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ABSTRACT

In this paper, we extend our proposed FGA-FEC coding scheme,
a generalized MD-FEC method, to wireless networks. To pro-
tect the encoded scalable video bitstream over a lossy channel
and facilitate content adaptation at intermediate nodes, we use
product codes based on BCH/CRC codes as row codes and
RS codes as column codes. We give a fast algorithm to opti-
mize the product codes within several iterations from a near
optimal point. Simulations show good performance in both
content adaptation and protection.

Index Terms— Scalable, content adaptation, source chan-
nel coding, wireless

1. INTRODUCTION

Simultaneously streaming video to heterogeneous devices is
a challenging problem, since different users may have dif-
ferent video frame-rate, resolution, and quality preferences,
as well as computational and connection-link capabilities. In
[1], we proposed a fine grain adaptive forward-error correc-
tion (FGA-FEC) coding scheme for scalable video streaming,
that can achieve efficient and precise adaptation of the en-
coded bitstream (adapting both the video and the error con-
trol codes) to satisfy heterogeneous users without complex
transcoding at intermediate overlay nodes.

For fading channels, product channel coding [2] is proved
to be an efficient error protection method for scalable end-
to-end image transmission. Within packets, product codes
use the concatenation of a rate compatible punctured con-
volutional code (RCPC) and an error detecting cyclic redun-
dancy check (CRC) code as the row code. Across packets,
RS codes are used as column codes. Sachset al [3] intro-
duced a multiple-description product code which aims at op-
timally generating multiple, equally-important wavelet image
descriptions.

None of the papers consider the simultaneous adaptation
of product codes and image or video data for multiple het-
erogeneous users. Compared to image coding, scalable video
has more degrees of adaptation, and the users’ requirements
are also more diverse. A scalable video bitstream has three
basic types of scalability: temporal (frame-rate), spatial (res-
olution), and SNR (quality) scalability. Bitstream subsets cor-
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responding to lower frame-rate/resolution/qualityof thevideo
are embedded in bitstreams corresponding to higher frame-
rate/resolution/quality. Different sub-bitstreams can be ex-
tracted in a simple manner without transcoding, to readily
accommodate a variety of users considering their video pref-
erences and connection bandwidth. Therefore, to protect scal-
able video for diverse users over error-prone channels, we
should consider not only the protection scheme, but also the
feasibility of bitstream and error-control code adaptation. In
this paper, we generalize the FGA-FEC scheme [1] for both
protection and adaptation of this kind of highly scalable bit-
stream over wireless networks. We attempt to show that FGA-
FEC plus our scalable coder MC-EZBC fits in such scenar-
ios and successfully generalizes them to spatial, temporaland
SNR scalability for heterogeneous video delivery over wire-
less networks.

In Section 2, we describe the details of our method. Sim-
ulated and experimental results are given in Section 3.

2. FGA-FEC OVER WIRELESS CHANNEL
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Fig. 1. FGA-FEC encoding of one GOP. Here, FEC is added
vertically at block level and each horizontal row of blocks is
packetized into one network packet.

Our FGA-FEC encoding method (Fig. 1) extends MD-
FEC [4] by adding scalability (adaptation) features. Givena
GOP of scalable-coded video bitstream organized from MSB
(R0) to LSB (RN ), shown at the top in Fig. 1, suppose we
want to encode this GOP intoN descriptions, we first run an
optimal bit allocation scheme and divide the bitstream into
N sectionsSi, (i ∈ [1, N ]), marked with source-rate break
pointsR0, R1, R2, ..., RN , whereR0 ≤ R1 ≤ R2 ≤ ... ≤



RN andR0 = 0. SectionSi (i ∈ [1, N ]) is further split into
equal size subsections with each subsectioni blocks. These
subsections are encoded by an RS(N, i) code vertically at
block level to generate parity blocks. Since each block col-
umn is independently coded, at intermediate node, we can
adapt the bitstream by easily removing related columns and/or
dropping descriptions [1, 5], both source data and parity bits,
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Fig. 2. Generalized FGA-FEC with product codes

For a wireless network, after FGA-FEC encoding, we fur-
ther encode each description using a BCH code with CRC
error detection to protect it from bit errors as shown at Fig.
2. We choose systematic BCH over RCPC based on its sim-
plicity in decoding/encoding, as needed for intermediate node
adaptation. FGA-FEC can encode and adapt the product codes
based on both channel conditions and user video preference,
as well as user predefined adaptation order. Here,adaptation
order is the user’s chosen order to adapt quality, frame rate
and resolution, as needed. A user can chose to adapt down-
ward the three factors in any particular order.

Suppose a user’s video preference is to view a video at
Lt temporal layer,Ls spatial layer and PSNR≥ γ′ dB, and
the user’s minimum tolerable bitstream is atLt min tempo-
ral layer,Ls min spatial layer and PSNR≥ γ dB, γ′ ≥ γ.
Therefore, the user’s video request ranges from{Lt, Ls, γ

′}
to {Ltmin, Ls min, γ}. Along the user’s adaptation order, the
server or intermediate nodes need to find the best possible
video for this user within its requested bitstream range in re-
sponse to available bandwidth.

The product code optimization problem is to find a con-
catenated column RS code assignmentcc and row BCH code
assignmentcr from a set of RS codesCRS and BCH codes
CBCH , such that the end-to-end distortion is minimized and
the corresponding PSNR≥ γ dB.

cc, cr = argmin
cc∈CRS, cr∈CBCH

E[D|CRS , CBCH , CCRC ], (1)

subject to:

Rs + RRS + RCRC + RBCH ≤ B,

whereCCRC is the CRC code set;Rs is the source rate,RRS

is the rate allocated to RS parity bits, andRCRC (RBCH) are
the rates allocated to CRC (BCH) check bits. Here,B denotes
the maximum available channel bitrate. We will use a fixed
32 bit CRC code in this paper, hence,RCRC is a constant.

Given a BCH (n, k, t) codeword, number of bit errors larger
thant in the codeword cannot be corrected, the probability of
decoding error is

PBCH(E) =

n
∑

j=t+1

(

n

j

)

p
j
b(1 − pb)

n−j , (2)

wherepb is the channel bit-error rate. Decoding failures
in the row codes are treated as erasures when decoding the
column RS codes. Givenpb, and the probability of a packet
being dropped due to congestion/route disruption ispdrop, the
probability of a packet erasurep after BCH decoding is ap-
proximately:

p = pdrop + (1 − pdrop) × PBCH(E). (3)

After assigning a BCH code and a CRC code, the avail-
able bandwidth for RS codes and video data becomesB −
RCRC − RBCH . We need to optimize the assignment of col-
umn RS codes under this rate constraint. The goal is to find
the bitrate partitionR = {R1, R2, ..., RN} in Fig. 2, which
minimizes the end-to-end mean distortionE[D(R)], and the
corresponding PSNR≥ γ dB. Please note that at every adap-
tation level, we need to use differentD(R) curves for the RS
code optimization, an example is shown at Fig. 3.
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Fig. 3. D(R) curves at various adaptation levels.

Optimal column code assignment at a certain given BCH
code and CRC code is a constrained optimization problem
and can be solved by using Lagrange multiplier method [4, 5].
Then, the optimal product code could be achieved by exhaus-
tively searching over all possible BCH codes along the adap-
tation order. At a certain adaptation level, assign BCH code,
updateRs +RRS = B −RCRC −RBCH , optimize RS code
(this is called one iteration), until exhaust all possible BCH
codes. We propose a fast search algorithm which can find the
product code assignment within several iterations.

2.2. Fast BCH code optimization

From (3), we know that BCH decoding error contributes to
packet loss probability. At a certain BER, stronger code would
result in a lower probability of decoding error, thus reduce
the probability of packet erasure. Also allocating more band-
width to BCH code would result in less bandwidth allocated



to source and RS code, hence higher distortion. Therefore,
we can find the optimal point by leveraging the two factors.

We tested via exhaustive search over videosForeman (CIF,
18 GOPs),Mobile (SIF, 8 GOPs) andFootball (SIF, 7 GOPs)
at various BER, available bandwidth, and number of descrip-
tions. Fig. 4 shows an example in one of these tests. The task
is to protect an MC-EZBC encodedForeman CIF sequence,
GOP #7. Here,N = 64, B = 980Kbps, pdrop = 0.05,
pb = 2 × 10−3, 1 × 10−3, 5 × 10−4 and1 × 10−4, respec-
tively. Fig. 4(a) shows the probability of successfully decod-
ing these BCH(n, k, t) codes at given BERs. Fig. 4(b) shows
the zoomed corresponding optimized PSNR vs.t. Table 1
shows the optimization results of this test.
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Fig. 4. (a) probability of successful BCH(n, k, t) decoding at
various channel BER vs.t; (b) Average PSNR of video vs.t

BER E[D](PSNR) BCH(n, k, t)

0 39.63 none
1 × 10−4 39.59 BCH(8191,8125,5)
5 × 10−4 39.54 BCH(8191,8034,12)
1 × 10−3 39.49 BCH(8191,7956,18)
2 × 10−3 39.40 BCH(8191,7800,30)

Table 1. The results of optimal assignment at different BER

Our key observation is that the points near the knee of Fig.
4(a) are near optimal points in Fig. 4(b). Therefore we can
pick up a starting pointt from these knee points and locally
search to find the optimization result. Since the expected dis-
tortion E[D] curve is concave around the optimal point, we
can fist test three points(t− 1, t, t+ 1), find the search direc-
tion of t. After that, we progressively allocate bandwidth to
BCH codes along the search direction, and then optimize the
column RS codes at each BCH code assignment, until find the
best possible point.

We use a threshold method to choose the starting point.
We pick a value of the thresholdε, and test the probability of
correctly decoding a BCH(n, k, t) code,PBCH(C), at a cer-
tain BER withε, wherePBCH(C) = 1 − PBCH(E). The
smallest pointt with PBCH(C) > ε is the initial point. Obvi-
ously, different thresholdε corresponds to different optimiza-
tion performance in terms of number of iterations to reach the

optimal point. Simulations show thatε = 0.999 is a good
starting point. Experiments show that good convergence is
obtained with just three to five iterations on average. Formula
(2) used in Fig. 4(a) can be stored in a small table. Algorithm
1 summaries our product code optimization method.

Algorithm 1 : Product code assignment optimization
1 Pick start pointt, such thatPBCH(C) > ε;
2 Assign BCH(n,k,t) code;
3 Calculatep as (3);
4 Optimize RS codest − 1, t, t + 1, calculate

E[D]t−1, E[D]t, andE[D]t+1;
5 If E[D]t ≤min(E[D]t−1, E[D]t+1), go to Step 9;
6 If E[D]t−1 ≤ min(E[D]t, E[D]t+1), search

lower t, go to Step 8;
7 If E[D]t+1 ≤ min(E[D]t−1, E[D]t), search highert;
8 Iterate ont a few steps;
9 If PSNR≥ γ, solution found,Stop, otherwise, move

down one adaptation level following user adaptation order.
If adaptation level exhausted,Stop, no video is sent.
Otherwise, go to Step 4;

While full Lagrange-based optimization is performed at
the server, only FGA-FEC adaptation [1, 5] consisting of short-
ening and/or dropping packets is done at intermediate nodes.

3. SIMULATIONS AND EXPERIMENTS

We performed simulations and experiments using test sequences,
Foreman CIF, 288 frames,Football SIF, 112 frames andMo-
bile SIF, 128 frames. All sequences are at 30 fps, 16 frames/GOP.
The scalable source coder is MC-EZBC. BCH codes are ap-
plied to both MD-FEC and FGA-FEC. We present averages
over at least ten runs.

3.1. FGA-FEC vs. MD-FEC in SNR adaptation

We compare FGA-FEC vs. MD-FEC in wireless network [3]
to adapt to different bandwidth, by sending the encodedFore-
man sequence to the receiver with bandwidth ranging from
200 Kbps to 1000 Kbps as shown in Fig. 5, where node1 is
the sender, node2 is an intermediate node that can perform bit-
stream adaptation (detailed adaptation algorithm is in [5]) and
BCH decoding/re-coding, and node3 is the receiver. The BER
between node2 and node3 are set to1 × 10−4, pdrop = 0.05
at node2. There is no congestion between node1 and node2.� � � �   � � � � ¡ � � � � ¢£ ¤¥ ¦ § ¨ ¦ © ¥ ¦ ª «© ¬ ¦ ª­ ¦ ¥ ¤® ¬¦© § ¥ ¦ ¯ ¦ ° ¦ ¤± ¦ ª

Fig. 5. The topology of simulations and experiments



We first encode each GOP ofForeman to 64 descriptions
with pdrop = 0.1, pb = 1×10−4, B = 1 Mbps and then send
over the channel. Fig. 6 shows the observed video quality
(PSNR) at different available bandwidths. Clearly, FGA-FEC
has much better performance in response to channel condi-
tion. This is because MD-FEC responds to limited bandwidth
between nodes 2 and 3 by only dropping packets, hence some
useless data is sent within remaining packets, because theyare
not matched to the lower bitrate. On the other hand, FGA-
FEC adaptation is performed actively by both packet short-
ening and packet drop, and so avoid transmission of useless
date, thus saving bandwidth for useful data and hence has bet-
ter adaptation performance.
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3.2. FGA-FEC in frame-rate and resolution adaptation

In addition to SNR adaptation, FGA-FEC can do spatial and
temporal adaptation as well. We set up a channel between
node2 and node3 to test the adaptation capability of FGA-
FEC and MD-FEC, where the channel BER and bandwidth
changes over time as in Fig. 7.
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Again, we sent the Section 3.1 encoded sequence to the
receiver. At the bad condition (1 × 10−4 /750 Kbps), both
FGA-FEC and MD-FEC use SNR adaptation. At the very
bad channel state (1×10−3 /300 Kbps), FGA-FEC adaptation
first does SNR adaptation, however, since this alone cannot
satisfy the assumed user requirement, our algorithm further
does frame-rate adaptation by 2 (Fig. 8(a)) and/or resolution
adaptation by2 × 2 (Fig.8(b)), implemented by packet short-
ening at a fine-grained block level (block size is 1 byte). Since

MD-FEC only drops packets in this very bad condition, even
the video base layer cannot go through the channel so that no
video is decoded for the last two GOPs.
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Fig. 8. Adaptation to different network conditions by frame
rate and resolution.

4. CONCLUSION

In this paper, we generalize FGA-FEC for embedded video
bitstream protection and content adaptation over wirelesschan-
nels and propose a fast search algorithm to assign the optimal
product codes. Simulations show the efficiency for simulta-
neous content protection and adaptation.
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