shift distance shiftn  2 –10 2 none 
Directional degree of freedom  rotaten 3 –7 7 odd-numbered 
Maximum step size  maxs 3 –10 8 max mins L≤  
Contrast threshold multiplier cτ  1 –10 3 none 
Maximum allowed stopping violations ν  1 –10 1 none 
 

3.3 Automated Tracing Algorithm  

The tracing algorithm [3, 14], used in generating all experimental results, is briefly 

summarized here with graphical illustrations of several key intermediate steps taken by 

the algorithm. In principle, the tracing algorithm models tube-like biological structures 

locally as piecewise-linear generalized cylinder segments (Figure 11) [3, 14]. In 2-D, the 
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generalized cylinder model reduces to the parallel-edge model (Figure 12). Parameter 

settings for this algorithm are denoted: 

( )min max maxshift rotateg L L n n s ρ ν=ξ . 

They are summarized in Table II along with their default values. The traces are not 

merged for illustrative purposes since the traced segments are merged after tracing, i.e., 

as a post-processing step in the implementation of the tracing algorithm [87].  
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Figure 11. Illustrates, in 3-D, the generalized cylinder model and the iterative 
procedure of the tracing algorithm. Starting with initial seeds, the algorithm 
estimates the next location based on a robust estimates of the local boundaries of 
the cylinder. In 2-D, illustrated separately in Figure 12, only the left and the right 
templates are needed, collapsing the generalized cylinder model to the parallel-edge 
model. 
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Figure 12. Illustrates, in 2-D, the generalized cylinder model (effectively reduced to 
the parallel-edge model) and the iterative procedure of the tracing algorithm. The 
3-D version is illustrated separately in Figure 11.  
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(a) (b) 

  
(c) (d) 

Figure 13. Illustrates the intermediate steps/stages of the automated tracing 
algorithm. Results displayed are of default algorithm parameters. (a) Input image 
(displayed is a partial view of a 512×480×151 image) of a neurovascular cast 
imaged using confocal microscopy (Image source: C. Bjornsson, K. Smith, W. 
Shain, The Wadsworth Center). (b) The detected seed candidates in magenta, along 
with the detected width in green relative to the grid used to detect the seeds. (c) The 
verified seed candidate, after being fitted to the generalized cylinder model. The 
verified seeds are displayed in green with the width estimates in magenta. The 
direction of the verified seeds—to initiate tracing from—is perpendicular to the 
magenta lines. (d) The resulting traces in green, with the detected branch points in 
magenta.  

 

 



METHODS 41 

Figure 13 illustrates the intermediate steps/stages of the automated tracing 

algorithm. Results displayed are of default algorithm parameters. Panel (a) displays the 

input image containing a neurovascular cast imaged using confocal microscopy. First, 

seed points are detected along rectangular grids  pixels apart overlaid on the image. A 

pair of 1-D edge-detector kernels of the form (

g

)1, 2,0, 2, 1 T− − + +  are correlated to the 

pixel intensity values along each 1-D grid profile, and correlation values less than an 

adaptive threshold times the contrast threshold multiplier ρ  are discarded. Then the 

remaining seeds are called as “seed candidates.” Panel (b) displays the detected seed 

candidates, along with the detected widths in green relative to the grid used to estimate 

the seed locations. Second, the seed candidates are verified using the generalized 

cylinder model (3-D: Figure 11, 2-D: Figure 12), turning them into “verified seeds.” 

Panel (c) displays the verified seeds in green, with the width estimates in magenta. The 

direction of the verified seeds—to initiate tracing from—is perpendicular to the magenta 

lines. Panel (d) displays the resulting traces in green, with the detected branch points in 

magenta.  

In the 3-D implementation of the algorithm, seed detection is performed on the axial 

maximum-intensity-projection image. The axial coordinate is found later by using the 

same previously-described correlation method axially at each seed point’s coordinate in 

the x-y plane of the 3-D image.  

Next, at each tracing iteration j , four boundary points { }, , ,j j j j
L R T Bb b b b  

(only{ },j j
L Rb b  in 2-D) corresponding to the left, right, top, and bottom tube boundaries 

are each found using directional correlation kernels called templates (3-D: Figure 11, 2-

D: Figure 12). The center point  is simply defined as the center of these boundary 

points. Each template consists of linearly stacked 1-D edge-detector kernels of the form 

 anchored at the image point  along a particular direction . The 

edge-strengths from each 1-D edge detector kernel r  are averaged through the entire 

template length , using median statistics [133] for robustness. The set 

jc

( 1, 2,0, 2, 1 T− − + + ) jb ju

l L∈

[ ]min max,L L L= contains all template lengths. The correlation between the templates and 

the image is called the “template response,” denoted R , as below:  
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 ( ) ( ){ }{ }1,2,...,
arg max, ,j j j j

t ll L
medianR L r t
=∈

=b u b u+ . (18) 

Each boundary point corresponds to the maximal response template parameters 

{ }, ,j j jlb u : 

 
{( , , ) | , 1,.., , , }2

arg max( , , ) ( , , )j j j

j Ml m m l L
l R

⊥= + = ∈ ∈
=

b u b c u u U
b u b u L , (19) 

where  is the set of unit vectors along directions in the neighborhood of . The 

radius of the widest expected vasculature is denoted as 

U ju

M —specified earlier as one of 

the parameters of the local structure model. Each template is elongated, shifted from , 

and rotated about two axes  and  to find the corresponding boundary points. 

To save computation, the template is only shifted in a neighborhood 

jc

0 1
j jH H 0 1

j jV V

shiftn  of previously 

calculated width at iteration 1j −  and rotated in a neighborhood  around previously 

calculated tracing direction 

rotaten

1j−u . The next center point 1j+c  is estimated by scaling  

with the adaptive step-size , limited by the parameter . The same boundary-

finding process is repeated until a stopping criterion containing a contrast-based 

threshold multiplier 

ju
js maxs

ρ  is met ν  consecutive times. The interested reader is referred to 

[3, 14] for details of the algorithm. 

3.4 Improving Execution Speed for 3-D Images 

Practical difficulties are expected for 3-D images when incremental changes in the 

segmentation algorithm parameters do not translate to incremental changes in the 

segmentation, i.e., each RRS function evaluation corresponds to complete re-

segmentation of an image. Given the closed-loop design in Figure 6, speeding up the 

segmentation algorithm directly reduces the overall execution time. In practice, 

computing segmentations for smaller images are faster than for larger images due to 

reduction of access time (disk and memory). This section presents a systematic way to 

create image subvolumes and using them to automatically find the segmentation 

algorithm parameters for the entire image.  
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Two approaches are proposed to achieve this goal. The first approach is to obtain 

the segmentation algorithm parameters from a single subvolume. A similarity measure 

using image and structural characteristics is presented to systematically choose among 

possible subvolumes. The second approach generalizes the first by obtaining 

segmentation algorithm parameters from multiple subvolumes. This enables adaptation 

of segmentation algorithm parameters originally designed for the entire image (called as 

the non-adaptive parameters), effectively making the segmentation algorithm spatially 

adaptive.  

3.4.1 Creating the Subvolumes 

Tube-like structures may not be present at all parts of the image. Therefore, simple 

uniform image partitioning into non-overlapping subvolumes of similar size may 

produce empty subvolumes. To avoid this, the local model-fitting stage of the 

segmentation algorithm is used to obtain non-empty subvolumes.  

The local model-fitting stage of the 3-D segmentation algorithm [3] (Section 3.3) 

used in generating the experimental results, is the seed verification, where each seed 

candidate obtained from the grid-search is verified using the generalized cylinder model 

(Figure 11, p. 38). These seed points are clustered into  clusters using the -means 

clustering algorithm [134]. The bounding-boxes of the clusters define the subvolumes 

k k

{ }
1

k

j j
v

=
 that are structure-wise non-empty. A subvolume, instead of the entire image, is 

used as the input image for the loop in Figure 6 (p. 9). 

3.4.2 Representative Subvolume 

A distance measure between two image volumes, e.g., a subvolume and the entire 

image is needed in order to measure the similarity between the two. More importantly, it 

will measure how representative the subvolume is to the whole image. The distance 

measure should ideally incorporate both image intensity information and structural 

information. Given the modular approach of this work, this can be obtained from the 

local model fitting stage of the segmentation algorithm. For this particular algorithm [3], 

it is the seed verification step. 
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Each verified seed point contains information that characterizes the locally best-

fitted model. Referring to the generalized cylinder model shown in Figure 11, let ⋅  

denote the Euclidean distance and the following best-fitted model information are used: 

• Horizontal width Hw , computed as L R−b b . 

• Vertical width , computed as Vw T B−b b . 

• Cylinder orientation characterized by the unit vector  defined by two angles u Hθ , 

and Vθ  [3]. The horizontal angle Hθ  is the rotation around the z  axis. The vertical 

angle Vθ  is the rotation angle around the  axis that has been rotated by y Hθ  around 

the z  axis. 

• Estimated local contrast ( )
{ }, , ,

1 1 ,
3 4 p

p L R T B
c R

∈

⎛ ⎞
= ⎜⎜

⎝ ⎠
∑ b u ⎟⎟  from the four best-fit template 

at boundary points { }, , ,L R T Bb b b b  using the template-response to contrast 

conversion ratio of 1
3

 as presented in [3]. 

The next step is to construct a feature (column) vector  that summarizes the 

information obtained from each seed point:  

m

 [ ]cos 2 sin 2 cos 2 sin 2 T
H V H H V Vc w w θ θ θ θ=m . (20) 

The angles are doubled since anti-parallel angles separated by π  are considered equal 

for the purpose of characterizing the tube/cylinder orientation [47] as adapted from 

angular statistics [135].  

The mean feature vector, denoted m , is used to characterize a set of  seeds. For 

the set of all seeds in the image 

N

I , the (sample) image mean feature vector mI  is: 

 
1

1 N

i
iN =

= ∑mI m , (21) 

and the (sample) covariance matrix CI  is computed as: 

 [ ][
1

1
1

N
T

i i
iN =

= − −
− ∑C m m mI I ]mI . (22) 
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For a subvolume v  containing  seeds, the mean feature vector for the subvolume, 

denoted 

n

vm , is defined as: 

 
1

1 n

v
in =

= i∑m m . (23) 

The squared Mahalanobis distance between a subvolume  and the image v I  is 

computed as: 

 ( ) [ ] [ ]1, T
v vd v −= − −m m C m mI I II . (24) 

Using the distance measure in (24), the representative volume  among  subvolumes 

is defined as the one that minimizes the squared Mahalanobis distance: 

*v k

 ( )* arg min ,
v

v d v= ⎡ ⎤⎣ ⎦I , (25) 

and the corresponding optimal number of subvolumes, denoted , is defined as: *k

 { }
1

* arg *
k

j jk
k v v

=
⎡ ⎤= ∈⎢ ⎥⎣ ⎦

 (26) 

Although intuitively the larger subvolumes should be more representative compared 

to the smaller ones, experimental observations (Chapter 4, Figure 22, p. 63) have shown 

that this is not always the case. Recall that the subvolumes are defined as the bounding 

boxes of the seed clusters. Increasing the number of seed clusters, , results in smaller 

seed clusters, and hence, smaller subvolumes. Therefore, to find the representative 

subvolume , the number of subvolumes  is varied until the number of seeds in the 

smallest seed cluster is too low, e.g., less than 12 seeds. While varying , the subvolume 

 is updated as more representative subvolumes are found.  

k

*v k

k

*v

3.4.3 Single Representative Subvolume Parameter Selection 

A representative subvolume  as defined in (25) is chosen between  

subvolumes 

*v *k

{ } *

1

k

j j
v

=
. The subvolume  is then used as the input image for the 

segmentation-optimization framework (Figure 6, p. 9). Automatically-selected 

segmentation algorithm parameters for this subvolume are applied for the entire image.  

*v

Next, rather than using just one subvolume, a systematic method to use all  

subvolumes is described.  

*k
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Detect seed points; 
Cluster seed points into clusters; *k
Obtain bounding-boxes of the clusters; 
Create circular array of  subvolumes *k { } *

1

k

j j
v

=
; 

1j ← , , ; ;  //  is the counter for the stopping criteria 1i ← 0S ← next default←ξ ξ S
while  do    *S k<

for all subvolumes  do j

if then  // the best parameter in circulation is not new ˆ
next j=ξ ξ
if  then   // to allow the first iteration to complete 1i >

 ; 1S S← +
endif 

else  
Explicitly include  in RRS exploration stage; nextξ
// Execute the loop in Figure 6 with subvolume jv  as input to obtain ,j iξ ; 

( ), arg max ,j i jQ v
∈Ω

←
ξ

ξ ξ ; 

if ( ) (,
ˆ, ),j i j j jQ v Q v>ξ ξ  then // found improved parameters 

,
ˆ

j j i←ξ ξ ; 

,next j i←ξ ξ ; 
0S ← ; 

else  
 ; 1S S← +
endif 

endif 
if then *S k≥

exit while loop; 
endif 

endf 
1i i← + ; // next iteration of the circle 

endw 
Choose ˆ

jξ  such that ( ) ( )ˆ ˆ,j aQ Q<ξ ξ ,I I  for all a j, 1,..., *a k≠ ∈  to be applied to the entire image I ; 

Figure 14. The pseudo-code for systematically obtaining the segmentation 
algorithm parameters using a set of subvolumes. Subscript  denotes the ith 
iteration, i.e., for each complete circle. Optimization is performed on each 
subvolume in a circular ring where each subvolume contributes its best parameters 
to the optimization step in the next subvolume. The search for segmentation 
parameters terminates when the subvolumes are not benefiting from each other. 
The last step can be skipped to produce adaptive settings. 

i
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3.4.4 Multiple-Subvolumes Coordinated Parameter Selection 

The idea is to automatically obtain segmentation algorithm parameters for all  

subvolumes 

*k

{ } *

1

k

j j
v

=
, denoted jξ , in a coordinated manner and then choose between their 

best parameters to be applied for the entire image. Ideally the set of subvolumes { } *

1

k

j j
v

=
 

should contain the representative subvolume  found by varying k .  *v

The pseudo-code for the coordination procedure is displayed in Figure 14. Before 

proceeding, note that given the same number of function evaluations per subvolume, i.e., 

number of iterations of the loop in Figure 6, using more subvolumes will result in an 

increase in computation time. Therefore, for this section, the limit on the number of 

function evaluations per subvolume must be reduced. 

First, recall that the global optimization algorithm in Figure 6 (p. 9) performs 

exploration of the entire space of possible segmentation algorithm parameter 

combinations Ω  and exploitation of the local characteristics. The RRS algorithm used in 

this work performs random sampling for exploration and realign-shrink random 

sampling for local exploitations, mainly to maintain the high search efficiency of the 

exploration step [119]. Search efficiency is important given the limited computing 

resources. During the realign-shrink procedure, after drawing a certain number of 

locally-confined random samples, the current local sample space is either: (i) 

realigned/moved if a better sample is found; or (ii) shrunk if no better solution is found.  

From experimental results (Section 4.3.3, p. 68), it was the exploration step that 

yielded the largest amount of improvement in segmentation quality, while the 

contribution of the exploitation step was less significant. With this, the exploration step 

performed on subvolume j  is followed by minimal exploitation, and the best estimate 

ˆ
jξ  is passed on to the next subvolume 1j +  to be included as one of points in its 

exploration step. This is performed in a circular ring, i.e.,  if 1 1j + = j k= . This 

terminates when no better parameters are found for all subvolumes, i.e., the subvolumes 

are not benefiting from each other. Then each subvolume parameters are applied to the 

image I  and the one that gives the best segmentation is chosen. The last step can be 

skipped if the parameters are to be used adaptively within the image I . Then, the entire 
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image can be segmented using nearest-neighbor lookup, or if possible, interpolation, for 

the segmentation algorithm parameters.  

3.5 Chapter Summary 

We are attempting to decide and choose the optimal segmentation among the set of 

all computable segmentations—obtained by varying segmentation algorithm parameters. 

The optimal segmentation can be chosen using the traditional MAP criterion that 

minimizes the probability of error if prior probabilities on the segmentations can be 

specified. Since it is more practical to specify the optimal descriptive language for the 

segmentation and the image given the segmentation, the equivalent MDL criterion is 

chosen. 

Since the MDL criterion was first applied to the problem of image partitioning, the 

vague notion of optimality is progressively made concrete from that general-purpose 

computer vision application to the field this work—segmentation of tube-like structures 

in biological images. In adapting the MDL criterion to tube segmentation, a local 

structure-indicator function is proposed and presented to replace the intensity value at 

each pixel with a neighborhood-based formulation that indicates how likely the pixel to 

belong to the biological structure of interest. It also implicitly captures the correlation 

between pixels. Two ways to evaluate the local structure-indicator function are 

described—the generalized log-likelihood ratio test and the vesselness formulation.  

In essence, the MDL-optimality criterion in (7) incorporates the local structure and 

intensity models along with the local fitting strategy in the first term of (7) through the 

local structure-indicator function. In addition, the set of segmentations is limited to those 

computable by a segmentation algorithm that globally fits predefined local models.  

To choose the optimal segmentation—to explore the parameter space of the 

segmentation algorithm—the RRS algorithm was chosen since it was developed along 

requirements similar to those of the segmentation-optimization framework. Given the 

context and wide applicability of this framework, suboptimal solutions within a 

reasonable time frame are acceptable. This emphasizes the need for the optimization 

algorithm to be efficient, i.e., capable to get closer to the global optimum quickly.  
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Since a single function evaluation for RRS corresponds to executing the 

segmentation algorithm from start to finish, execution time for 3-D images may take 

much longer than 2-D images. A systematic method to speed up computations in 

obtaining the segmentation algorithm parameters for 3-D images is described using non-

empty image subvolumes. The notion of representative subvolume is defined using 

image intensity information and structural information obtained from the local model 

fitting stage of a segmentation algorithm. Two approaches on using the subvolumes to 

obtain the parameters for the entire image are presented, either using one representative 

subvolume or using a set of subvolumes containing the representative subvolume. When 

a set of subvolumes is used, a procedure to coordinate the parameter selection process is 

presented where the subvolumes collaborate in a circular array until they no longer 

benefit from each other. Rather than choosing between the subvolume segmentation 

algorithm parameters to be applied to the entire image, these parameters can be used 

adaptively by the segmentation algorithm. This enables adaptation of segmentation 

algorithm parameters originally designed for the entire image (called as the non-adaptive 

parameters), effectively making the segmentation algorithm spatially adaptive.  

 

 



4. Experimental Results 

This chapter provides a series of examples of progressively increasing complexity, 

starting with the simplest case of segmentation by global image thresholding [60]. The 

thresholding example is followed by a neuron tracing algorithm [2, 3] in which just two 

parameters out of eight are optimized, and concluded with a full eight-dimensional 

parameter search. In all examples, 0.5α =  is chosen for pure MDL-balanced 

optimization. Also in all examples: (i) the size scales are manually obtained from the 

image content; and, (ii) the parameters for the vesselness measure are set to the values 

published in [74].  

The vesselness measure described in Section 3.1.4.2 (p. 31) is chosen as the local 

structure-indicator function (see Sections 3.1.3-3.1.4, pp. 26-27) for all presented results 

since it is readily generalized to both 2-D and 3-D images [74], unlike the currently 2-D 

[22] generalized log-likelihood ratio method in Section 3.1.4.1 (p. 28).  The vesselness 

measure also exhibits faster computation speed compared to the generalized log-

likelihood ratio method since the latter requires more computations per pixel [22, 74].  

To evaluate the segmentation quality metric Q  (Section 3.1.5, p. 33) using the 

description length in (16), the probability distribution function (pdf) of the vesselness 

values are estimated using 20 ground truth segmentations from the Digital Retinal 

Images for Vessel Extraction (DRIVE) database [136] and used in generating all 

presented results. Figure 15 displays empirical and best-fit pdf of the vesselness values 

at the background regions  in Panel (a) and at the foreground regions  in Panel (b). 

Ranked by the Kolmogorov-Smirnov (KS) test statistic (e.g., see [137]), the exponential 

distribution for  (KS value 0.27) and the generalized-beta distribution for  (KS 

value 0.05) were determined to be the best fit out of 15 distributions considered. Table 

III and Table IV list the detailed fitting results. Values of KS statistic close to 0 suggest 

accepting the hypothesized distribution and values close to 1 suggest rejecting it. The 

parameters of the best-fitted distributions were obtained using maximum-likelihood 

estimation.  

B F

B F

Due to the limited scope to tube-like structures, the tracing algorithm’s soma 

detection module was disabled. Therefore, somas in neuron images were manually 

50 
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segmented and supplied to the tracing algorithm. Furthermore, the trace merging step of 

the algorithm was also disabled since it is a post-processing step [87].  

The recursive random search (RRS) algorithm was limited to 1000 function 

evaluations. This computational budget/limit was chosen empirically. An exhaustive 

search—without constraints on the parameter values—would require 6,804,000 function 

evaluations using the parameter ranges in Table II (p. 37). 

 

 

 

  
(a) (b) 

Figure 15. Displays empirical and best-fit probability distribution function (pdf) of 
the vesselness values at the background regions  in Panel (a) and at the 
foreground regions  in Panel (b). Ranked by the Kolmogorov-Smirnov (KS) test 
statistic, the exponential distribution for  (KS value 0.27) and the generalized-
beta distribution for  (KS value 0.05) were determined to be the best fit out of 15 
distributions considered. The parameters of the best-fitted distributions were 
obtained using maximum-likelihood estimation. 

B
F

B
F
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Table III. Lists the results for fitting distributions to the observed histogram of the 
local structure-indicator function (vesselness) values at the background 
region, ( )(P ∈x xV )B , where the best fit is displayed in Figure 15a. Only valid fits 

are listed. There were 8 invalid fits. The Kolmogorov-Smirnov goodness-of-fit 
measure was used and fits were ranked according to the KS statistic.  

Distribution Fitting Rank KS 
Statistic Fitted Distribution Parameters θ  

Exponential 1 0.2698 ( )0.0142=θ  

Extreme value 2 0.3224 ( )0.0062 0.0106=θ  

Logistic 3 0.3759 ( )0.0090 0.0094=θ  
Inverse 
Gaussian 4 0.3980 ( )0.0148 0.0019=θ  

Normal 5 0.4246 ( )0.0142 0.0313=θ  

Triangular 6 0.7847 ( )0.0000 0.0000 0.5061=θ  

Uniform 7 0.8578 ( )0.0000 0.5061=θ  

 

Table IV. Lists the results for fitting distributions to the observed histogram of the 

local structure-indicator function (vesselness) values at the foreground 

region, ( )(P ∈x xV )F , where the best fit is displayed in Figure 15b. Only valid fits 

are listed. There were 7 invalid fits. The Kolmogorov-Smirnov goodness-of-fit 

measure was used and fits were ranked according to the KS statistic.  

Distribution Fitting 
Rank 

KS 
Statistic Fitted Distribution Parameters θ  

Generalized beta 1 0.0490 ( )4.7771 0.6462 0.4354 1.0000= −θ  

Normal 2 0.1791 ( )0.8302 0.1848=θ  

Logistic 3 0.1857 ( )0.8615 0.0937=θ  

Extreme value 4 0.2811 ( )0.7254 0.2477=θ  

Triangular 5 0.3366 ( )0.0188 1.0000 1.0000=θ  

Exponential 6 0.4033 ( )0.8106=θ  

Uniform 7 0.5153 ( )0.0191 1.0000=θ  

Pareto 8 0.5156 ( )0.2698 0.0196=θ  
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Figure 16. Displays a plot of segmentation quality versus segmentation complexity. 
Increased segmentation complexity means less concise segmentation, and vice-
versa. (a) The input image, containing segments of neurons grown on 
topographically-modified semiconductor surface (Image source: N. Dowell, 
Wadsworth Center). (b) Traces obtained with 1000 RRS function evaluations 
(18.5% improvement in segmentation quality metric  versus using default 
segmentation algorithm settings). (c) The plot of the segmentation quality  in 
megabits versus the segmentation complexity 

Q
Q

( )m iL M  in kilobits, obtained from 
1000 RRS function evaluations. A polynomial trend line is also plotted. As expected, 
the segmentation quality increases as segmentation complexity increases up until a 
point where segmentation quality decreases since the segmentation becomes overly 
complex. 
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Segmentation quality is expected to increase as the segmentation gets more complex 

up until a point of diminishing return where more complex segmentations exhibit 

degrading quality. Figure 16 displays a plot of segmentation quality versus segmentation 

complexity. Increased segmentation complexity means less concise segmentation, and 

vice-versa. Panel (a) displays the input image, containing segments of neurons grown on 

topographically-modified semiconductor surface. (b) The optimal trace obtained with 

1000 RRS function evaluations. (c) The plot of the segmentation quality Q  in megabits 

versus the segmentation complexity ( )m iL M  in kilobits, obtained from 1000 RRS 

function evaluations. A polynomial trend line is also plotted. As expected, the 

segmentation quality increases as segmentation complexity increases, up until a point 

where segmentation quality decreases since the segmentation becomes overly complex. 

4.1 Global Thresholding Example 

This is intended to illustrate the automated parameter selection method in a trivial 

and readily-understood context – global intensity thresholding [60]. A global intensity 

threshold τ  is applied to images containing tube-like structures, and the goal is to find 

the optimal threshold value τ̂  that yields the optimal segmentation . For objects 

brighter than the background, the segmentation function is given by: 

M̂

 ( )( ) ( ),
if

f
otherwise

.
τ⎧ ∈ ≥

= ⎨
∈⎩

x x
x ξ

x
F I

I
B

 (27) 

For 8-bit grayscale images, ( ) [ ]0, 255∈xI , the global intensity threshold 

[ ]0, 255ξ τ= ∈  is a one-dimensional parameter vector in the parameter space 1Ω∈] . 

Figure 17 shows the results of applying the proposed methodology to this case. Panel (a) 

shows an image of neuronal dendrites captured by fluorescence microscopy. The 

vesselness measure  is displayed in Panel (b). Panel (c) is a plot of the 

segmentation quality metric Q  versus the threshold value 

( )xV

τ . The optimal segmentation 

 (using the optimal threshold value M̂ ˆ 55τ = ) is shown in Panel (d).  

 

 



EXPERIMENTAL RESULTS 55 

 
 

(a) (b) (c) (d) 

Figure 17. Trivial automatic thresholding example illustrating the behavior of the 
segmentation quality metric Q . (a) Image of a fluorescently labeled neurite 
captured by a widefield microscope. (b) The multi-scale vesselness measure. (c) Plot 
of the segmentation quality metric Q  against the threshold τ  value. (c) The 
optimal segmentation  using M̂ ˆ 55τ = .  

 

4.2 Tracing Algorithm: Two Parameters 

In this example, the use of the proposed methodology is demonstrated in choosing 

the parameters ξ̂  for an automated neuron tracing algorithm [2, 3] (summarized in 

Section 3.3, p. 37). The parameter settings for this algorithm can be combined into a 

vector ξ  as follows: 

( )min max maxshift rotate cg L L n n s τ ν=ξ . 

They are summarized in Table II (p. 37), along with their default values. Note that the 

traces are not merged for these examples since the segments are merged after tracing by 

the tracing software, i.e., as a post-processing step.  

Figure 18 shows the result of an exhaustive search for just two parameters, grid 

spacing  in the range [g ]10,30 , and contrast threshold multiplier cτ  in the range [ ]1,10  

with other parameters set at default values (Table II, p. 37). Panel (a) shows the input 

image containing fluorescently-labeled neurites imaged using a multi-photon 

microscope. Panel (b) shows the computed vesselness values. Panel (c) displays the 

entire segmentation quality metric  versus  and Q g cτ . Panel (d) displays the traces 

obtained using the default parameter values ( )15, 3cg τ= = . The worst under-
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segmentation , is displayed in panel (e). Panel (f) displays the worst 

over-segmentation . The optimal segmentation  is 

displayed in panel (g). Since only two parameters are being searched here, it is feasible 

to search exhaustively. These two parameters are related directly to the initial sampling 

of the image and the stopping criteria of the tracing algorithm. They are chosen to 

illustrate the effect of these aspects of the tracing algorithm on trace conciseness and 

coverage. 

( 26, 10cg τ= = )

)( 10, 1cg τ= = ( )21, 8cg τ= =

 

 

 

 

 

 

(a) (b) (c) 

  
(d) (e) (f) (g) 

Figure 18. An example varying just two parameters, [ ]10,30g∈  and [ ]1,10cτ ∈ , 
with others fixed at default values (Table II). Panel (a) shows a maximum intensity 
projection of a 512×512×55 multi-photon microscope image of fluorescently-labeled 
neurites. Panel (b) displays the vesselness measure. Panel (c) displays the entire 
segmentation quality metric Q , demonstrating the nontrivial optimization 
landscape, versus the parameters  and g cτ . (d) Using the default parameter values 

. (e) The worst under-segmentation ( 15, 3cg τ= = ) ( )26, 10cg τ= = . (f) The worst 

over-segmentation ( . (g) The optimal segmentation ( ) .  )10, 1cg τ= = 21, 8cg τ= =
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4.3 Tracing Algorithm: Eight Parameters 

This example shows the search in the full eight-dimensional parameter space of the 

tracing algorithm, using at most 1000 RRS function evaluations. To begin, 40 2-D test 

images of human retinas (with ground truth), and 183 2-D images of neurites were 

gathered from four sources (Table V). Results for 3-D images are reported separately in 

Section 4.3.2. For the retinal images, the pixel-wise agreement to the ground truth was 

also computed (See Section 4.4, p. 70). Improvements in description lengths and 

agreement with the ground truth were found to be strongly correlated ( ), and 

statistically significant (p < 0.0005 to reject the hypothesis ). All reported 

improvements in this section are in terms of the segmentation quality metric Q  

compared to using the algorithm’s default parameter settings (Table II, p. 37).  

0.78r =

0r =

Figure 19 displays the applications of the proposed method to a human retinal 

vasculature image shown in panel (a) and to images of cultured neurons in panels (b)-

(d). Traces using default settings are shown in panels (e)-(h). Traces using 

automatically-selected settings using 1000 RRS function evaluations are shown in panels 

(i) through (l). The quality improvement is 4% for the retina image in panel (a), 6% for 

the neuron image in panel (b), 7% for the neuron image in panel (c), and 38% for the 

neuron image on the micro-fabricated surface in panel (d).  

4.3.1 Segmentation of Image Batches 

Table V summarizes the results for all 223 test images. The first column lists the 

image source followed by the number of images in the second column. The third column 

shows the improvements in segmentation quality metric Q  when the parameter settings 

are automatically-selected for each image using the parameter selection method 

presented in this work. The fourth column shows the improvements when automatically-

selected settings for the first image from the same source are applied to the rest of the 

images. Reported improvements are statistically significant (p < 0.0005) as concluded 

from paired t-tests on all 223 test images (see Section 4.4.2, p.72). 
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Table V. Summary of experimental results with 223 images from four sources. The 
first two columns list the image sources, and number of images. For all 
experiments, 1000 RRS function evaluations were used, and an 8-dimensional 
parameter space was searched. The third column shows the improvements in the 
segmentation quality metric  when parameter settings are automatically-selected 
for each image. The fourth column shows the improvements when settings are 
optimized for just one randomly selected image, and then applied to the rest of the 
images in the batch. 

Q

 
Improvement in segmentation 

quality metric  with 1000 RRS 
function evaluations, compared to 

default settings 

Q

Image Source and Reference Number of 
Images 

Improvement 
when each image 
is optimized (%) 

Improvement 
when just one 

image is 
optimized (%) 

Directionality of Neurite 
Outgrowth Study (Neuron)  154 21.3 18.5 

The STARE Project (Retina)  20  04.7 01.3 
The DRIVE Database (Retina)  20 09.0 04.1 
Synaptic Distribution Study 
(Neuron)  29 10.9 10.0  

 

 

Figure 20 graphically displays the segmentation quality improvements on the batch 

of images from the Synaptic Distribution Study [138] as summarized in Table V. The 

fourth image from this batch is shown in Figure 19b. The shaded bars show the 

percentage improvements in the segmentation quality metric when parameter settings 

automatically selected for each image. Twelve images were found to share the same 

settings after 1000 function evaluations. The blank bars show the percentage 

improvements when settings are optimized for just one randomly selected image, and 

then applied to the rest of the images in the batch.  
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Figure 20. Displays the segmentation quality improvements on the batch of images 
from the Synaptic Distribution Study [138] as summarized in Table V. The fourth 
image from this batch is shown in Figure 19b. The shaded bars show the percentage 
improvements in the segmentation quality metric when optimal parameter settings 
are computed for each image. The blank bars show the percentage improvements 
when settings are optimized for just one randomly selected image, and then applied 
to the rest of the images in the batch. 

 

Table VI. The automatically-selected parameter vector 

( min max max
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆshift rotateg L L n n s )ρ ν=ξ  values specific to each image. Notice 

that only 11 distinct parameter vectors were obtained. 

Image number ĝ  
minL̂ maxL̂ ˆshiftn  ˆrotaten maxŝ  ρ̂  ν̂  

1,4,5,6,7,8,9,16,19,23,25,28  2 10 14 3 3 5 2 10 

2,13,15,21,24 2 16 28 3 3 5 3 10 

3 2 10 14 3 5 6 1 10 

10 2 12 14 3 5 4 2 15 

11,12,26 2 10 18 3 4 4 1 15 

14 2 20 24 3 5 4 3 15 

17,20 2 16 26 3 4 3 3 15 

18 2 10 24 3 6 5 2 10 

22 2 8 14 3 9 4 1 10 

27 2 10 28 3 7 7 2 10 

29 2 10 22 3 6 7 2 10 
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Table VI displays the values of the automatically selected parameter vector 

( min max max
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆshift rotateg L L n n s )ρ ν=ξ  specific to each image from the 

Synaptic Distribution Study [138] as summarized in Table V. Only 11 distinct parameter 

vectors were obtained. In one case, 12 out of 29 images in the set resulted in the same 

optimal parameters. These images are displayed in Figure 4b. This may suggest that 

these 12 images exhibit similar underlying characteristics from which the parameters are 

derived, i.e., they “look similar” to the tracing algorithm, given that their automatically 

selected parameters are identical.  

The optimized parameter settings vary from one application to another. For 

example, when the parameter settings from the DRIVE database containing retinal 

images are applied to the neuron images from the Synaptic Distribution Study, the 

observed segmentation quality metric Q  worsens 30% on average.  

4.3.2 Using 3-D Images 

A total of 22 3-D images are used. To create image subvolumes, seed points are 

generated using the default segmentation algorithm settings (Table II, p. 37) and 

clustered. The bounding boxes of the seed clusters define the subvolumes. Computation 

times to execute 1000 RRS function evaluations for different non-empty subvolume 

sizes obtained with seed clusters are plotted in Figure 21. The resulting plot seems 

clustered too, where the right-most cluster corresponds to using 1 seed cluster, the 

middle cluster corresponds to using 2 seed clusters, and the left-most cluster corresponds 

to using between 3 to 10 seed clusters. Execution times and subvolume sizes are found 

to be almost-perfectly linearly related (correlation coefficient value ). This 

motivated the subvolume-based speedup methods as described in Section 3.4 (p. 42).  

0.98r =

The two subvolume-based methods in Section 3.4 are compared by observing both 

speedup and improvements in segmentation quality metric Q . The optimal number of 

subvolumes  is found to vary between 2 to 5 for the test images. Parameter selection 

performed on the entire image averages at 61 minutes and improvements in 

segmentation quality metric Q  averages at 1.30%. The single representative subvolume 

method (Section 3.4.3, p 45) produces on average 3.1X speedup with 1.07% average 

*k
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improvement in segmentation quality metric Q . The multiple-subvolumes coordinated 

parameter selection method (Section 3.4.4 p. 47) produces comparable average 

segmentation quality improvement of 1.05%, but with much higher speedup of 11.2X on 

average.   
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Figure 21. Displays execution times for the automated parameter selection method 
using 1000 RRS function evaluations and non-empty 3-D subvolumes of different 
sizes. A linear trend line is also plotted. Execution time and image size is almost-
perfectly linearly related (correlation coefficient 0.98r = ). 

 

Based on this observation, the multiple-subvolumes coordinated parameter selection 

is chosen to speed up the parameter selection process for 3-D images and also to 

investigate the results of using spatially adaptive segmentation algorithm parameters. 

Using this speedup method, 65 RRS function evaluations are performed on each 

subvolume before the best parameters are passed on to the next subvolume that will 

conduct another 65 RRS function evaluations. The 99% confidence-level used by RRS 

limits the number of function evaluations in the exploration step to 44. The number of 

function evaluations for RRS exploitation stage is limited to 21, corresponding to 3 

realign-shrink steps with 7 function evaluations each [119].  
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Figure 22. Displays the observed Mahalanobis distance for k  subvolumes 
corresponding to  seed clusters, where the optimal number of subvolumes is 

 since it contains the subvolume  with the smallest Mahalanobis distance 
to the entire image. The input image is shown in Figure 24a. Beyond 10 clusters, the 
smallest seed cluster contains less than 12 seeds. Notice that larger subvolume sizes 
(smaller ) do not necessarily correspond to smaller distance to the entire image. 

k
* 4k = *v

k

 

The optimal number of subvolumes  is determined by varying the number of 

seed clusters k  until the smallest seed cluster contains less than 12 seeds. While varying 

, the representative subvolume  is updated. Once the process completes, the optimal 

number of subvolumes  corresponds to the cardinality of the set of subvolumes 

*k

k *v

*k

{ } *

1

k

j j
v

=
 that contains . Recall that  is defined as the closest subvolume to the entire 

image based on the Mahalanobis distance of the seed point characteristics and image 

contrast. Figure 22 displays the observed Mahalanobis distance for  subvolumes as  

is varied using the 3-D image shown later in Figure 24a, where . Using the 

multiple-subvolume coordinated parameter selection method for the same input image, 

Figure 23 displays the improvements in segmentation quality metric Q  using different 

number of subvolumes. Most improvement is observed when the set of subvolumes 

contain the most representative subvolume . In this case, it is when .  

*v *v

k k

* 4k =

*v * 4k =
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Figure 23. Displays the amount of improvement in segmentation quality Q  using 
different number of subvolumes using the multiple-subvolumes coordinated 
parameter selection method. Notice that most improvement occurs at  when 
the set of subvolumes contain the most representative subvolume . 

* 4=k
*v

 

 

Figure 24 displays a 512×512×50 image of a neuron captured using multiphoton 

microscopy. For this image, the number of seed clusters is computed to be . Panel 

(b) displays the detected seed points on the maximum intensity projection of the 3-D 

image along with the subvolumes obtained from seed point clusters. Panel (c) shows the 

traces obtained using default segmentation algorithm settings. Panel (d) shows the traces 

obtained using the automatically-selected (non-adaptive) settings, with 1.92% 

improvement in segmentation quality Q . Recall that by default, the segmentation 

algorithm settings are non-adaptive since they are used for the entire image. When using 

adaptive settings, improvement in segmentation quality metric  is almost similar at 

1.90%. Computational speedup using multiple subvolumes versus using the entire image 

averages at 12.8X (average reduction from 77 minutes to 6 minutes) on a 2 GHz AMD 

Opteron processor. More detailed progress of the multiple-subvolumes coordinated 

parameter selection method is described next. 

* 4k =

Q
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Figure 24. Results using a 512×512×50 3-D image of a neuron captured using 
multiphoton microscopy. (Image source: J. Trachtenberg, UCLA). (b) Detected 
seed points on the maximum intensity projection of the 3-D image along with the 
four regions obtained by clustering the seed points. (c) Traces obtained using 
default segmentation algorithm settings. (d) Traces obtained using the automated 
parameter selection method (coordinated multiple-subvolumes). The improvement 
in segmentation quality metric Q  is 1.92%. 
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(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

Figure 25. Multiple-subvolumes coordinated parameter selection, during the first 
iteration. The input 512×512×50 3-D image is displayed in Figure 24a. Results are 
displayed on the x-y maximum intensity projection image. Panel (a) displays the 
first subvolume. It begins with the default parameter settings, and searches for its 
best parameters 1j=ξ , where the result is shown in panel (b).  Panel (c) displays the 
traces for the second subvolume, using 1j=ξ . It includes 1j=ξ  as part of its 
exploration stage, and obtains the traces with its updated parameters  2j=ξ  in panel 
(d). Panel (e) displays the traces in the third subvolume with 2j=ξ . Its updated 
traces using  3j=ξ  is shown in panel (f). Similarly, panel (g) displays the traces in the 
fourth subvolume with 3j=ξ . Its updated traces using  4j=ξ  is shown in panel (f). 
Next, the first subvolume will include 4j=ξ  in its exploration stage. Note that each 
subvolume may not always obtain updated/better parameters. The process 
terminates when all subvolumes no longer produce better parameters.   
 

For the input 512×512×50 3-D image displayed in Figure 24a, observed progress of 

the multiple-subvolumes coordinated parameter selection during the first iteration is 

displayed in Figure 25. Recall that subscript j  denotes the subvolume index and 

subscript i  denotes the iteration number. Panel (a) displays the first subvolume. It begins 

with the default parameter settings, and searches for its best parameters , where 

the result is shown in panel (b).  Panel (c) displays the traces for the second subvolume, 

1, 1j i= =ξ
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using . It includes 1, 1j i= =ξ 1, 1j i= =ξ  as part of its exploration stage, and obtains the traces 

with its updated parameters  2, 1j i= =ξ  in panel (d). Panel (e) displays the traces in the third 

subvolume with . Its updated traces using  2, 1j i= =ξ 3, 1j i= =ξ  is shown in panel (f). Similarly, 

panel (g) displays the traces in the fourth subvolume with 3, 1j i= =ξ . Its updated traces 

using   is shown in panel (f). Next, the first subvolume will include  in its 

exploration stage. Note that each subvolume may not always obtain updated/better 

parameters. The process terminates when all subvolumes no longer produce better 

parameters.   

4, 1j i= =ξ 4, 1j i= =ξ

Segmentation quality for 3-D images is also expected to increase as the 

segmentation gets more complex up until a point of diminishing return where more 

complex segmentations exhibit degrading quality, similar to the case for 2-D images 

(illustrated in Figure 16, p. 53). Figure 26 displays a plot of segmentation quality versus 

segmentation complexity for the image shown in Figure 24a, obtained from 1000 RRS 

function evaluations. The behavior of segmentation quality  is found to be similar 

between 2-D and 3-D images. 

Q
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Figure 26. Displays a plot of the segmentation quality versus segmentation 
complexity for the image shown in Figure 24a obtained from 1000 RRS function 
evaluations. As seen for 2-D images (Figure 16, p. 53), the segmentation quality 
increases as segmentation complexity increases, up to a point until the segmentation 
quality decreases since the segmentation becomes overly complex. 
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Figure 27 displays the improvements in segmentation quality for a time-series of 

eight 3-D images (first image shown in Figure 24a). The first bar in Figure 27 displays 

the improvement when each image in the time-series is optimized separately, using 

 subvolumes and non-adaptive segmentation settings. The second bar displays the 

improvement obtained when the non-adaptive settings obtained for the first image are 

applied to the rest of the series. The third bar displays the improvement using the 

adaptive settings obtained from the first image applied adaptively to the rest of the 

series.  

* 4k =
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Figure 27. Displays the improvements in segmentation quality for a time-series of 
eight 3-D images (first image shown in Figure 24a). The first bar displays the 
improvement when each image is optimized separately, using  subvolumes 
and non-adaptive segmentation settings. The second bar displays the improvement 
obtained when the non-adaptive settings obtained for the first image are applied to 
the rest of the series. The third bar displays the improvement using the adaptive 
settings obtained from the first image applied adaptively to the rest of the series.  

* 4k =

 

4.3.3 RRS Performance 

A full eight-dimensional exhaustive search, comprising of 6,804,000 function 

evaluations using the parameter values in Table II (p. 37), is conducted using the image 

shown in Figure 18a (p. 56). The exhaustive search took 9 days to complete on three 

servers each with two 700 MHz Pentium III processors, a total of six processors running 

in parallel. On average of 50 RRS runs with 1000 function evaluations each, RRS is 

within 3.56% from global optimum. 
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The execution time is dependent on the time for one RRS function evaluations, i.e., 

one run of the segmentation algorithm. Execution times for 1000 RRS function 

evaluations to obtain the optimal parameter settings vary from 12 minutes per image on 

average from the DRIVE database [136] to 53 minutes on average for images from the 

Synaptic Distribution Study [138] on a 2GHz AMD Opteron processor.  

The performance of the RRS algorithm is plotted in Figure 28, displaying the 

segmentation quality improvement in percentage relative to using default segmentation 

algorithm parameter settings, on average, for all 223 test images (Table V, p. 59). The 

average improvement relative to default settings increases only by 0.22% beyond 500 

RRS function evaluations up to 1000 RRS function evaluations. This plot also illustrates 

the high efficiency of RRS during its exploration of the global parameter space. 

Furthermore, it shows that the default parameter settings are very unsuitable for the 

majority of the test images, especially from the neurite outgrowth directionality study 

[11] (see Table V). The minimum number of RRS function evaluations is determined by 

the confidence-level of finding the optimal value within the global sample space, i.e., 

during its exploration step. For the 99% confidence-level used for all presented 

examples, RRS needs 44 function evaluations [119] before it can begin identifying the 

promising subspaces for the exploitation step.  
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Figure 28. Average percentage improvement in segmentation quality for all 223 test 
images (Table V). This plot illustrates the high efficiency of RRS during its early 
exploration of the global parameter space. The improvement between 500 and 1000 
RRS function evaluations is only 0.22%. 
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4.4 Validation 

In the context of validating the automatically-selected segmentation algorithm 

parameters, the reported improvements in segmentation quality Q  need to be shown to 

relate to improvements in terms of agreement between automated segmentation and 

manual segmentation. Once the relation is validated and improvement in segmentation 

quality  is concluded to be meaningful, then the statistical significance of observed 

improvements in  for the test images needs to be validated. 

Q

Q

4.4.1 Relationship between Improvement in Segmentation Quality and Agreement 
with Ground Truth 

Improvements in segmentation quality metric Q  must be validated in terms of its 

relationship to improvements in agreement between automated segmentation  and 

ground truth segmentation . Recall that both improvements are relative to using the 

segmentation algorithm default settings. Currently, the widely used method to obtain the 

ground truth segmentation is by using human observers, i.e., manual segmentation [39, 

44]. Manual segmentation, other than being tedious and very time consuming, suffers 

from intra-observer and inter-observer subjectivity and disagreements [3]. Since the 

segmentation quality metric Q  is based on partition of the image, the ground truth must 

label all pixels in the image, not just the centerlines (as in [3]). This makes manual 

segmentation more tedious. Rather than introducing more subjectivity, the validation is 

performed on currently-available, published sets of 40 manual segmentations, from the 

STARE Project [65] and the DRIVE Database [136].  

autoM

GTM

Let  be the automated segmentation using default segmentation 

algorithm settings , and 

(auto defaultξM )

defaultξ ( )ˆ
auto ξM  be the automated segmentation using 

automatically-selected algorithm settings ξ̂ . The number of pixels where the automated 

segmentation  agrees with the ground truth segmentation  is denoted autoM GTM

auto GT∩M M . The improvement in agreement between automated segmentation and 

ground truth segmentation becomes: 
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The segmentation quality metric  of Q ( )auto defaultξM  is denoted , and the 

segmentation quality metric of 

( defaultQ ξ )

( )ˆ
auto ξM  is denoted ( )ˆQ ξ . Since Q  is negative valued, 

the improvement in segmentation quality is computed as: 

 
( ) ( )

( )
ˆ

default

default

Q Q
Q

Q

−
∆ =

ξ ξ

ξ
 (29) 

The (Pearson) correlation between two variables X  and Y , each with  observations 

is: 
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Substituting in (30) the variables Q∆  and GT∆ , and the value  for the 40 

images with ground truth used in this validation section, the correlation is computed to 

be . A scatter plot showing observed 

40N =

0.78r = Q∆  and GT∆  pairs is shown in Figure 29. 

Next, a two-sided hypothesis test is conducted with the following hypotheses: 

0

1

: 0
: 0

H r
H r

=
≠

 

where the significance level of the test is set at 0.05. The significance level is the 

probability of rejecting a true , i.e. concluding that there is a linear relationship 

between  and where there is actually no linear relationship between the two. 

The 

0H

Q∆ GT∆

p -value for this test is computed to be less than 0.0005. The p -value tells the 

smallest significance level of the test at which  can be rejected. Since it is lower than 

the significance level of 0.05, hypothesis  saying that there is no linear relationship 

between observed improvements in segmentation quality and improvements in 

agreement with ground truth can be rejected.  

0H

0H
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Figure 29. Displays a scatter plot of observed improvements in segmentation 
quality metric  and improvements in agreement to ground truth. A linear trend 
line is also plotted. The improvements are strongly correlated with correlation 
coefficient .  

Q

0.78r =

 

4.4.2 Significance of Improvement in Segmentation Quality 

Significance of the improvements observed for all 223 test images (Table V, p. 59), 

can be determined by conducting a paired t-test using the observed values for 

segmentation quality using default segmentation settings ( )defaultQ ξ  and segmentation 

quality using automatically-selected settings ( )ˆQ ξ . Paired t-test is used because it is 

reasonable to expect dependence between observations within a pair because they are 

measurements from the same image. 

First the difference between ( )defaultQ ξ  and ( )ˆQ ξ  needs to be tested to see whether 

the distribution of the differences is normally distributed. Using the Anderson-Darling 

test for normality [139], we can reject the hypothesis that the differences are not 

normally distributed with 0.005p < .  

The paired t-test is conducted using the pair of ( )defaultQ ξ  and ( )ˆQ ξ  values for each 

of the 223 test images. The null hypothesis says that the difference between ( )defaultQ ξ  
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and ( )ˆQ ξ  is zero, and the alternative hypothesis says that the difference is greater than 

zero. In other words, the null hypothesis says that the automatically-selected parameters 

result in no improvement in segmentation quality metric . From the observed pairs of 

 and 

Q

( defaultQ ξ ) ( )ˆQ ξ  values, the null hypothesis is rejected at the 0.05 significance level 

with . 0.0005p <

4.5 Comparison of Optimization Algorithms 

 Comparative performance evaluation for the optimization algorithm is conducted 

using four other global optimization algorithms. Other than the RRS algorithm used to 

generate all results reported in this work, the four evaluated optimization algorithms are: 

(i) controlled random search; (ii) multi-start pattern search; (iii) simulated annealing; and 

(iv) genetic algorithm. These algorithms are chosen since they are recommended for 

black-box optimization problems [114, 117, 118, 140]. They are briefly described next. 

4.5.1 Optimization Algorithm Descriptions 

Controlled random search, also called as Price’s algorithm [113, 114, 141], 

randomly generates a population of  points, randomly chooses a subset of the  points 

and performs a downhill simplex move with that subset. The population of  points is 

updated by removing the worst element as better points are obtained in the downhill 

simplex moves. A simplex move is used to find the local optima. The simplex, a 

generalization of a triangle in high dimensional space, is moved using systematic 

reflections, expansions, and contractions [142].  

n n

n

Multi-start pattern search performs random sampling to generate new starting 

points whenever it reaches local optima [115]. Pattern search is an exploitation method 

that maintains a pattern (information) that guides the speed of convergence to the local 

optima [116]. A pattern is updated by performing a series of exploratory steps, one in 

each dimension of the search space [115].  

Simulated annealing [112], also known as Monte Carlo annealing, statistical 

cooling, probabilistic hill-climbing, stochastic relaxation, and probabilistic exchange 

algorithm [140], is based on the concept of annealing in metallurgy (study of metals and 
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their mixture, alloys, in materials science and materials engineering). Annealing in 

metallurgy is a method involving heating and controlled cooling of a material for 

allowing a system such as atoms in an alloy to find a low-energy configuration to 

increase the size of its crystals and reduce defects. To avoid local optima, simulated 

annealing begins with a pure random search and gradually resembles hill-climbing 

methods [140], where the transition from random search to hill-climbing is achieved by 

varying its “temperature” (e.g., see [143]).   

The genetic algorithm is based on the theory of evolution, driven by the survival of 

the fittest [144-146]. An initial random population of individuals is created, and each 

individual’s fitness value is a scaled version of the optimization objective function [147]. 

To create new generations of the population, multiple individuals are stochastically 

selected from the current population based on their fitness to create new members of the 

population, either by breeding (crossover of two parent individuals) or by mutation.  

The interested reader is referred to the cited references for further details on these 

algorithms. 
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Figure 30. Average percentage improvement in segmentation quality for all 223 test 
images (Table V) using controlled random search, multi-start pattern search, 
genetic algorithm, simulated annealing, and RRS. RRS outperforms all other 
optimizations tested at all 1000 function evaluations. 
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4.5.2 Experimental Results for Comparative Study 

This is similar to the result shown earlier in Figure 28 (p. 69) for RRS, but here the 

performances of other optimization algorithms are included. Figure 30 displays the 

average percentage improvement in segmentation quality for all 223 test images (Table 

V) using controlled random search, multi-start pattern search, simulated annealing, 

genetic algorithm, and RRS. This plot illustrates the relatively higher efficiency of RRS 

during its early exploration of the global parameter space compared to the other 

optimization algorithms. It also demonstrates the relatively higher efficiency of RRS 

during later function evaluations compared to the others. RRS outperforms the other 3 

optimization algorithms at all function evaluations for all 223 test images. 

4.6 Chapter Summary 

Since the goal is to obtain the optimal result from a segmentation algorithm, and 

therefore automatically obtain the segmentation algorithm parameter settings, 

segmentation algorithms ranging from as simple as the global thresholding [60] to the 

eight-parameter exploratory tracing algorithm [3, 19] are adopted to demonstrate the 

applicability of the automatic parameter selection method. A gallery of results that 

extends across applications is displayed. These results also demonstrate that a single 

implementation/version of the tracing algorithm can be used across applications just by 

using different parameter settings. Capability for 3-D images is also demonstrated using 

a systematic method to speed up computation since incremental changes in the tracing 

algorithm parameters do not translate to incremental changes in the traces—each RRS 

function evaluation corresponds to complete retrace of an image.  

The method is validated by investigating the relationship between improvements in 

the proposed segmentation quality metric and improvements in agreement to ground 

truth segmentation. The reported improvements in segmentation quality are found to be 

statistically significant and strongly correlated ( 0.78r = ) with improvements in 

agreement between automated and ground truth segmentation. 

Performance of the RRS algorithm used in finding the segmentation algorithm 

parameters is compared with four other search algorithms generally recommended for 

black-box optimization: (i) controlled random search; (ii) multi-start pattern search; (iii) 
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simulated annealing; and (iv) genetic algorithm. On average for 223 test images, RRS 

outperforms the other four optimization algorithms at all 1000 function evaluations.  

 



5. Discussion and Conclusions 

An automated method to select segmentation algorithm parameter settings is 

presented and demonstrated across applications based on the core idea of trading off 

segmentation conciseness and segmentation coverage. Using automatically selected 

parameters resulted in improved segmentations on all test images. This translates to 

more accurate analyses performed on the improved segmentations. Current parameter 

selection methods using empirically-chosen parameters (e.g., [2, 3, 19, 20]) or heuristic 

formulations (e.g., [21]) are not only time-consuming but are also application-specific 

with no assurance towards optimality. 

5.1 Automated Parameter Selection 

Using an optimization algorithm, possible combinations of segmentation algorithm 

parameter settings are efficiently searched using an objective function based on 

segmentation quality. This is performed in an unsupervised manner, unlike in other 

methods such as in reinforcement-learning segmentation systems [36]. This is possible 

because the segmentation quality assessment module is an online component of the 

automated parameter selection. Current segmentation quality assessment methods 

performs offline evaluations of the segmentations (e.g. [44, 46]). 

5.1.1 Segmentation Quality Metric 

The segmentation quality metric is based on the minimum description length (MDL) 

principle [32]. It objectively trades off segmentation coverage of image content and its 

conciseness. The optional universal parameter α  allows a user to bias the trade-off. This 

effectively reduces the many number of parameters to one that intuitively adjusts the 

aggressiveness of the segmentation algorithm. Improvements in this metric are 

demonstrated to strongly correlate with improvements in agreement with ground truth 

segmentations.  

5.1.2 Recursive Random Search Algorithm 

Use of direct search methods is necessary to avoid excessive function evaluations 

needed for estimating objective function derivatives through finite differences. Direct 
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search methods involve only examining trial solutions coupled with a strategy for the 

next trial [115]. This is necessary for the presented automated parameter selection 

method since one function evaluation, or one trial, corresponds to one complete 

execution of a segmentation algorithm. This becomes the computational bottleneck 

especially for slower segmentation algorithms involving 3-D images. 

The recursive random search (RRS) optimization algorithm, used in generating all 

presented experimental results is shown to outperform other optimization algorithms 

recommended for black-box applications [114, 117, 118], such as the genetic algorithm 

[144-146], multi-start pattern search [115, 116], and controlled random search [113, 114, 

141]. As demonstrated from experimental results, it has the highest efficiency at 

producing better solutions sooner than other algorithms compared, which is important 

for this work.  

5.2 Batch Segmentation 

On batches of similar images, the experimental results demonstrated that significant 

improvements can still be gained when the automated parameter selection method is 

performed on a single representative image (or perhaps, a modest subset) and the 

obtained parameter settings are applied to the rest of the images. This yields a better 

operating point for the segmentation algorithm compared to application-independent 

default values.  

5.3 Speedup Methods 

Even though the execution speed of the tracing algorithm used in producing 

experimental results scales with image content, not with image size [3], disk and 

memory access times for different image sizes are shown to make the execution time for 

1000 RRS function evaluations (1000 runs of the segmentation algorithm each time 

possibly with different parameters) to almost linearly scale with image size (correlation 

coefficient ). This can also be explained by the observations that different 

parameter settings produce different segmentations, ranging from overly-simple to 

overly-complex, effectively canceling the image-content execution-time scaling factor. 

0.98r =
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This motivated the idea of performing parameter selection on representative 

subvolume of the image when the execution speed of the segmentation algorithm is the 

bottleneck, as for 3-D images for example. The first method is to use a single most 

representative subvolume. The second one generalizes this idea to use a set of 

subvolumes containing the most representative subvolume in a coordinated manner.  

Speedup of 11.2X on average is observed for 22 3-D images using the second 

method, versus 3.0X using the first. Compared to performing parameter selection using 

the entire image, both speedup methods on average sacrifice only 0.23%-0.25% of 

segmentation quality improvements. The observed difference in segmentation quality 

improvements between the two methods is only 0.02%. Although this speedup method 

has been presented only for 3-D images, it can be adapted to 2-D images as well.  

5.3.1 Representative Subvolume 

The representative measure is inspired by related work of Shen et al. [47] and Lin et 

al. [48] that prioritizes segmentation to achieve real-time performance for subsequent 

analyses. The proposed representative measure is based on both intensity and structural 

information. Use of the Mahalanobis distance measure effectively captures the dynamic 

ranges of each component of the representative measure. Representative measures 

presented in the literature for content-based image retrieval systems (e.g., [49-51]) are 

mainly based only on image intensity with future research heading towards using 

structural information [51].  

5.3.2 Multiple-Subvolumes Coordinated Parameter Selection 

This method recognizes the observation that image subvolumes are part of larger 

data that are highly correlated, i.e., the subvolumes are not much different from each 

other. Under this observation, it is expected that the subvolumes can “collaborate” 

between each other towards achieving optimal entire-image segmentation. Simply by 

sharing their automatically selected segmentation algorithm parameters, each subvolume 

then includes received parameters as part of their search and notifies other subvolumes 

when they have found better parameters for themselves. The entire process terminates 

when the subvolumes are not benefiting from each other.  
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5.3.3 Making a Global Segmentation Algorithm Spatially Adaptive  

By using the multiple-subvolumes coordinated parameter selection method, 

subvolume segmentation parameter settings can be used by themselves, i.e., by 

dynamically changing and adapting the segmentation algorithm parameters as the image 

is being segmented. If possible, the parameters can also be interpolated over the entire 

image. This adapts the otherwise global segmentation algorithm parameters. 

5.4 Future Research 

5.4.1 Generalization to Other Geometrical Models 

The core idea of trading off segmentation conciseness and segmentation coverage is 

expected to be extensible to other applications and other geometrical models, which 

remains as future work. Segmentation algorithms for other key biological objects types 

such as blobs [148, 149] would require matching quality metrics. Nevertheless, the 

modularity of the presented framework allows insertion of alternative segmentation 

algorithms and/or global optimization algorithms, as long as the interfaces between 

modules are maintained [150]. 

5.4.2 Selecting Parameters for Other Segmentation Algorithms 

Beyond the global thresholding and tracing algorithms used in generating all 

presented experimental results, other algorithms for automatically segmenting tube-like 

structures need to have their interface modified to be able to use the presented parameter 

selection method. Other than the interface, they may also use different local model 

fitting methods than the tracing algorithm used in this work. This means that the seed-

clustering method used for constructing non-empty subvolumes for parameter selection 

speedup may need to be adapted to their local model fitting stages.  

5.4.3 Which Image to Use for Batch Segmentation9? 

The batch segmentation method described in this work uses the automatically-

selected segmentation parameter settings for one image selected at random and applied 
                                                 
9 D. Thompson, BMED Dept., Rensselaer Polytechnic Institute, Troy, NY, USA, 
personal communication, 2005. 
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the parameter settings to the rest of the images in the batch. More systematic method of 

using the most representative image in the batch, that can be obtained using methods 

described in Section 3.4.2, can be used. The subimage-to-image distance used in that 

method needs to be modified to correspond to image-to-image distance.  

As a side note, if the segmentation algorithm is linear (incremental changes in 

parameter settings correspond to incremental changes in resulting segmentation), then a 

group of representative images can be used. When this is not the case, a joint estimation 

of the segmentation algorithm parameter settings needs to be performed on the group of 

representative images. This can be done by performing multiple-objective optimization 

instead of single-objective optimization used in this work, where each objective 

corresponds to each image in that group.   

In addition, the distribution of the observed distances to the representative image 

indicates whether batch segmentation can be performed with reasonable loss of potential 

increase in segmentation quality, i.e., by selecting parameter for every image in the 

batch. Recall that the representative measure is based on the local structure and intensity 

models used by the segmentation algorithm. Intuitively the higher the variance of that 

distribution, the higher the loss would be since the images are not very similar to each 

other, i.e., “in the eye” of the segmentation algorithm based on the fitted local models. 

On the other hand, lower variance indicates that the images in the batch are very similar 

in terms of the fitted local models.  

5.4.4 Improved Segmentation Quality Metric 

The presented segmentation quality metric uses a local structure-indicator function 

that measures the likelihood of a pixel to belong to structures of interest and implicitly 

captures inter-pixel correlation. Currently, there exist a number of possibilities for the 

local structure-indicator function, such as the vesselness measure [74], the generalized 

log-likelihood ratio method [22], matched filters [64, 65], and the recent likelihood ratio 

vesselness measure [151]. In this work, the use of the vesselness measure may be 

improved in future research where more accurate local structure-indicator functions are 

substituted in [151]. Once they are substituted, a comparative study between using 

different local structure-indicator functions needs to be performed.  
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5.4.5 Alternative Speedup Methods 

Other methods for more efficient multiple-subvolume coordinated parameter 

selection other than the presented circular array method remains to be explored in future 

research. They may borrow ideas from computer networking (e.g. [152]) where the 

parameters of each network component such as a router are optimized to the benefit of 

the entire network.  

As an alternative to using fixed subvolumes, the idea of systematic subvolume 

growing/expansion as applied in view-based image registration problems [153] remains 

to be investigated in future research. Applying that idea to this work essentially says that 

increasing subvolume sizes will increase improvements in segmentation quality, using 

the underlying assumption that larger subvolumes better represent the entire image. 

However, since counter-examples are found in the presented experimental results, this 

idea needs to be carefully refined and must be demonstrated to outperform the presented 

method both in terms of segmentation quality improvement and in observed speedup. 

5.4.6 Temporally Adaptive Segmentation Algorithm 

Beyond spatial adaptation of segmentation algorithm parameters as demonstrated in 

this work, temporal adaptation can be achieved in time-series images when the image-to-

image transformation parameters are available. Adaptive segmentation algorithm 

parameters can then be transformed using the transformation parameters across the time 

series. Multiple-passes may be needed however when feature-based image registration 

algorithms are used (e.g., [153]) since the extracted features from which the image 

transformation parameters are computed depend on segmentation accuracy (which 

depends on segmentation algorithm parameters). 

5.4.7 Comparative Studies 

Comparative studies between segmentation algorithms on specific applications 

using the proposed segmentation quality metric, without relying on time-consuming and 

subjective manual segmentations as the ground truths [44-46], also remain as future 

research. These studies will enable users to make informed decisions on comparing 

between segmentation algorithms for their respective applications. 
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5.4.8 Automated Feature Detection: Pathological Conditions and Landmarks10 

Disagreements between automated segmentations produced while performing 

parameter selection, i.e., while segmenting 1000 times to produce the segmentation 

algorithm parameters in this work, may be used to point out areas of interest to the user. 

For example, the tracing algorithm used in this work [3, 19] will encounter difficulties at 

image regions where the generalized cylinder model does not fit well. From 

observations, these regions may contain pathological conditions such as aneurysms 

(abnormal blood-filled dilatation of a blood vessel that may cause rupture) and also 

branch/crossover points. Therefore, out of the 1000 segmentation produced while 

searching for the segmentation algorithm parameters, finding locations where they 

disagree may elucidate these regions of interest.  

5.4.9 Estimation of the Distribution of Local Structure-Indicator Function Values 
in Absence of Ground Truth Segmentations 

Methods that estimate the ground truth segmentation (e.g., [46, 96]) can be used to 

estimate the ground truth from a collection of segmentations, possibly obtained by 

randomly varying the segmentation algorithm parameter settings. This will increase the 

objectivity of the parameter selection method. Recall that in this work, the distribution of 

the local structure-indicator function values are obtained from manual segmentations. 

One may proceed one step further where the ground truths are estimated for each 

application (image source, or image batches). With this, the distribution of the local 

structure-indicator function values is specialized to each application. This leads to the 

next item in potential future research.   

5.4.10 Sensitivity Analysis for the Distributions of the Local Structure-Indicator 
Function Values11 

In this work, a single distribution of the local structure-indicator function is used 

when automatically-selecting the segmentation algorithm parameters for all test images. 

                                                 
10 A. Mercado, ECSE Dept., Rensselaer Polytechnic Institute, Troy, NY, USA, personal 
communication, 2005. 
11 Q. Ji, ECSE Dept., Rensselaer Polytechnic Institute, Troy, NY, USA, personal 
communication, 2005. 
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Ideally the structure-indicator function should be estimated for each image, or at the very 

least, for a representative image or group of images from a particular application. It 

remains to be investigated in future research on how sensitive the resulting (near-) 

optimal segmentations are to changes in the distribution of the local structure-indicator 

function values. 

5.4.11 Post Hoc Validation12 

For routine use of this application, post hoc validations need to be performed on the 

resulting (near-) optimal segmentations. In other words, improvements in segmentation 

quality must be validated in terms of its relationship to improvements in agreement with 

ground truth for the specific application.  Other criteria of importance to the application 

beyond pixel-by-pixel agreement can be included in the validation process, such as 

accuracy of branch point detection, or even the accuracy of extracted structural 

measurements. This essentially makes sure that observed high correlation between 

segmentation-quality-improvements and ground-truth-agreement-improvements in this 

work holds for new applications in order for this method to be adapted for routine use in 

those applications. 

5.5 Conclusions 

The presented experimental results have demonstrated the practicality of 

automatically tuning complex segmentation algorithms, using automatic segmentation 

quality assessment and global optimization, guided by the MDL principle. The proposed 

approach can greatly simplify the external interface of segmentation software packages, 

enable adaptation across large image batches, and reduce the need for expensive 

technical support.  

For segmentation algorithm users, the proposed parameter selection method enables 

them use these algorithms without knowledge of the underlying algorithms. It also 

reveals the limitations of the segmentation algorithms. Therefore, it allows segmentation 

algorithm users to objectively compare between segmentation algorithms for their 

                                                 
12 W. Shain, Wadsworth Center, NYS Dept. of Health, Albany, USA, personal 
communication, 2005. 
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specific applications. This is a step forward than comparing segmentation results of 

segmentation algorithms obtained using default settings. Instead, the comparison will be 

performed on the best-possible result obtainable by each segmentation algorithm given 

the limitation in computational time. Once the limit on accuracy is reached, 

segmentation errors beyond acceptable rates then justify investing tedious efforts for 

conducting the subjective manual segmentation for certain applications (e.g., [154]). 

For image analysis systems that segments the structures of interest and extract 

morphometrics based on the segmented structures, improved segmentation accuracy 

directly translates into improved accuracy of the morphometrics. Obtaining 

morphometrics quickly and objectively are the reasons why segmentation algorithms are 

used in image-based biomedical studies in the first place. The proposed parameter 

selection method frees the users from manual hand-tuning of segmentation algorithm 

settings that does not guarantee increased accuracy of extracted-morphometrics.  
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