Large-Scale Network Simulation Techniques:
Examples of TCP and OSPF Models

Garrett R. Yaun, Harshad L. Bhutada, Christopher D. Carothers, Murat Yuksel, Shivkumar Kalyanaraman
Rensselaer Polytechnic Ingtitute, Troy, NY

yaung@s. r pi . edu, bhutah@ pi . edu,

chrisc@s.rpi.edu,

yuksem@s. r pi . edu,

shi vkuma@cse. rpi . edu

Abstract— Simulation of large-scale networks remains to
be a challenge, although various network simulators are
in place. In this paper, we identify fundamental issues
for large-scale network simulation, and propose new tech-
niques that address them. First, we exploit optimistic par-
allel simulation techniques to enable fast execution on in-
expensive hyper-threaded, multiprocessor systems. Second,
we provide a compact, light-weight implementation frame-
work that greatly reduces the amount of state required to
simulate large-scale network models. Based on the proposed
techniques, we provide sample simulation models for two
networking protocols: TCP and OSPF. We implement these
models in a simulation environment ROSSNet, which is an
extension to the previously developed optimistic simulator
ROSS. We perform validation experiments for TCP and
OSPF and present performance results of our techniques by
simulating OSPF and TCP on a large and realistic topol-
ogy, such as AT&T’s US network based on Rocketfuel data.
The end result of these innovationsis that we are able to sim-
ulate million node network topologies using commercial off-
the-shelf hyper-threaded multiprocessor systems costing less
than $7000 USD, and consumes less than 1.4 GB of RAM in
total.

Keywords—L arge-Scale Network Simulation, TCP, OSPF,
Optimistic synchronization protocol.

I. INTRODUCTION

There is a deliberate need for large-scale simulation of
various networking protocols in order to understand their
dynamics. For example, there are several issues in rout-
ing that needs to be understood, such as cascading fail-
ures, inter/intra-domain routing stability, and interactions
of policy-based routing with BGP features. One needs
to perform large-scale simulations of inter-domain rout-
ing protocols along with various traffic engineering exten-
sions, in order to see their dynamics cause or effect various
performance problems in the current Internet.

Additionally, simulation of multi-cast protocols consist-
ing of 10,000 to even 100,000 nodes has not been demon-
strated despite the fact there are many multi-cast protocols

This research is supported by the DARPA’s Network Modeling and
Simulation program, contract #F30602-00-2-0537, and NSF CAREER
Award CCR-0133488.

(e.g. [1], [2], [3]) that need validation of their scalability
by extensive simulation. Likewise, in order to fully under-
stand the dynamics of new transport protocols there is sig-
nificant need for large-scale network simulations, particu-
larly, protocols on large sensor networks and large peer-to-
peer networks have vast potential for scalability problems.

We address this need using two techniques. First, we
leverage an optimistic synchronization protocol to enable
efficient execution on a hyper-threaded, multiprocessor
system. Here, simulation objects, such as a host or router,
are allowed to process events unsynchronized without re-
gard for the underlying topology or timestamp distribu-
tion. If an out-of-order event computation is detected, the
simulation object is rolled back and re-execute in the cor-
rect timestamp order. Unlike previous optimistic proto-
cols, such as Time Warp [4], the rollback mechanism is
realized using reverse computation. Here, events are liter-
ally allowed to execute backward to undo the computation.
This approach greatly reduces the amount of state required
to support optimistic event processing as well as increases
the performance [5].

Next, we devised an extremely light-weight model im-
plementation framework called ROSSNet that is specif-
ically design for large-scale network simulation. If
we examine state-of-the-art frameworks, such as Ns[6],
SSFNet [7], DaSSF [8] and PDNS [9], we find they are
overly detailed almost to the point of being full-protocol
network emulators. For example, these frameworks pro-
vide support for a single end-host to have multiple inter-
faces, a full UNIX sockets API for connecting to real ap-
plications, and other details that we believe are not rele-
vant for large-scale simulation studies. The end result is
that these systems require almost super-computer amounts
of memory and processing power to execute large-scale
models.

In contrast, our framework poses the question: what do
you really need to model in order to answer a particular
protocol dynamics question in a large-scale scenario. For
example, are all layers in a protocol stack really necessary?
Can a host just be a TCP sender or just a TCP receiver?
Does the simulated host really need to be both? By asking
these kinds of questions, our framework enables a single
TCP connection state to be realized in just 320 bytes total

(both sender and receiver) and 64 bytes per each packet-
event.

The end result of these innovations is that we are able to
simulate million node network topologies using commer-
cial off-the-shelf multiprocessor systems costing less than
$7000 USD, and consumes less than 1.4 GB of RAM in
total.

The remainder of this article is organized as follows:
Section I, provides a description of our simulation frame-
work, ROSSNet, and parallel simulation engine, ROSS.
Sections Il and 1V describe the implmentation of our TCP
and OSPF models respectively. The results from our val-
idation study for both models are presented in Section V
followed a performance study in Section VI. Section VII
describes related work and Section VIII presents the con-
clusions from this research and future work.

Il. ROSS & ROSSNET

ROSS is an acronym for Rensselaer’s Optimistic Sim-
ulation System. It is a parallel discrete-event simulator
that executes on shared-memory multiprocessor systems.
ROSS is geared for running large-scale simulation mod-
els. Here, the optimistic simulator consists of a collec-
tion of logical processes or LPs, each modeling a distinct
component of the system being modeled, such as a host
or router. LPs communicate by exchanging timestamped
event messages. Like most existing parallel/distributed
simulation protocols, we assume different LPs may not
share state variables that are modified during the simula-
tion. The synchronization mechanism must ensure that
each LP processes events in timestamp order in order
to prevent events in the simulated future from affecting
those in the past. The Time Warp [4] mechanism uses a
detection-and-recovery protocol to synchronize the com-
putation. For the recovery, we employ a technique called
reverse computation.

A. Reverse Computation

Under reverse computation, the roll back mechanism in
the optimistic simulator is realized not by classic state-
saving, but by literally allowing to the greatest possible
extent events to be reverse. Thus, as models are developed
for parallel execution, both the forward and reverse execu-
tion code must be written.

The key property that Reverse Computation exploits is
that a majority of the operations that modify the state vari-
ables are “constructive” in nature. That is, the undo opera-
tion for such operations requires no history. Only the most
current values of the variables are required to undo the op-
eration. For example, operators such as ++, ——, + =,
— =, = and / = belong to this category. Note, that
the « = and / = operators require special treatment in the
case of multiply or divide by zero, and overflow/underflow
conditions. More complex operations such as circular shift

(swap being a special case), and certain classes of random
number generation also belong here [5].

Operations of the form a = b, modulo and bit-wise com-
putations that result in the loss of data, are termed to be de-
structive. Typically these operations can only be restored
using conventional state-saving techniques. However, we
observe that many of these destructive operations are a
consequence of the arrival of data contained within the
event being processed. For example, in our TCP model,
the last-sent time records the time stamp of the last packet
forwarded on a router LP. We use the swap operation to
make this operation reversible.

B. ROSS Implementation

The ROSS API is kept very simple and lean. Devel-
oped in ANSI C, the API is based on logical process or
LP model. Here, an LP represents a physical object in
the model such as a host or router in the case of network
simulation. To model packets traveling through the net-
work, LPs will scheduled time stamped events messages.
Services are provided to allocate and schedule messages
between LPs. A random number generator library is pro-
vided based on L’Ecuyer’s Combined Linear Congruen-
tial Generator[10]. Each LP by default is given a single
seed set. All memory is directly managed by the sim-
ulation engine. Fossil collection and global virtual time
computations are driven by the availability of free event
memory. Their frequencies are controlled with tuning pa-
rameters and start-up memory allocation. The event-list
priority queue can be configured to be either a Calendar
Queue[11], Splay Tree [12] or a binary heap.

To reduce fossil collection overheads, ROSS introduces
kernel processes (KPs). A KP contains the statistics and
process event-list for an collection of LPs. With KPs there
are fewer event-list to search through during fossil col-
lection, thereby improving performance, particularly when
the number of LPs is large. For the experiments presented
here we typically allocate 4 to 8 KPs irrespective of the
number of LPs. KPs are similar to DaSSF timelines [8]
and USSF cluster [13].

For more information on ROSS and Reverse Compu-
tation we refer the interested reader to the ROSS User’s
Guide [14].

C. ROSSNet

By using ROSS as the simulation kernel, we are cur-
rently developing a network simulator ROSSNet. Unlike
conventional network simulators (e.g. Ns [6], JavaSim
[15]) ROSSNet uses the flat programming environment of
C rather than an object-oriented paradigm and leverages
pointers to functions in the place of “virtual methods”.
Here, developers set function pointers for both end hosts
and routers alike to obtain the desired level of functional-
ity. If a host is to behave like a TCP connection, it will set

ROSSNet

Simulation
Shell

Simulation
Kernel

Memory
Manager

Event —
Queue Optimistic
Event

Processor

Fig. 1. Structure of ROSSNet.

the event processing function for TCP, likewise if a router
is forwarding packets based on either a static routing ta-
ble or OSPF, it will set its function pointer appropriately.
Additionally, ROSSNet attempts to combine or reduce the
event population and total number of events processed. For
example, in router model, both the forwarding plane and
control plane functionality are all realized within the same
logical process (LP). Thus, event processing on the control
plane side, will immediately effect the forwarding plane
without the need for explicit events to be passed between
the two planes. ROSSNet will also make use of global data
structures. For example, in OSPF, each router maintains a
map of the whole network. In simulation, this is not nec-
essary. One can simply keep a global data structure in the
simulation such that all the routers can reach it. This way
redundant usage of memory is avoided. Last, ROSSNet
eliminates unnecessary layers of the protocol stack. For
example, if one is interested in simulating behavior of a
transport layer protocol, lower layers could be simplified
such that they require less resources. This was done in our
TCP model configuration.

Figurel shows the structure of ROSSNet. ROSSNet ba-
sically constructs a shell on top of the kernel ROSS. ROSS
handles issues related to discrete-event simulation such
as maintains event queue, processes events optimistically,
manages memory. ROSSNet provides basic components
for network simulation such as node, link, FIFO queue.
On top of these basic networking components, ROSSNet
implements protocols such as OSPF and TCP. We are plan-
ning to publicize first version of ROSSNet in Spring 2003.
In this paper, we only provide our models for OSPF and
TCP simulation.

I1l. ROSSNET: TCP SIMULATION COMPONENTS
A. TCP Overview

The Internet relies on the TCP/IP protocol suite com-
bined with router mechanisms to perform the necessary
traffic management functions. TCP provides reliable
transport using a end-to-end window-based control strat-
egy[16]. TCP design is guided by the “end-to-end” princi-
ple which suggests that ”functions placed at the lower lev-
els may be redundant or of little value when compared to
the cost of providing them at the lower level” As a conse-
quence, TCP provides several critical functions (reliabil-
ity, congestion control, session/connection management)
because layer four is where these functions can be com-
pletely and correctly implemented.

While TCP provides multiplexing/de-multiplexing and
error detection using means similar to UDP (e.g.: port
numbers, checksum), one fundamental difference between
them lies is the fact that TCP is connection oriented and
reliable. The connection oriented nature of TCP implies
that before a host can start sending data to another host, it
has to first setup a connection using a 3-way reliable hand-
shaking mechanism.

The functions of reliability and congestion control are
coupled in TCP. The reliability process in TCP works as
follows: When TCP sends the segment, it maintains a
timer and waits for the receiver to send a acknowledg-
ment on the receipt of the packet. If an acknowledg-
ment is not received at the sender before its timer expires
(i.e. a timeout event), the segment is re-transmitted. An-
other way in which TCP can detect losses during trans-
mission is through duplicate acknowledgments. Duplicate
acknowledgments arise due to the cumulative acknowledg-
ment mechanism of TCP wherein if segments are received
out of order, TCP sends a acknowledgment for the next
byte of data that it is expecting. Duplicate acknowledg-
ments refer to those segments that re-acknowledge a seg-
ment for which the sender has already received an earlier
acknowledgment. If the TCP sender receives three dupli-
cate acknowledgments for the same data, it assumes that
a packet loss has occurred. In this case the sender now
re-transmits the missing segment without waiting for its
timer to expire. This mode of loss recovery is called "fast
re-transmit”.

TCP flow and congestion control mechanisms work as
follows: TCP uses a window that limits the number of
packets in flight, (i.e. unacknowledged). TCP congestion
control works by modulating this window as a function of
the congestion that it estimates. TCP starts with a win-
dow size of one segment. As the source receives acknowl-
edgments, it increase the window size by one segment per
acknowledgment received (”slow start”), until a packet is
lost, or the receiver window (flow control) limit is hit.
After this event it decreases its window by a multiplica-

tive factor (one half) and uses the variable ss_t hr esh
to denote its current estimate of the network bandwidth-
delay product. Beyond ss_t hr esh the window size fol-
lows a linear increase. This procedure of additive in-
crease/multiplicative decrease (AIMD) allows TCP to op-
erate in an efficient and fair manner[17].

The various flavors of TCP (TCP Tahoe, Reno, SACK)
differ primarily in the details of the congestion control al-
gorithms, though TCP SACK also proposes an efficient se-
lective re-transmit procedure for reliability. In TCP Tahoe,
when a packet is lost, it is detected through the fast re-
transmit procedure, but the window is set to a value of
one and TCP initiates slow start after this. TCP Reno at-
tempts to use the stream of duplicate acknowledgments to
infer the correct delivery of future segments, especially
for the case of occasional packet loss. It is designed to
offer 1/2 RTT of quiet time, followed by transmission of
new packets until the acknowledgment for the original lost
packet arrives. Unfortunately Reno often times out when
a burst of packets in a window are lost. TCP NewReno
fixes this problem by limiting TCP’s window reduction to
at most during a single congestion epoch. TCP SACK en-
hances NewReno by adding a selective re-transmit proce-
dure where the source can pinpoint blocks of missing data
at receivers and can optimize its re-transmission. All ver-
sions of TCP would timeout if the window sizes are small
(e.g.: small files) and the transfer encounters a packet loss.
All versions of TCP implement Jacobson’s RTT estima-
tion algorithm (that sets the timeout to the mean RTT plus
four times the mean deviation of RTT, rounded up to the
nearest multiple of the timer-granularity (e.g.: 500 ms)). A
comparative simulation analysis of these versions of TCP
was done by Fall and Floyd[18].

B. TCP Optimizations
B.1 TCP Model Data Structures

Our implementation follows the TCP Tahoe specifica-
tion. There are three main data structures we used. The
message, which is the data packet, is sent from host to host
via the forwarding plane. The routers LP state maintains
the queuing information along with the dropped statistics.
Finally the host LP’s data structure keeps track of the trans-
ferring of data.

A message contains the source and destination address.
These addresses are used for forwarding. The message
also has the length of the data being transferred which is
used to calculate the transfer times at the routers. The ac-
knowledgment number is also included for the sender to
observe which packets have been received. The sequence
number is another variable which indicates which chuck of
data is being transferred.

Now, in our model the actual data transferred is irrele-
vant and therefore it was not modeled. However in the case
that the application was running on top of TCP, such as the

Border Gateway Protocol (BGP), such data is required for
the correctness of the simulation. We are currently exam-
ining solution to this issue.

Now, the router model’s state is kept small by exploiting
the fact that most of the information is read-only and does
not change for the static routing scenarios described in this
paper. Inside each router, only queuing information is kept
along with a dropped count statistics.

There is a global adjacency list which contains link
information. This information is used by the All-Pairs-
Shortest-Path algorithm to generate the set global routing
tables (one or each router). Each table is initialized dur-
ing simulation setup and consists only of the next hop/port
number for all routers in the network.

Given the port number the router can directly lookup of
the next hop address in its entry of the adjacency list. The
adjacency list has an entry for each router and each entry
contains all the adjacencies for that router. Along with
the router neighbor’s address, it contains the speed, buffer
size, and link delay for that neighbor.

The host has the same data structures for both the sender
and receiver sides of the TCP connection. There is also a
global adjacency list for the host, however there is only
one adjacency per host. In our model, a host is not multi-
homed and can only be connected to one router. There is
also a read-only global array which contains the sender
or receiver host status, and size of the network transfer
(which is usually a file of infinite size). The maximum
segment size and the advertised window size were also
implemented as global variables to cut down on memory
requirements.

The receiver contains a “next expected sequence” vari-
able and a buffer for out of order sequence numbers. On
the sender side of a connection the following variables
are used to complete our TCP model implementation: the
round trip timeout (Rto), the measured round trip time
(Rtt), the sequence number that is being use to measure
the Rtt, the next sequence number, the unacknowledged
packet sequence number, the congestion control window
(cnwd), the slow-start threshold, and the duplicate ac-
knowledgment count.

For all experiments reported here, the Rto is initialized
to 3 second at the beginning of a transfer, along with the
slow start threshold being initialized to 65,536. The max-
imum congestion window size is set to 32 packets. The
host, in addition to the variables needed for TCP, has vari-
ables for statistic collection. Each host keeps track of
the number of packets sent and received, the number of
timeouts that occur and its measurement of the transfer’s
throughput.

B.2 Compressing Router State

As previously indicated, our router design at this point
is assumed to have a fixed, static routes. By leveraging this

assumption, we set out to reduce the router table state.

Now, a problem encountered with real Internet topolo-
gies, such as the AT&T network, is they tend not to have an
well defined structure for the purpose of imposing a space-
efficient address mapping scheme. Ideally, one would like
to impose some hierarchical address mapping scheme on
the topology for the purposes of compressing the routing
tables. From the model point-of-view, such a compression
will not lead to an incorrect simulation of the network so
long as flow paths remain the same from the real network
to the simulated network. Currently, we are implementing
such a scheme.

Our implementation of the routing table just contains
the next hop’s port number. Here, the maximum number of
ports per routers is 67. Therefore the routing table could
be represented in a byte per entry instead of an full inte-
ger size address. In our simulation we have an entry in the
routing table for each router. If we had to have an entry
for each host, the routing tables would be extremely large.
The hosts were addressed in such a way that the router
they are connected to can be inferred and therefore a rout-
ing table of only routers is acceptable. In the case that it
cannot be inferred, we could have a global table of hosts
and the routers that they are connected to. This one table is
a lot smaller than having a routing table in each router with
every host. We note that some topologies are such that a
routing table is not needed, such as a hypercube. In these
topologies the next hop can be inferred based on current
router and the destination.

Last, we assume that routers implement a drop-tail
queuing policy. Because of this, routers need not keep a
queue of packets to be sent. Instead, the routers schedule
packets based on the service rate (i.e., bytes/seconds) and
the timestamp of last sent packet. As an example of how
this works, let assume we have a buffer size of 2 packets,
a service time of 2.0 time units per packet and 4 packets
arrive at the following times: 1.0, 2.0, 3.0 and 3.0. Clearly,
the last packet will be dropped, but lets see how we can
implement this without queuing them. If we keep track
of the last send time, we see that the packet at 1.0 will be
scheduled at 3.0, following 5.0 and 7.0. Thus, when the
last packet arrives, the last sent time is 7.0. If we subtract
arrival time of last packet, 3.0 from the last sent time of
7.0, this says there are 4.0 time units worth of data to be
sent, which dividing by the service time, yields there are
currently 2 packets in the queue. Thus, this packet will be
dropped. We are currently examining how this approach
could be extended to other queuing policies as well as cor-
rect operation under dynamic routing scenarios.

We note that the router state optimizations made to our
TCP model may not apply to general purpose network
simulation, particularly highly detailed protocol emula-
tion models. It is unclear how much of our performance
gains (capacity and speed) are coming from this part of

the framework. Our experience suggests that this frame-
work yields tremendous gains even without these router
state optimizations.

IV. ROSSNET: OSPF SIMULATION COMPONENTS
A. OSPF Overview

Routing protocols in the Internet could be classified into
two main groups: link-state routing and distance-vector
routing. Typically in the current Internet, distance-vector
routing protocols (e.g. BGP) are used for inter-domain
routing (i.e. routing among Autonomous Systems (ASs)),
while link-state routing protocols (e.g. OSPF, 1S-1S) are
used for intra-domain routing.

As all the other link-state routing protocols, OSPF main-
tains a map of the network (which typically corresponds to
one AS in the Internet) at all routers. Each router collects
their local link information and floods the network with
that information so that all the routers have a global map
of the network.

In OSPF, routers send HELLO packets to their neigh-
bors to check whether they are up or down. HELLO
packets are sent periodically at every Hellolnterval. If the
neighbor does not respond after some period of time, then
it is assumed dead. This period of time is called as Router-
DeadlInterval, and is typically four times the Hellolnterval.

Each router maintains LSAs received from other
routers. Collection of these LSAs is called as Link-State
Database (LS-Database), which in fact shows the global
map of the network. The routers run Dijkstra’s shortest
path algorithm (could also some other Shortest Path First
(SPF) algorithms) to find the routes in the network.

When a link goes down or comes up, the routers de-
tects it by HELLO messages. Then, after updating their lo-
cal LS-Database, they flood an LS-Update message which
conveys the change to other routers. Normally, LS-Update
messages are sent when a change in the LS-Database oc-
curs. Such a change can happen either because of a local
link, or because of an LS-Update message received from
elsewhere.

Additional to those above, there is also LS-Refresh mes-
sages sent across the OSPF routers. Each OSPF router
floods its LS-Database other routers at every LSRefreshin-
terval, which is typically 45 minutes in the current Internet
ASs.

For scalability purposes, OSPF divides an AS into areas
and constructs a hierarchical routing among the areas. For
each area a corresponding Area Border Router (ABR) is
assigned. Additional to ABRs, there are Backbone Routers
which are the router nodes among which inter-area routing
takes place. Among ABRs and Backbone Routers, one
router is assigned as Boundary Router, which is responsi-
ble for routing to/from other ASs. All these assignments of
routers are typically done manually in the current Internet.

Multi-area routing in OSPF helps scalability. LSAs are
flooded only in the area, rather than the whole AS. ABRs
flood internal LSAs to other areas as Summary-LSAsS.
This scales flooding of LSAs. Also, routing among Back-
bone Routers happen based on address prefixes, which
scales routing tables.

More details about OSPF can be found in [19], [20].

B. OSPF Optimizations

We performed several optimizations to the OSPF part of
ROSSNet in order to scale the simulation. So far, we have
developed models for single-area OSPF simulation.

The OSPF messages can get fairly large (for example, in
case of Database Description packet-exchange and subse-
quent LS Updates in response to the LS Requests). These
long messages can be a big impediment in terms of scal-
ability. So, to keep the messages as small as possible, we
have used pointers, instead of the actual messages. The
router which creates the message, allocates the memory
and fills in the required information, and just sends across
the pointer. Depending upon the type of message, the
memory allocated is freed by the entity receiving the mes-
sage or the entity originating the message.

In OSPF, HELLO messages take the largest share of
event generation. In the simulators widely used, there is
generally one event to wake up the ”Interface” after ev-
ery HELLO Interval, and then one event to send the actual
HELLO message. This means that two events are required
to generate one HELLO message. In our simulator, in-
stead, we schedule just one event to wake up the router,
and then the router sends the HELLO messages with some
randomization out of every interface. This significantly
cuts down the number of events in the simulation.

The LS-Database takes up the largest share of memory,
which is stored on every single router. This is the biggest
limitation to the scalability (in terms of number of routers)
of OSPF simulation. The information required to compare
two LSAs, when an LS-Update is received, is stored in the
LS-Header. In practice, the link information is replicated
at every router and in every LSA. We simulate this by stor-
ing only a Link Information Table (LIT) that includes one
copy of each link in the topology. So, in our simulation, we
store only one copy of the link information (for each link
in the topology) globally as shared among all the routers,
instead of having a redundant separate copy for each. Be-
sides, we store the LS-Headers locally at each router, so
that routers are still able to individually age the LSAs and
refresh the self-generated LSAs periodically.

In the case of a link outage, the router connected to that
link detects it, and sends out the LS-Update, which con-
sists of the new LS-Header. In the simulation, we reflect
this link outage by updating LIT. So the routers receiving
the LS-Update can use LIT to run the Dijkstra’s algorithm,
and calculate its forwarding table. This works perfectly

fine for a single link outage before the network converges.

However, the problem with the above strategy arises
when there are multiple and frequent link outages or re-
coveries in the simulated scenario. When there are two si-
multaneous (or very close time-wise) link changes, nodes
in the network will see the various states of the network
depending on the arrival order of LS-Updates. For ex-
ample, assume there are two subsequent link outages that
happened for links A and B. It will such that some nodes
will hear outage of link A earlier than outage of link B,
and some other nodes will hear the other way around. So,
if there are multiple link changes within one convergence
time, then ways of handling the situation in the simulation
is more complicated.

We note here that our OSPF model lacks the reverse ex-
ecution code path to support optimistic parallel execution.
That functionality will be available in the very near future.
Consequently, all our OSPF results are based on sequential
model execution.

V. EXPERIMENTAL VALIDATIONS
A. TCP Validation

SSFNet [7] has a set of validation test which shows the
basic behavior of TCP. Because of space limitations, we
only show how ROSSNet’s TCP compares with SSFNet
for the Tahoe fast retransmission timeout behavior. This
test is configured with a server and a client TCP session
with a router in between. The bandwidth is 8 Mb/sec from
the server to the router with 5 ms delay and the client to
the router had a bandwidth of 800 kilobit per second with
a 100 ms delay. The server was transferring a file of 13,000
bytes.

As can be seen from Figures 2 and 3, our implementa-
tion with respect sequence number and congestion window
behavior performs very similar. The packet drop happens
at similar times and so does the fast retransmission.

B. OSPF Validation

In order to validate our OSPF simulation, we experi-
ment on a small topology as shown in Figure 4. There
are four routers numbered from 0 to 3, and four end-nodes
numbered from 4 to 7. Routers are shown as gray nodes
in the Figure 4. Links among the router are all 10Mbps in
capacity, while the links connecting routers to end-nodes
are all 1Mbps in capacity. In Figure 4, numbers written on
each link represents OSPF weight (or cost) for that link.
Also, numbers that are written at the beginning of each
arrow represents the local enumeration of the link at the
node. These enumerations are necessary for forwarding of
the packets.

We simulated a scenario where there are two TCP flows
in the shown network. One of the TCP flows starts at node
4 and ends at node 7. The other TCP flow starts at node 5
and ends at node 6.

x10° serv_tcpdump_0.out

9 T T R T H
~ ACKno g : H
O Piggy Packet SEQno ¢ :

Number (bytes mod 90000)
o
T
N Seeea
i

T,

05 1 15 2 25 3 35 4 45 5
Time (seconds) <10

x10° f1.tcpdump.out

9 T T = T =
~ ACKno E : £
O Piggy Packet SEQno e R

Number (bytes mod 90000)
o o
T T
L L

Ettn:ttm:j

05 1 15 2 25 3 35 4 45
Time (seconds)

Fig. 2. Comparison of SSFNet and ROSSNet TCP models
based on sequence number for TCP Tahoe fast retransmis-
sion behavior. Top panel is ROSSNet and bottom panel is
SSFNEet.

We simulated a total simulation time of 500 seconds. At
time 50, the bi-directional link (i.e. the two one-way links)
in between routers 0 and 2 goes down. Later at time 250,
it comes back up. We observed the routing tables at the
routers and behavior of the two TCP flows.

Tablel shows observed routing tables! at the four router
nodes during the three stages of the simulation. A 255
means the next node is the self. Observe that router nodes
adjust themselves to the two link changes properly. We
also observed no change in the behavior of TCP flows, be-
cause their routes stay the same without getting affected
by the link changes.

"We did not include entries for end-nodes for simplification.

x10° serv_cwnd_0.out

N @
T T
I I

cwnd, rwnd & ssthresh (bytes)
w
T
Il

///
ez
- - o e . o]
s P i i
e
I
- L8 o . e e - . o]
0 L = L L L L L
0 1 2 4 5 6 7
Time (seconds) <10°
x10° fl.wnd_6_100.0ut
7 T T
= cwnd
o ssthresh
= _rwnd e
6 4
sk 4
g
£
£
Zar 4
Z
4
£
g
<
E
g3 -
g
g
H
g -
: P
e P
2~ ¢ - -
: -~
[-~
-~
. -~
-
z
- o e - 2L e e 6

4 5 6 7 8 9

Fig. 3. Comparison of SSFNet and ROSSNet TCP models
based on congestion window for TCP Tahoe fast retransmis-
sion behavior test. Top panel is ROSSNet and bottom panel
is SSFNet.

VI. PERFORMANCE RESULTS
A. Configuration

Our experiments were conducted on a dual Hyper-
Threaded Pentium-4 Xeon processor system running at 2.8
GHz. Hyper-threading is Intel’s name for a simultaneous
multithreaded (SMT) architecture [21]. SMT supports the
co-scheduling of many threads or processes to fill-up un-
used instruction slots in the pipeline caused by control or
data hazards. Because the system knows that there can be
no control or data hazards between threads, all threads or
processes that are ready to execute can be simultaneously
scheduled. In the case of threads that share data, mutual
exclusion is guarded by locks. Consequently, the under-
lying architecture need not know about shared variables

Simulation | Router 0 Router 1 Router 2 Router 3
Stage
Desti- | Next Desti- | Next Desti- | Next Desti- | Next
nation | Node nation | Node nation | Node nation | Node
0 255 0 0 0 2 0 1
0-50 1 0 1 255 1 0 1 0
2 2 2 1 2 255 2 0
3 1 3 0 3 1 3 255
Desti- | Next Desti- | Next Desti- | Next Desti- | Next
nation | Node nation | Node nation | Node nation | Node
0 255 0 0 0 0 0 1
50-250 1 0 1 255 1 0 1 0
2 1 2 1 2 255 2 0
3 1 3 0 3 1 3 255
Desti- | Next Desti- | Next Desti- | Next Desti- | Next
nation | Node nation | Node nation | Node nation | Node
0 255 0 0 0 2 0 1
250-500 1 0 1 255 1 0 1 0
2 2 2 1 2 255 2 0
3 1 3 0 3 1 3 255
TABLE

ROUTING TABLES FOR THREE STAGES OF THE SIMULATION FOR OSPF VALIDATION.

Fig. 4. Topology for experimenta validation of OSPF simula-
tion.

or how they are used at the program level. Additionally,
because the threads assigned to the same physical proces-
sor share the same cache, there is no additional hardware
needed to support a cache-coherency mechanism.

Intel’s Hyper-Threaded architecture supports two in-
struction streams per processor core [22]. From the OS

scheduling point-of-view, each physical processor appears
as if there are two distinct processors. Under this mode
of operation, an application must be threaded to take ad-
vantage of the additional instruction streams. The dual-
processor configuration behaves as if it was a quad proces-
sor system. Because of multiple instruction streams per
processor, we denote instruction stream (IS) count instead
of processor count in our performance study to avoid con-
fusing the issue between physical processor counts and vir-
tual processors or separate instruction streams.

The total amount of physical RAM is 6 GB. The operat-
ing system is Linux, version 2.4.18 configured with the 64
GB RAM patch. Here, each process or group of threads
(globally sharing data) is limited to a 32 bit address space,
where the upper 1 GB is reserved for the Linux kernel.
Thus, an application is limited to 3 GB for all code and
data (both heap and stack space and thread control data
structures).

For all experiments, each TCP connection maintain a
consistent configuration. The transfer size was infinite,
leading to the transfers running for the duration of the sim-
ulation. The maximum segment size was set to 960 bytes.
The total size of all headers was 40 bytes. The Initial se-
quence number was initialized to zero and the slow start
thresh was 65536.

All clients and servers were connected in the way that
the first half of hosts randomly connected to the second

half of hosts. There was a distinct client-server pair for
each TCP connection in the simulation. Because of the
random nature of connections, there was a high percentage
of “long-haul” links that result in a large the number of
remote events scheduled between threads.

Last, ROSS is configured with a binary heap for all TCP
experiments. However, we have recently implemented a
Splay Tree for event-list management and find it produces
a 50 to 100% performance improvement over the binary
heap. All OSPF experiments have ROSS configured with
the faster performing Splay Tree.

B. Synthetic Topology Experiments

The synthetic topography was fully connected at the top
and had 4 levels. A router at one level had N lower level
routers or hosts connected. The number of nodes was
equal to N* + N3 + N2 + N. N was varied between,
4, 8, 16, and 32. The nodes were numbered in such a way
that the next hop can be calculated based on the destination
at each hop.

The bandwidth, delay and buffer size for the synthetic
topology is as follows:

« 2.48 Gb/sec, a delay of 30 ms, and 3 MB buffer,

« 620 Mb/sec, a delay between 10 ms to 30 ms, and 750
KB buffer,

« 155 Mb/sec, a delay of 5 ms, 10ms and 30ms, and 200
KB buffer,

« 45 Mb/sec, a delay of 5 ms, and 60 KB buffer,

« 1.5 Mb/sec, a delay of 5 ms, and 20 KB buffer,

« 500 Kb per second, a delay of 5 ms, and 15 KB buffer

Here, we considered 3 bandwidth scenarios: (i) high,
which has 2.48 Gb/sec for the top-level router link band-
widths, and each lower level in the network topology uses
the next lower bandwidth shown above yielding a host
bandwidth of 45 Mb/sec, (ii) medium, which starts with
620 Mb/sec and goes down to 1.5 Mb/sec at the end host,
and (iii) low, which starts with 155 Mb/sec and goes down
to 500 Kb/sec at the end host. We note that these band-
widths and link delays are realistic relative to networks in
practice.

Our test were run on 1, 2 and 4 instructions streams
(IS). The synthetic topography was mapped with each core
router and all its children mapped to the same processor.

Table 11 show the performance results for all synthetic
topology scenarios across varying numbers of available in-
struction streams on the Hyper-Threaded system. For all
configurations, we report an extremely high degree of effi-
ciency. The lowest efficiency is 97.4% and to our surprise
we observe a large number of zero rollback cases for 2
and 4 instruction streams resulting in 100% simulator effi-
ciency. We observe that the amount of available work per
instruction stream (IS) retards the rate of forward progress
of the simulation, particularly as N grows and the band-
width increases. Thus, remote messages arrive ahead of

when they need to be processed resulting almost perfect
simulator efficiency. This result holds despite inherently
small lookahead which is a consequence of link delay and
relatively large amount of remote schedule work, which
ranges from 7% to 15%. Recall, our link delays range from
a small as 5 ms at the low network levels to only about 30
ms at the top router level.

The observed speedup ranges between 1.2 and 1.6
on the dual-hyper-threaded processor system. These
speedups are very much in line with what one would ex-
pect, particularly given the memory size of the models at
hand relative to the small level-2 cache. We note that we
were unable to execute the N = 32, 45 Mb bandwidth
case. This aspect and memory overheads are discussed in
the paragraphs below.

The memory footprint of each model is shown as a func-
tion of nodes and bandwidth in Table Il1l. We report a
steady increase in memory requirements and event-list size
as bandwidth and the number of nodes in the network in-
crease. The peak memory usage is almost 1.4 GB of RAM
for the N = 32, 1.5 Mb bandwidth scenario. The amount
of additional memory allocated for optimistic processing
is 7000 event buffers which is less than 1 MB. Thus, for
524288 TCP connections, this model only consumes 2.6
KB per connection including event data. By comparison,
Nicol [23] reports that Ns consumes 93 KB per connec-
tion, SSFNet (Java version) consumes 53 KB, JavaSim
consumes 22 KB per connection and SSFNet (C++ ver-
sion) consumes 18 KB for the “dumbbell” model which
contains only two routers.

Last, we find that there is an interplay in how the event
population is effected by the network size, topology, band-
width and buffer space. In examining the memory utiliza-
tion results, we find that the maximum observed event pop-
ulation differs by only a moderate amount for 1.5 Mb ver-
sus 45 Mb case when N = 16 despite a rather significant
change in network buffer capacity. However, we were un-
able to execute the 45 Mb scenario when N = 32 because
it requires more than 17,000,000 events, which is the max-
imum we can allocate for that scenario without exceeding
operating system limits (3 GB of RAM). This is because
there are many more hosts at a high bandwidth, resulting
in much more of the available buffer capacity to be occu-
pied with packets waiting for service. This case results in a
2.5 times increase in the amount of required memory. This
suggested, model designers will have to perform some ca-
pacity analysis, since networks memory requirements may
explode after passing some size, bandwidth or buffer ca-
pacity threshold, as happened here.

B.1 Hyper-Threaded vs. Multiprocessor System

In this series of experiments we compare a standard
quad processor system to our dual, hyper-threaded system
in order to better quantify our performance results relative

10

Number of Nodes, N |

End Host Bandwidth | Num IS | Event-Rate | Efficiency | % Remote | Speedup |

4 500 Kb 1 441692 NA NA NA
4 500 Kb 2 535093 99.388 7.273 1.211
4 500 Kb 4 660693 97.411 14.308 1.495
4 1.5 Mb 1 386416 NA NA NA
4 1.5 Mb 2 440591 99.972 7.125 1.140
4 1.5 Mb 4 585270 99.408 14.195 1.516
4 45 Mb 1 402734 NA NA NA
4 45 Mb 2 440802 99.445 7.087 1.094
4 45 Mb 4 586010 99.508 14.312 1.612
8 500 Kb 1 210338 NA NA NA
8 500 Kb 2 270249 100 7.273 1.284
8 500 Kb 4 331451 99.793 10.746 1.575
8 1.5 Mb 1 177311 NA NA NA
8 1.5 Mb 2 237496 100 7.313 1.339
8 1.5 Mb 4 287240 99.993 10.823 1.619
8 45 Mb 1 176405 NA NA NA
8 45 Mb 2 221182 99.999 7.259 1.253
8 45 Mb 4 257677 99.996 10.758 1.460
16 500 Kb 1 128509 NA NA NA
16 500 Kb 2 172542 100 7.091 1.342
16 500 Kb 4 199282 99.987 10.600 1.550
16 1.5 Mb 1 100980 NA NA NA
16 1.5 Mb 2 137493 100 7.092 1.361
16 1.5 Mb 4 153454 99.998 10.626 1.519
16 45 Mb 1 99162 NA NA NA
16 45 Mb 2 117312 100 7.102 1.183
16 45 Mb 4 145628 99.999 10.648 1.468
32 500 Kb 1 80210 NA NA NA
32 500 Kb 2 108592 100 7.058 1.353
32 500 Kb 4 126284 100 10.586 1.57
32 1.5 Mb 1 75733 NA NA NA
32 1.5 Mb 2 90526 100 7.052 1.20

TABLEII
PERFORMANCE RESULTS FOR N = 4,8, 16,32 SYNTHETIC TOPOLOGY NETWORK FOR LOW (500 KB), MEDIUM (1.5 MB)
AND HIGH (45 MB) BANDWIDTH SCENARIOS ON 1, 2 AND 4 INSTRUCTION STREAMS USING A DUAL HYPER-THREADED 2.8
GHz PENTIUM-4 XEON. EFFICIENCY IS THE NET EVENTS PROCESSED (I.E., EXCLUDES ROLLED EVENTS) DIVIDED BY THE
TOTAL NUMBER OF EVENTS. REMOTE IS THE PERCENTAGE OF THE TOTAL EVENTS PROCESSED SENT BETWEEN LPs
MAPPED TO DIFFERENT THREADS/INSTRUCTION STREAMS.

to past processor technology. The network topology is the
same as previous described with N = 8, thus there are
4680 LPs in this simulation. We did however modify the
TCP connections such that they are more locally centered.
So, in total 87% of all TCP connections were within the
same kernel process (KP).

We observe that the dual processor out performs the

quad processor system by 16% depsite that the quad pro-
cessor has 2 times the amount of level-2 cache (each quad
processor has 512 KB for a total of 2 MB of cache). The
respective speedups relative to their own sequential perfor-
mance are 3.2 for the quad processor and 1.7 for the dual
hyper-threaded system, which is 80 to 85% of the theoret-
ical maximum. If we compare cost-performance, the dual

Number of Nodes, N | Host Bandwidth |

Max Event-list Size |

Memory Requirements

4 500 Kb 4,792 3MB

4 1.5 Mb 5,376 3MB

4 45 Mb 5,376 3MB

8 500 Kb 45,759 11MB

8 1.5 Mb 85,685 17 VB

8 45 Mb 86,016 17 MB

16 500 Kb 522,335 102 MB

16 1.5 Mb 1,217,929 202 MB

16 45 Mb 1,380,021 226 MB

32 500 Kb 5,273,847 1,132 MB

32 1.5 Mb 6,876,362 1,364 MB
TABLE Il

MEMORY REQUIREMENTS FOR N = 4,8, 16,32 SYNTHETIC TOPOLOGY NETWORK FOR LOW (500 KB), MEDIUM (1.5 MB)
AND HIGH (45 MB) BANDWIDTH SCENARIOS ON 1, 2 AND 4 INSTRUCTION STREAMS USING A DUAL HYPER-THREADED 2.8
GHz PENTIUM-4 XEON. OPTIMISTIC PROCESSING ONLY REQUIRED 7000 MORE EVENT BUFFERS (140 BYTES EACH) ON
AVERAGE WHICH ISLESS 1 MB.

| Processor Configuration | Event-Rate | % Efficiency | % Remote | Speedup |

1 IS, Hyper-Threaded 220098 NA NA NA

2 1S, Hyper-Threaded 313167 100 0.05 1.42

4 1S, Hyper-Threaded 375850 100 0.05 1.71

1 PE, Pentium-I1I 101333 NA NA NA

2 PE, Pentium-I1I 183778 100 0.05 1.81

4 PE, Pentium-111 324434 100 0.05 3.20
TABLE IV

PERFORMANCE RESULTS FOR N = 8 SYNTHETIC TOPOLOGY NETWORK MEDIUM BANDWIDTH ON 1, 2 AND 4 INSTRUCTION
STREAMS (DUAL HYPER-THREADED 2.8 GHZ PENTIUM-4 XEON) VS. 1, 2 AND 4 PROCESSORS (QUAD, 500 MHz
PENTIUM-ITI

hyper-threaded system ("$7000 USD) is the clear winner
over the quad processor system ("$24,000 USD) by over a
factor of three, since it costs less than 1/3 the price at the
date of purchase.

Additionally, we observe 100% simulator efficiency for
all parallel runs. We attribute this phenomenon to the low
remote messages and large amount of work (event popula-
tion) per unit of simulation time.

C. AT&T Topology Experiments

For our performance study we used AT&T’s network
topology obtained from Rocketfuel website [24].

As shown in Figure 5, the core US AT&T network topol-
ogy contains 13173 router nodes and 38164 links. What
makes Internet topologies like the AT&T network both in-
teresting and challenging from a modeling prospective is
the spareness of connectivity and power-law structure [24].

In the case of AT&T, there are less than 3 links on av-
erage. However, at the super core there is a high-degree
connectivity. Typically, an Internet service provider’s su-
per core will be configured as a fully connected mesh.
Consequently, backbone routers will have up to 67 con-
nections to other routers, some of which are other back-
bone or super core routers and other links to region core
routers. Once at the region core level, the number of links
per router reduces and thus the connectivity between other
region cores is spare. Most of the connectivity is dedicated
to connecting local points of presence (PoPs).

In performing a breath-first-search of the AT&T topol-
ogy, there are distinct eight levels. At the backbone, there
are 414 routers. At each successive level yields the fol-
lowing router count : 4861, 5021, 1117, 118, 58, 6 and
at the final level there are 5 nodes. There were a num-
ber of routers not directly reachable from within this net-

12

T Elle Edit ¥iew Search Go Bookmarks Iasks Help

@ . A4 & [http:irwn.cs washington

iteractive/7018us himl

Back | Fopward Reload Slop

" 4% Home | v Bookmarks £ Red Hat Metwork (2 Support ¢4 Shop 4 Products (2§ Training

|
jé_Seaﬂ:h‘ ;“I‘:‘?‘ - ‘

|
el

Fig. 5. AT& T Network Topology (AS 7118) from the Rocketfuel data bank for the continental US.

| Configuration | Event Rate | % Efficiency |

% Remote | Speedup |

medium, 1 IS | 138546 NA NA NA

medium, 2 IS | 154989 99.947 52.030 1.12

medium, 4 IS | 174400 99.005 78.205 1.25

large, 1 IS 127772 NA NA NA

large, 2 IS 143417 99.956 51.976 1.12

large, 4 IS 165197 99.697 78.008 1.29
TABLEV

PERFORMANCE RESULTS FOR AT& T NETWORK TOPOLOGY FOR MEDIUM (96,500 L PS) AND LARGE (266160) ON 1, 2 AND

4 INSTRUCTION STREAMS (IS) USING THE DUAL-HYPER-THREADED SYSTEM.

work. Those routers are most likely transit routers go-
ing strictly between autonomous systems (AS). With the
transit routers removed, our AT&T network scenario has
11670 routers. Link weights are derived based on the rela-
tive bandwidth of the link in comparison to other available
links. In this configuration, routing is keep static.

The bandwidth, delay, and buffer size for the AT&T
topology is as follows:
« Level O router: 9.92 Gb/sec, a delay randomly between
10 ms to 30 ms, and 12.4 MB buffer
o Level 1 router: 2.48 Gb/sec, a delay randomly between
10 ms to 30 ms, and 3 MB buffer
« Level 2 router: 620 Mb/sec, a delay randomly between
10 ms to 30 ms, and 750 KB buffer
o Level 3 router: 155 Mb per second, a delay of 5 ms, and
200 KB buffer
o Level 4 router: 45 Mb per second, a delay of 5 ms, and
60 KB buffer

o Level 5 router: 1.5 Mb/sec, a delay of 5 ms, and 20 KB
buffer

« Level 6 router: 1.5 Mb per second, a delay of 5 ms, and
20 KB buffer

« Level 7 router: 500 Kb per second, a delay of 5 ms, and
5 KB buffer

« link to all hosts: 70 Kb per second, a delay of 5 ms, and
5 KB buffer

Hosts are connected in the network at PoP level routers.
These routers only have one link to another higher-level
router. The first is medium size, with 96,500 nodes or
LPs (hosts plus routers) total, and the second is large, with
266160 LPs. In each configuration, the half the host estab-
lish a TCP session to a randomly selected receiving host.
We observe this configuration is almost pathological for
a parallel network simulation because the amount of re-
mote network traffic will be much greater than is typical in
practice. The amount of remote message traffic is much

greater than the synthetic network topology because of the
networks sparse structure. Our goal is to demonstrate sim-
ulator efficiency under high-stress workloads for realistic
topologies.

We observe over 99% efficiency for the 2 and 4 IS runs
as shown in Table V, yet there is a substantial reduction
in the overall obtain speedup. Here, we report speedups
for the 4 1S cases of 1.25 for the medium size network
and 1.29 for the large. We attribute this reduction to enor-
mous amount of remote messages sent between instruction
streams/processors. A parallel simulation using AT&T
network topology with a round-robin mapping of LP to
processors results 50 to even almost 80% of the all pro-
cessed events being remotely schedule. We hypothesize
that behavior on the part of the model reduce memory lo-
cality and results in much higher cache miss rates. Con-
sequently, all instruction streams are spending more time
stalled waiting for memory requests to be satisfied. How-
ever, we note that more investigation is required to full
understand this behavior.

The memory requirements for the AT&T scenario were
269 MB for the medium size network and 328 MB for
the large size network, yielding a per TCP connection
overhead of 2.8 KB and 1.3 KP respectively. The reason
for the reduction per connection in moving from medium
to large configuration is because the amount of network
buffer space which effects the peak event population did
not change, yet the number of connections went up by al-
most a factor of 3.

D. Initial OSPF Results

Our OSPF experiments use the same AT&T topology
configuration as previous described for the medium size
network (i.e., 96,500 nodes in the network total). How-
ever, we do increase the bandwidth for levels 5, 6 and 7 to
45 Mb/sec. Thus, the amount of traffic generated by the
TCP hosts is much greater in this scenario. We also note
that we configure all routers in the AT&T network to be
inside a single OSPF area. Consequently, this results in ex-
tremely large OSPF routing tables (i.e., N2 for N routers
in an area) and we are in effect simulating a pathological
OSPF scenario as the typical “rule of thumb” for OSPF
limits the number of routers per area to 50 [25] with an
operational upper bound between 200 to 1000 even with
an optimized router. Our area 12 to 200 times those de-
sign limits. However, despite these modeling extremes we
are able to simulate this scenario in conjunction with TCP
background traffic, as shown in our performance results
(see Table VI).

As shown in Table VI, we observe that the event rate
is kept high by the Splay Tree for OSPF without TCP
flows, however as we add TCP flows the event population
increases by a factor of 12 (150K to 1.8 M). With such
a large increase, the event-list management overheads in-

13

crease by a factor of two which results in a sharp decrease
in the event-rate.

The memory utilization is quite large for our models,
ranging from 1.9 to 2.3 GB of RAM. We attribute this
footprint size to size of the adjacency matrix and routing
tables. Recall this model configures OSPF as a single area.
While our state compression techniques do in fact reduce
memory consumption, this pathological runtime configu-
ration still requires substantial memory requirements. In
practice, we anticipate much smaller tables for multi-area
OSPF scenarios and significantly less memory.

Overall, we are encouraged by these sequential results
and are moving forward on obtaining parallel performance
statistics.

VII. RELATED WORK

Much of the current research in parallel simulation for
network models is largely based on conservative algo-
rithms. PDNS [9] is parallel/distributed network simula-
tor that leverages HLA-like technology to create a feder-
ation of Ns [6] simulators. SSFNet [7], TasKit[26] and
GloMoSim [27] all use Critical Channel Traversing (CCT)
[26] as the primary synchronization mechanism. DaSSF
employs a hybrid technique called Composite Synchro-
nization[8], where both the asynchronous CCT algorithm
and a barrier synchronization are combined to avoid chan-
nel scanning limitations associated CCT while at the same
time reducing the frequency a global barrier must by ap-
plied.

Recent optimistic simulation systems for network mod-
els include TeD [28], which is a process-oriented frame-
work for constructing high-fidelity telecommunication
system models. Premore and Nicol [29] implement a TCP
model in TeD, however no performance results are given.
USSF [13] is an optimistic simulation system that dramati-
cally reduces model run-time state by LP aggregation, and
swapping LPs out of core. Additionally, USSF proposes to
execute simulation unsynchronized using their NOTIME
approach. Based on the results here, a NOTIME synchro-
nization could prove beneficial for large-scale TCP mod-
els. Unger et. al. simulate a large-scale ATM network
using an optimistic approach [30]. They report speed-ups
ranging from 2 to 7 on 16 processors and indicate that op-
timistic outperforms a conservative protocol on 5 of the 7
tested ATM network scenarios. Finally, a new fixed-point
optimistic approach, called Geneis has been proposed by
Szymanski et. al.[31]. This approach yields speedups
upto 18 on 16 processors for 64 to 256 node TCP mod-
els. Super-linear performance is attributed to a reduction
in the number of events schedule across machines because
of the statistical aggregation of events which is employed
by this approach.

14

| Configuration

| Event Rate | Max Event-list Size | Events Processed | Memory Requirements

OSPF,no TCP | 419286.66 | 150000

796200468 192 GB

OSPF with TCP | 197954.02 | 1800000

1783473402 2.29 GB

TABLE VI
OSPF wWITH TCP PERFORMANCE RESULTS FOR AT& T TOPOLOGY (96,500 L PS) SCENARIOS ON 1 INSTRUCTION STREAM
USING A DUAL HYPER-THREADED 2.8 GHz PENTIUM-4 XEON. SIMULATES 100 SECONDS OF NETWORK TRAFFIC.

VIII. CONCLUSIONS AND DISCUSSIONS

In this paper, we investigated fundamental issues for
large-scale network simulations. We proposed solutions
and techniques for the problem of scaling network simula-
tions to millions of nodes.

Based on the proposed techniques, we developed a scal-
able simulation models for OSPF routing protocol and
TCP transport protocol. We ran simulations of these mod-
els on a very large and realistic topology which is AT&T’s
topology obtained from Rocketfuel [24] website. To date,
this capability has not been demonstrated.

With the use of optimistic parallel simulation tech-
nigues coupled with reverse computation, speedups of 1.7
for a hyper-threaded dual processor system and 3.2 for a
quad processor system are reported. These speedups were
achieved with an insignificant amount of additional mem-
ory for optimistic processing (i.e., 1 megabyte in practice).

The parallel TCP model proved to be extremely efficient
with very few rollbacks observed. Parallel simulator effi-
ciency ranged between 97 to 100% (i.e., zero rollbacks).
This suggests that the model could be executed unsynchro-
nized with a negligible amount of error.

The model was implemented as lean as possible which
allowed for the million node topology to be executed. We
observed model memory requirements between 1.3 KB to
2.8 KB per TCP connection depending on the network
configuration (size, topology, bandwidth and buffer capac-
ity).

The hyper-threaded system was able to provide a low
cost-performance ratio. What is even more interesting is
that these systems blur the lines in terms of sequential ver-
sus parallel processing. Here, to obtain higher rates of per-
formance from a single processor, one has to resort to exe-
cuting the model in parallel. As this technology matures to
even high clock rates, we anticipate single processors hav-
ing many more instruction streams, which will provide an
even greater opportunity for parallel simulation tools and
techniques.

There have been many ideas that have come about dur-
ing this work. In the future, we will work on development
of a scalable simulation model for BGP and investigate
inter-domain routing issues by performing large-scale sim-
ulations of them. We will also be working on the imple-
mentation of a faster event-list management to reduce pri-

ority queue overheads. Also the implementation of TCP
functionality such as delayed acknowledgment, ticks for
round trip time calculation, and Reno capabilities are in
the works. The concept of creating a hierarchical address
mapping scheme from a random network topology as well
as a better LP to processor mapping scheme to reduce re-
mote events has also been a topic of discussion.

Additionally, as more optimistic models are developed
we are learning how they interoperate and how network
researchers would like to utilize them. The outcome from
this research will be modular software architecture that
does not add either memory or computational overheads
as compared with its direct implementation counterpart.
The architecture should allow for the creation of different
applications using the transport protocol level (i.e., TCP),
such as Border Gateway Protocol for both inter and in-
tra domain routing and web traffic. In the modular model
there should be the ability to turn on and off different lay-
ers within the overall protocol stack as well as particular
features, such as the need to have data represented in the
message. This flexibility will enable the model to be tuned
for optimum performance within the constraints placed on
its expected operating environment and required level of
accuracy.

Finally, in the creation of these models, we leveraged
existing models in both the Ns-2 and SSFNet frameworks.
We find that “porting” model functionality to our platform
is relatively straight forward. In the future, we plan to de-
vise porting guidelines and provide detailed case studies of
how we have ported OSPF, TCP, BGP, and multi-cast for
use as a reference.

REFERENCES

[1] J.F. Rezende and S. Fdida, “Scalability issues on reliable multi-
cast protocol,” in Proceedings of COST 237 Workshop, 1999.

[2] Jiang Liand Shivkumar Kalyanaraman, “Mca: A rate-based end-
to-end multicast congestion avoidance scheme,” in Proceedings
of the Internation Conference on Communications (ICC), 2002.

[3] Jiang Li and Shivkumar Kalyanaraman, “Ormcc : A simple
and effective single-rate multicast congestion control scheme,”
in Submitted, http://www.cs.rpi.edu/~ lij6/Research/index.html,
2002.

[4] D.R. Jefferson, “Virtual time,” ACM Transactions on Program-
ming Languages and Systems, vol. 7, no. 3, pp. 404-425, July
1985.

[5] C. D. Carothers, K. Perumalla, and R. M. Fujimoto, “Efficient

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

parallel simulation using reverse computation,” ACM Transac-
tions on Modeling and Computer Smulation, vol. 9, no. 3, pp.
224-253, July 1999.

“UCB/LBLN/VINT network simulator - ns (version 2)
http://www-mash.cs.berkeley.edu/ns, 1997.

J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski, “Towards
realistic million-node internet simulations,” in Proceedings of
International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), 1999.

D. M. Nicol and J. Liu, “Composite synchronization in parallel
discrete-event simulation,” |EEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 5, 2002.

G. F. Riley, R. M. Fujimoto, and M. H. Ammar, “A generic frame-
work for parallelization of network simulations,” in Proceedings
of the 7th International Symposium on Modeling, Analysis and
Smulation of Computer and Telecommunication Systems (MAS
COTS), 1999, pp. 128-135.

P. L’Ecuyer and T. H. Andres, “A random number generator based
on the four lcgs,” Mathematics and Computersin Smulation, vol.
44, pp. 99-107, 1997.

R. Brown, “Calendar queues: A fast o(1) priority queue imple-
mentation for the simulation event set problem,” Communications
of the ACM (CACM), vol. 31, pp. 1220-1227, 1988.

R. Ronngren and Rassul Ayani, “A comparative study of parallel
and sequential priority queue algorithms,” ACM Transactions on
Modeling and Computer Smulation, vol. 7, no. 2, pp. 157-2009,
1997.

D. M. Rao and P. A. Wilsey, “An ultra-large scale simulation
framework,” Journal of Parallel and Distributed Computing (in
press), 2002.

C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: Rensselaer’s
optimistic simulation system user’s guide,” Tech. Rep. 02-12, De-
partment of Computer Science, Rensselaer Polytechnic Institute,
http://www.cs.rpi.edu/tr/02-12.pdf, 2002.

“JavaSim,” http://javasim.cs.uiuc.edu, 1999.

V. Jacobson, “Congestion avoidance and control,” in Proceedings
of Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (S GCOMM), 2001.

D. M. Chiu and R. Jain, “Analysis of the increase/decrease algo-
rithms for congestion avoidance in computer networks,” Journal
of Computer Networks and ISDN Systems, vol. 17, no. 1, pp. 1-
14, June 1989.

K. Fall and S. Floyd, “Simulation-based comparison of tahoe,
reno, and sack tcp,” Computer Communication Review, vol. 26,
pp. 5-21, 1996.

R. Perlman, Interconnections. Bridges, Routers, Switches, and
Internetworking Protocols, Addison-Wesley, 1999.

C. Huitema, Routing in the Internet, Prentice Hall, 2000.

J. L. Lo, S. J. Eggers, J. S. Emer, H. M. Levy, R. L. Stamm, and
D. M. Tullsen, “Converting thread-level parallelism to instruction
parallelism via simultaneous multithreading,” Transactions on
Computer Systems, vol. 15, no. 3, pp. 322-354, 1997.

“Intel Pentium 4 and Xeon Proces-
sor Optimization Reference Manual,”
http://developer.intel.com/design/pentium4/manuals/248966.htm.
D. Nicol, “Scalability of network simulators revisited,” in Pro-
ceedings of Communication Networks and Distributed Systems
Modeling and Smulation Conference (CNDS) part of Western
Multi-Conference (WMC), 2003.

N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topolo-
gies with rocketfuel,” in Proceedings of Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communications (S GCOMM), 2002.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

15

D. Kotfilakot fi d@s. r pi . edu, “Personal communication,”
Director, Cisco Academy, RPI, 2002.

Z. Xiao, B. Unger, R. Simmonds, and J. Cleary, “Scheduling crit-
ical channels in conservative parallel discrete event simulation,”
in Proceedings of the Workshop on Parallel and Distributed Sm-
ulation (PADS), 1999, pp. 20-28.

R. A. Meyer and R. L. Bagrodia, “Path lookahead: a data flow
view of pdes models,” in Proceedings of the Workshop on Parallel
and Distributed Smulation (PADS), 1999, pp. 12-19.

K. Perumalla, A. Ogielski, and R. Fujimoto, “Ted — a language for
modeling telecommunication networks,” in Proceedings of ACM
S GMETRICS Performance Evaluation Review, 1998, vol. 25.

B. J. Premore and D. M. Nicol, “Parallel simulation of tcp/ip
using ted,” in Proceedings of the Winter Smulation Conference
(WSC), 1997, pp. 437-443.

B. Unger, Z. Xiao, J. Cleary, J-J Tsai, and C. Williamson, “Par-
allel shared-memory simulator performance for large atm net-
works,” ACM Transactions on Modeling and Computer Smu-
lation, vol. 10, no. 4, pp. 358-391, 2000.

B. K. Szymanski, A. Saifee, A. Sastry, Y. Liu, and K. Madnani,
“Genesis: A system for large-scale parallel network simulation,”
in Proceedings of Workshop on Parallel and Distributed Smula-
tion (PADS’02), 2002, pp. 89-96.

