END-TO-END
MULTICAST CONGESTION CONTROL AND AVOIDANCE

By
Jiang Li
A Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Approved by the
Examining Committee:

Shivkumar Kalyanaraman, Thesis Adviser

Bulent Yener, Member

Christopher Carothers, Member

Koushik Kar, Member

Rensselaer Polytechnic Institute
Troy, New York

July 2003
(For Graduation August 2003)

END-TO-END
MULTICAST CONGESTION CONTROL AND AVOIDANCE

By
Jiang Li
An Abstract of a Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Shivkumar Kalyanaraman, Thesis Adviser
Bulent Yener, Member

Christopher Carothers, Member

Koushik Kar, Member

Rensselaer Polytechnic Institute
Troy, New York

July 2003
(For Graduation August 2003)

© Copyright 2003
by
Jiang Li
All Rights Reserved

i

CONTENTS

LIST OF TABLES e e e e

LIST OF FIGURES e e e e

ABSTRACT . . o o e e

1.

2.

Introduction
1.1 Why “Bundling” Unicast Congestion Control Does not Work For Multicast .
1.2 Assumptions

1.3 Abstraction of A Multicast Tree as A Unicast Path for Congestion Manage-
ment Purposes

1.4 Our Contributions
1.5 Performance Evaluation Methodology

1.6 Related Work
1.6.1 End-to-End Unicast Congestion Control
1.6.2 End-to-End Single-rate Multicast Congestion Control

1.6.2.1 DeLucia et. al’s Scheme Using Representatives
1.6.22 PGMCC.
1.6.23 TEMCC
1.6.24 MDP-CC
1.6.25 LPRF
1.6.2.6 Other Schemes
1.6.3 End-to-End Multi-rate Multicast Congestion Control
1.6.4 Network Supported Single-rate Multicast Congestion Control
1.6.5 Network Supported Multi-rate Multicast Congestion Control

1.7 Dissertation Structure

LE-SBCC: Loss-Event Oriented Source-based Multicast Congestion Control

2.1 LE-SBCC: Scheme Description.
2.1.1 Cascaded Filter Model 0oL
2.1.2 Scalability Discussion oL 0oL

2.2 Performance Evaluation,

2.2.1 Evaluation: Drop-to-Zero Avoidance

2.2.1.1 Simulations Illustrating Drop-to-Zero Avoidance

il

12
12
12
13
14
15
16
16
17
18
20
21

24

2.2.1.2 Effects of Removing a Filter From the Cascade 35

2.2.1.3 Theoretical Analysis of LE vs LI Probability 36

2.2.1.4 Drop-to-Zero Avoidance in Medium-Large Scale Trees . . . 40

2.2.2 Evaluation: TCP friendliness 42

2.2.2.1 DropTail vs. RED Queues 44

2.2.2.2 Different Loss Paths 45

2.2.3 Evaluation: LI Aggregation Effects on Performance 47

2.3 TFRCmodule. e 49

2.3.1 TFRC Module Design 20

2.3.2 Simulation Results 0oL 51

2.4 Linux Implementation and Experimentation 52

2.4.1 Implementation o 52

2.4.2 Experimentation 54

2.4.2.1 TCP Friendliness Experiment 54

2.5 Summary ... oL oL e e 55

ORMCC . . . e 57

3.1 Scheme Details o8

3.1.1 Feedback Required from Receivers — CI(p) 59

3.1.2 Allocation of The Slowest Receiver 59

3.1.3 Update of CR under Dynamic Conditions 60

3.1.4 Feedback Suppression by Receivers 61

3.1.5 Rate Adaptation oL 62

3.1.6 RTT Estimation 62

3.2 Properties about ORMCC Performance 63

3.3 Simulations and Experimentso 64

3.3.1 'TCP-Friendliness and Drop-To-Zero Avoidance 65

3.3.2 Performance at Clloss, 68

3.3.3 Multiple Bottleneck Fairness 69

3.3.4 Slowest Receiver Tracking 71

3.3.5 Feedback Suppression 72
3.3.6 Comparision with PGMCC and TFMCC in Heterogeneous Dynamic

Network o 73

3.3.7 'TCP-Friendliness and Drop-To-Zero Avoidance Test in Emulab . . . 75

3.4 Summary e 75

v

4. GMCC: Generalized Multicast Congestion Control 78

4.1 Scheme Details 80
4.1.1 Throughput Attenuation Factor 81
4.1.1.1 Individual Throughput Attenuation Factor 81

4.1.1.2 Congestion Occurrence Rate 82

4.1.2 Sending Rate Control Within A Layer 82
4.1.3 ON-and-OFF Control of Layers (by Source) 84
4.1.4 Joining An Additional Layer (by Receiver) 85
4.1.4.1 Situation 1: Frequent congestion epochs 85

4.1.4.2 Situation 2: Infrequent congestion epochs 86

4.1.4.3 Situation 3: Multiple layers on a shared bottleneck 87

4.1.4.4 Two Exceptional Cases 89

41.5 LeavingaLayer oL 90

4.2 Simulations 90
4.2.1 Effectiveness of the adaptive layering 91
4.2.2 Responsiveness to traffic dynamics 000 91
4.2.3 Effectiveness of probabilistic inter-layer bandwidth shifting 94
4.2.4 Throughput Improvement 95

4.3 Summary ... Lo 98

5. MCA+: An End-to-end Multicast Congestion Avoidance Scheme with Feedback

SUPPression Lo e e 100
5.1 Concepts And Model 103
5.1.1 Accumulationo 103
5.1.2 Accumulation Measurement 106

5.2 MCA+: Scheme Description 108
5.2.1 Source Operations 109
5.2.1.1 RTTestimation. 109

5.2.1.2 Rate adaptation 110

5.21.3 CR Switching 111

5.2.1.4 Clfiltering 112

5.2.2 Receiver Operations 112
5.2.2.1 Congestion detection 112

5.2.2.2 Feedback suppression, 114

5.3 Simulationso e 114
5.3.1 Basic Test on Simple One-Bottleneck Configuration 115

5.3.2 Fairness Test with Multiple Bottlenecks (Linear Network) 115

5.3.3 Test of Drop-to-Zero Avoidance and Friendliness to Unicast Flow, and

Feedback Suppression 117

5.3.4 Test of Tracking The Most Congested Bottleneck 119

5.3.5 Test of Performance in Dynamic Network 121

D4 Summary ... oL Ll e 123

6. Summary And Future Work Lo L 124
6.1 Summary e 124
6.2 Future Research 126
LITERATURE CITED et e e 128
APPENDICES e 137
A. Pseduo Code of LE-SBCC 137
B. ORMCC Algorithm e 140
B.1 Source Operations e 140
B.2 Receiver Operations 142

C. Theoretical Analysis of ORMCC Properties 144
C.1 Capability of Tracking The Slowest Receiver 144
C.2 TCP-Friendliness on Representative Path 148
C.3 Immunity To Drop-to-zero Problem 152
C.4 Effectiveness of Feedback Suppression 152

D. MCA . . e e e 156
D.1 Accumulation Measurement and CI Generating Algorithm 157
D.2 Bin-CI Scheme 158
D.3 ER-CI Scheme e 160
D.4 Simulation Results 161
D.4.1 Simple Multicast Configuration 161

D.4.2 Multiple Bottlenecks: Linear Network 163

D.4.3 Star Topology: Drop-to-Zero Avoidance Testing 165

vi

3.1

3.2

3.3

4.1
4.2
4.3
5.1
D.1

LIST OF TABLES

Dynamics in Slowest Receiver Tracking Simulation 71

Comparison of Average Throughput and Feedback Volume in Heterogeneous

Dynamic Networko L 75
Summary of ORMCC Performance Compared with PGMCC and TFMCC in

Simulations 7
Some Key Symbols in Section 4.1 oo 83
Number of Join and Leave Operations 97
Number of Join and Leave Operations in Large Scale Simulations 98
Dynamics of Most Congested Bottleneck 121
Average Queue Size and Utilization 0 L. 163

vii

1.1
1.2
1.3
14
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

2.20

LIST OF FIGURES

Network as A Blackboxo 5
Drop-To-Zero Example L 10
Drop-To-Zero Avoidance And TCP-Friendliness Example 11
Example Topology With Large Number of Independent Bottlenecks 11
Cascaded Filter Model of LE-SBCC 26
Loss Indication to Loss Event Filter (LI2LE) 28
Max-LPRF: Max-Linear Proportional Rate Filter 28
Adaptive Time Filter (ATF) 30
Topology to Test Drop-to-Zero Avoidance and TCP-Friendliness 33
Drop-to-Zero Avoidance Results, 34
Effects of Removing A Subset of Filters from The LE-SBCC Cascade 35
State Transition of Packets Sent Per RTT 37
p’s Semantics in Bursty Loss Case 39
Ratio of LI and LE Probabilities 41
Topology : Large Heterogeneous Receiver Sets 42
Scalability Analysis 43
TCP-Friendliness Results (Simulation and Experiment) 44
Droptail vs. RED: Rate Graphs 45
RTT Convergence - Droptail vs. RED 46

Rate and RTT Graphs for Topology with Different Buffers (Loss Rate and RTTs) 46

Topology to Illustrate LI Aggregation Effects 47
Partial Aggregation Effects oo oL 48
TFRC Module Simulation Results 51
TCP-Friendliness Experiment Result (Linux Implementation) 56

viii

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15

3.16
4.1
4.2
4.3

4.4
4.5

4.6
4.7

4.8

Example of ORMCC Operation
Congestion Representative (CR) Update Procedure
64-Receiver Star Topology with TCP Background Traffic
TCP-Friendliness and Drop-to-Zero Avoidance
Tree Topology for Large-Scale Simulations in ROSS
Drop-to-zero Avoidance in 10,000-Receiver Simulation

Over-Time Average Throughput of ORMCC, PGMCC and TFMCC Running
Together e

Over-Time Average Throughput of ORMCC When There Are CI Losses
Linear Network with Multiple Bottlenecks (Totally 48 Receivers)
Fairness of Sharing Bottleneck Bandwidth
One-Level Tree with 32 Receiver Nodes
Capability of Tracking The Slowest Receiver
Average Throughput With Frequent CR Quitting
Heterogeneous Dynamic Network

Topology Used in Emulab for TCP-Friendliness and Drop-to-Zero Test (36 Re-
ceiver Nodes)

TCP-Friendliness and Drop-to-Zero Test Result in Emulab
Qualitative Comparison of SMCC and GMCC
A Topology Example for Join Operations under Situation 1 and 2

A Topology Example Where Probabilistic Inter-Layer Bandwidth Shifting Is
Needed (Situation 3)

Topology for Layering Effectiveness Test (Sec. 4.2.1)

Effective Layering Test Result (sec. 4.2.1): Instantaneous Throughput in The
Topology of fig. 4.4

Star Topology for Testing Responsiveness to Traffic Dynamics (Sec. 4.2.2) . . .

Responsiveness to Traffic Dynamics (sec. 4.2.2): Throughput of The Two GMCC
Receivers e

Topology for Testing Probabilistic Inter-Layer Bandwidth Shifting (Sec. 4.2.3)

X

4.9
4.10

4.11

4.12
4.13
5.1
5.2
9.3
5.4
9.5
2.6
5.7
5.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15
C.1
C.2

C.3
C4
D.1

PIBS Result (sec. 4.2.3): Throughput of All GMCC Receivers 95

Topology for Testing Throughput Improvement (Sec. 4.2.4) 95
Throughput Improvement (Sec. 4.2.4): Receiver Throughput in The Topology

of Fig. 4.10 o e 96
Tree Topology for Large-Scale Simulations in ROSS 98
Average Throughput and Deviation of Differnt Groups of Receivers 99
MCA4 Model e 102
Network Fluid Model: Accumulation Concept 103
Accumulation Measurement with In-band Control Packets 106
Congestion Epochs: Synchronization Points and Accumulation 108
Source Operations e 110
Receiver Operations e 113
Single-Bottleneck Configuration with 16 Receiver Nodes 115
MCA+ Performance with Single Bottleneck and Dynamic Through Traffic . . . 116
Linear Network: Multiple Bottlenecks Configuration 117
Fairness Results oL 118
64-Receiver Star Topology L 119
Drop-to-Zero Avoidance and Friendliness to Unicast Flows 120
32-Receiver Tree Topology o oL 121
Responsiveness in Dynamic Network 122
Heterogeneous Dynamic Network 122
Evolution of ORMCC Sending Rate on The Representative Path 145
ORMCC Source Only Considers The Congestions on The Representative Path

for Rate Adaptationo Lo 147
Evolution of The Sending Rates of TCP and ORMCC Flows 148
Feedback Suppression Mechanism 153
Multicast Congestion Avoidance Model 156

D.2
D.3
D.4
D.5
D.6
D.7
D.8

Simple Multicast Configuration. L. 162

Simple Multicast Configuration Results (Rates) 162
Simple Multicast Configuration Results (Queues) 163
Multiple Bottlenecks: Linear Network 164
Linear Network Results (Average Rates) 164
Star Topology Configuration 165
Average Rate of 16 Multiplexed Flows in Star Configuration 166

xi

ABSTRACT

IP multicast was first proposed by Steve Deering in 1989 in RFC 1112 [26]. In IP multicast,
data is sent from one point to multiple points simultaneously. Routers duplicate the data
when they need to forward the packets in multiple directions. Consequently, for various ap-
plications, e.g. video conference, multimedia broadcasting etc, IP multicast is more efficient
than point-to-point unicast prevalent today. However, over a decade has passed, IP multi-
cast still has not been deployed in the Internet. Congestion is one of the most important
problems impeding the extensive application of multicast.

There are several major challenges in multicast congestion management. They are

e Scalability — A multicast group usually has multiple receivers. If the receiver popu-
lation is large, whether the congestion management protocol can still work smoothly
is a big concern. There are several factors that can limit the scalability of a certain

protocol:

— Feedback Traffic — The feedback packets sent from those nodes detecting con-

gestion to those managing congestion.

— Computation Complexity — The time needed by nodes to process congestion-

related information in order to manage congestion.

— State Requirement — The memory required to store operation states of conges-

tion management algorithms on nodes.

e Inter-session Fairness — Different multicast sessions and unicast sessions should be
fair in terms of the average throughput they get. A multicast flow in a best effort
network should not use too high or too low bandwidth compared with other flows.

There are two potential dangers:

— Drop-To-Zero — A problem that a multicast flow gets extremely low throughput

because of reacting to congestion more than necessary.

— TCP-Unfriendliness — A problem that a multicast flow is more aggressive than
competing TCP flows and cause them to get much lower throughput than ex-

pected.

xii

e Inter-receiver Fairness — Because the network is often heterogeneous, different re-
ceivers may have different desirable throughput. It is the inter-receiver fairness re-
quirement that the sending rate of a multicast session satisfies faster receivers without

overwhelming slower ones at the same time.

Given the fact that only end-to-end congestion control protocols can be deployed in
the Internet nowadays and in the future [96, 11, 28], we tackle the challenges above based on
end-to-end assumptions, i.e. congestion control mechanisms are only deployed on end sys-
tems (source and destinations). Consequently, the only network nodes that we can directly
control are sources and receivers. This makes the problem even more challenging because we
do not have the timely and eract congestion information (such as buffer length, bottleneck
bandwidth) directly from inside the network. Instead, we have to derive the needed infor-
mation approrimately from the received packet pattern. We study the following situations

with different restrictions and provide better solutions than previous work.

e No support particular for congestion control is provided by receivers.

e There is support from receiver side, but only one multicast group is allowed for a

multicast session.

e There is support from receiver side, and unlimited multicast groups are allowed for a

multicast session.

e Congestion avoidance for the second situation above.

We first study the situation where no special support is provided at receiver side.
That is, receivers have facilities of multicast transport protocols (without built-in congestion
control functions) such as receiving data and monitoring their quality, but they do not have
any designs specific for congestion control purposes such as measuring available bandwidth.
For this scenario we propose LE-SBCC. The source leverages the ACK or NAK common in
many transport protocols to derive implicit congestion information, and filter them properly
before using them for rate adaptation. Since there is no special support from receivers, this
is a single-rate scheme in which all receivers get data at the same rate. The computation
complexity and state requirement are both O(M) where M is the number of receivers in the

multicast session experiencing congestion (M < N where N is the total number of receivers).

xlil

LE-SBCC achieves good inter-session fairness (better than previous work), but does not have
satisfactory scalability and inter-receiver fairness due to the scarcity of receiver support.

For the second situation, ORMCC is the solution. ORMCC uses a unique mechanism
to locate the most congested receiver, which does not depend on the TCP throughput for-
mula as other similar protocols do. The source adjusts transmit rate in accordance with the
congestion information from this receiver. Since ORMCC eliminates the need to measure
the RTT between the source and all receivers while having an effective feedback suppres-
sion mechanism, the feedback traffic volume remains approximately constant without regard
to the total number of receivers when the network is stable. The computation complexity
and state requirement of both source and receiver side are O(1). As shown by simulations,
ORMCC achieves more TCP-friendly throughput and incurs less feedback traffic than two
best-known schemes of the same kind, PGMCC [94] and TFMCC [114]. It achieves satis-
factory scalability and inter-session fairness, but lacks good inter-receiver fairness due to the
one-group limitation.

For the third situation, we extend ORMCC into a multi-rate framework and have
GMCC. It smoothly combines the fine-granularity control provided by ORMCC with the
coarse-granularity control (layer subscription/unsubscription by receivers). While keeping
the merits of ORMCC, it improves the inter-receiver fairness at less cost of IGMP traffic
and router burden than previous work. As the result, GMCC addresses all three challenges
above successfully.

The last situation we study is the congestion avoidance with support from receiver
side given only one multicast group. We propose MCA+. While congestion control as a
reactive measure takes effect when bottleneck queues are full and packets are beginning to
be dropped, congestion avoidance as a proactive measure responds when backlog is being
built up in bottleneck queues. We do not study other two situations. On one hand, it is
impossible to do congestion avoidance without special receiver support; on the other hand,
we can extend MCA+ to do multi-rate as we extend ORMCC to GMCC.

MCA+ adopts a new congestion detection mechanism based on a new concept called
accumulation. This mechanism can detect incipient congestion and allow the source to adjust
the transmit rate early. As a congestion avoidance scheme, MCA+ incurs shorter average
bottleneck queue and achieves higher throughput without necessarily incurring packet loss.

To our best knowledge, MCA+ is the first end-to-end multicast congestion avoidance scheme

xiv

with good scalability.

Last but not least, the rate adaptation modules in all the protocols above can adopt
different policies. Although we use AIMD as an example which is good for bulk data transfer,
others policies can easily fit in. For instance, TFRC[33] can be used to provide smooth rate
for multimedia transfer. In consequence, a large portion of each protocol above is reusable.

We tested the schemes above with simulations. For those expected to scale well
(ORMCC and GMCC), we have run large scale simulations with thousands of receivers.
We have also implemented LE-SBCC and ORMCC on real systems to show their practical

values.

XV

CHAPTER 1

Introduction

This dissertation studies the end-to-end multicast congestion management problem. By only
assuming the packet forwarding function on routers according to the IP multicast specifica-
tion RFC1112 [26] (as TCP assumes IP routers), with only source and receivers involved,
we address the following challenges better than existent solutions. These challenges do not
exist for unicast congestion control or are different from those in unicast context. They are

the scales against which we will check the performance of our solutions.

e Scalability — A multicast group usually has multiple receivers. As the size of re-
ceiver population increases, the problems emerge. Several factors can degrade the
performance of multicast congestion management protocols, or even stop them from

working.

— Feedback Traffic — The feedback packets sent from receivers to the source. If a
large number of receivers detect congestion simultaneously and all send feedback
packets to the source, the links close to the source will be congested by these
packets joining together, and prevent the source from getting any feedback, or

even crash the network. This is known as the feedback implosion problem.

— Computation Complexity — The time needed by nodes to process congestion-
related information. If it grows linearly with or faster than the receiver population
size, given a very large multicast session, the CPU resource of the nodes will be
exhausted and the nodes collapse. On the contrary, if it is constant and indepen-
dent of the receiver population size, the algorithms can serve very large multicast
sessions. Although unicast congestion control also requires low computation com-

plexity, since there is only one receiver, the problem is not serious.

— State Requirement — The memory required to store operation states of con-
gestion management algorithms on nodes. Similar to computation complexity, a
constant amount of memory used for multicast sessions of any size is desired for

best performance.

e Inter-session Fairness — Different multicast sessions and unicast sessions should
be fair in terms of the average throughput they get. The bandwidth a multicast
flow gets in a best effort network (e.g. the Internet nowadays) should not be too
high or too low compared with what other flows get. This requires that multicast
congestion management protocols react to congestion information appropriately, no
matter whether receivers experience independent or correlated congestion and send
back congestion information synchronously or asynchronously. There are two potential

dangers otherwise:

— Drop-To-Zero [112] — A problem that a multicast flow gets extremely low
throughput or its transmit rate converges to zero over time. This happens because
the flow reacts to congestion too often and adjust its transmit rate lower more

than necessary.

— TCP-Unfriendliness — A problem that a multicast flow is more aggressive that
competing TCP flows and cause them to get much lower throughput than ex-
pected. This happens usually because the multicast flow reacts to congestion too
less and adjust its transmit rate higher more than necessary. TCP-friendliness
[35, 33| is necessary because in today’s Internet, TCP is the dominant unicast
congestion control mechanism and thus crucial to the robustness of the Internet.
Although in multicast research community, there has been no consensus on the
exact definition of how TCP-friendly multicast congestion control mechanisms
should be, it is widely accepted that the throughput of a multicast flow should be
within some bounded area around the hypothetical TCP throughputs along the

multicast paths (such as bounded fairness [111]).

e Inter-receiver Fairness [64] — In large multicast trees especially those spreading over
multiple domains, there are usually many different bottlenecks of various available
bandwidth. Receivers behind them thus have different achievable throughput. If each
receiver has throughput matching its capability, the maximum inter-receiver fairness
is fulfilled. The least requirement of inter-receiver fairness is that all the receivers have

the highest possible rate without having the slower ones overwhelmed.

There are two different approaches to attain different inter-receiver fairness policies.

The single-rate approach requires only uses one multicast group for a multicast ses-
sion. All receivers have the same throughput rate. In consequence, the sending rate
has to be adjusted in accordance with the slowest receiver. The multi-rate approach
allows receivers to differentiate themselves and have nonuniform throughput. It comes
with the cost that the designs are usually more complex and more control traffic is

introduced.

1.1 Why “Bundling” Unicast Congestion Control Does not Work
For Multicast

Given the multicast congestion control problem, a first thought may be that simply
putting multiple copies of the same unicast congestion control mechanism together (i.e.
“bundling” unicast congestion control) can work.

For example, for single-rate multicast congestion control, it might be considered enough
for the source to maintain a congestion window separately for each receiver and follow the
smallest window for sending packets at any moment. It is well known that congestion
windows are used to estimate the number of outstanding packets (i.e. the packets that have
been sent but have not been acknowledged yet). As Basu and Golestani stated in [6], “..in
large multicast groups, determining the number of outstanding packets to j ... is not feasible”
(Here j refers to a receiver), and “This would involve sending acknowledgments from each
recewwer j to the sender for some or all packets, ... This procedure does not scale.” Besides,
it is also difficult to decide the packet timeout thresholds (a packet is assumed to be lost
if it has not been acknowledged for this threshold of time since departure), because of the
heterogeneous RTTs between the source and different receivers [6].

NAK (negative acknowledgments) could be an alternative way to maintain congestion
windows. Again, Basu and Golestani stated in [6] that “The essence of a window-based
scheme is to provide quick feedback from receivers in order to achieve tight control at the
sender over the number of outstanding packets to each receiver.” Since NAKs are only sent
when packets are lost, it is not “quick” and breaks “the essence of a window-based scheme”.
Also, at the losses of NAKs, those windows not getting NAKs will not have signals for
adjustments and will have incorrect sizes before later NAKs arrive. Recall that the source

regulates the sending rate by checking each window size, even a single erroneously maintained

congestion window may incur wrong transmit rate.

In general, if we approach the multicast congestion control problem by simply “bundling”
unicast solutions, the amount of feedback traffic, the computation time and the memory for
operation state storage will all be multiplied by N (the number of receivers). If N is large,
obviously some segments of the control loop will break sooner or later. Most likely, the
network is the first to crash because network resource (bandwidth) is more scarce than end
system resources (CPU power and memory).

Furthermore, to make a rate-based multicast congestion control protocol friendly to
TCP, as shown by Golestani in [39], RTT has to be considered. However, since multicast
is based on a tree instead of a path, there is a problem of what RTT to choose. In this
dissertation, we decide to maintain TCP-friendliness on the most congested path between
the source and receivers (for single-rate control) *. Thus the RTT of that path is used for
TCP-friendliness. However, since the network conditions changes frequently and the receivers
may join and leave at any time, the most congested paths in a multicast tree at different
moments are probably different. Hence we need an efficient mechanism to dynamically locate
the most congested path, which is certainly beyond the consideration of simply “bundling”

a set of unicast congestion control solutions together.

1.2 Assumptions

To tackle the multicast congestion management problem, we make some realistic as-
sumptions.

First, we assume SSM (source-specific multicast) [44] model. That is, in a multicast
group, there is only one node that can send data to all others. Note however, since SSM
is just a special case of the traditional model of multicast defined in RFC1112 [26], our
algorithms can also be used for open group multicast (In open group multicast, any node
can arbitrarily join and leave a group, and any node can send data to all others). We also
assume that a group is opened and closed by its source. Any receiver can join or leave the
group freely without informing any other receiver or the source.

Given the fact that the Internet core is hard to change, we make the end-to-end as-

sumptions. That is, we only require that network routers can forward multicast packets

'To keep TCP-friendliness on the most congested path is also the approach adopted by many other
schemes such as PGMCC [94] and TFMCC [114].

according to the IP multicast protocol RFC 1112 [26] (as they forward unicast packets ac-
cording to the IP protocol RFC 791 [87]). Moreover, we do not assume any knowledge of the
underlying network topology (including the interconnection, bandwidth, latency and buffer
size of the links). We do not know the traffic model on any link inside the network, i.e. we
do not know the volume of total traffic and the number of flows going through as well as how
they change over time. We also do not have or need any routing information. Therefore,
from the aspect of our algorithms, the network is a black bor between the source and the

receivers (Figure 1.1).

Receiver

Figure 1.1: Network as A Blackbox
(The multicast congestion control algorithms in this dissertation treat
the network between the source and the receivers as a blackbox.)

The only assumption we make about the traffic on the network is that, the traffic is
adaptive and generated by such transport layer protocols that control the sending rate ac-
cording to additive increase and multiplicative decrease (AIMD) policy [23]. These protocols
are either different flavors of TCP (Tahoe, Reno, New Reno and SACK), or TCP-friendly.
However, we do not assume any knowledge of the parameters of the background flows, such
as the flavor of TCP, the maximum congestion window size and the estimated round trip
time (RTT) etc. In other words, we assume that our multicast congestion control algorithms
compete for bandwidth with other algorithms currently dominating the Internet. We also
assume no multicast packets traverse the same link twice, and the route that a multicast
packet takes is quasi-static ? (i.e. it remains unchanged for at least hundreds of round-trip
times).

Finally, our congestion control algorithms only regulate sending rates and do not con-

sider whether the data need to be transmitted reliably or how to ensure reliable data trans-

2 quasi-static is a term borrowed from [40] where it is used to describe congestion control categorization.

mission. If data reliability should be considered, we assume that there is another module

dealing with reliability issue which direct all traffic through our congestion control design.

1.3 Abstraction of A Multicast Tree as A Unicast Path for Con-

gestion Management Purposes

A key approach that we use to develop single-rate multicast congestion management
solutions is called “most congested path” approach, with which we dynamically map the
multicast tree in question to the unicast path between the sender and the most congested
receiver, i.e. the path with the smallest available bottleneck bandwidth. By conforming
the transmit rate of a multicast group to this path in a TCP-friendly manner, the work is
simplified. Note that some previous work such as PGMCC [94] and TFMCC [114] also follow
this method. The major difference between our work and theirs is the way to dynamically
and effectively locate the most congested path as well as how to avoid redundant control
traffic. The details will be discussed in Section 1.6 of related work.

We also extend this approach to be used in our multi-rate protocol, which includes
an ensemble of single-rate controlled flows in a multi-rate framework. Besides the fact that
each single-rate flow follows the most congested path, this approach is also used for judging
whether a receiver should subscribe to or unsubscribe from any of these flows. For more

details, please refer to Chapter 4.

1.4 Our Contributions

Function placement is an important aspect of networking research. For example, end-
to-end arguments [96] proposed to place functions on end systems because “functions placed
at low levels of a system may be redundant or of little value when compared with the cost of
providing them at the low level.” [96], and has been guiding the Internet evolvement since
its proposal in early 1980’s. In this dissertation, we study the multicast congestion control
problem by assuming different placements of congestion control mechanisms. Considering the
end-to-end principle [96], the placements are on end systems. In consequence, the solutions
we develop in this dissertation are not directly comparable with non-end-to-end ones such
as those in Kar and Sarkar et. al’s work [52, 53, 97, 98, 99|.

As the result of following end-to-end approach, the only network nodes that we can

directly control are sources and receivers. This makes the problem even more challenging,
since we do not have the timely and exact congestion information (such as buffer length,
bottleneck bandwidth) directly from inside the network. Instead, we have to derive the
needed information approximately from the received packet pattern. We study the following

situations with different restrictions and provide better solutions than previous work.

e No support particular for congestion control is provided by receivers.

e There is support from receiver side, but only one multicast group is allowed for a

multicast session.

e There is support from receiver side, and unlimited multicast groups are allowed for a

multicast session.

e Congestion avoidance for the second situation above.

We first study the situation where no special support is provided at receiver side.
That is, receivers have facilities of multicast transport protocols (without built-in congestion
control functions) such as receiving data and monitoring their quality, but they do not have
any designs specific for congestion control purposes such as measuring available bandwidth.
For this scenario we propose LE-SBCC. The source leverages the ACK or NAK common in
many transport protocols to derive implicit congestion information, and filter them properly
before using them for rate adaptation. To do the filtering, we design a unique filter cascade.
This cascade can dynamically and effectively locate the most congested path in a multicast
tree, and pass just enough congestion signals for rate adaption. Due to the lack of support
from receivers, LE-SBCC is a single-rate scheme. The computation complexity and state
requirement are both O(M) where M is the number of receivers in the multicast session
experiencing congestion (M < N where N is the total number of receivers). But we believe
that is the best a single-rate solution can do under such a situation. Besides, since no special
support is required from receivers, it is very easy to bind LE-SBCC with other already
deployed transport protocols by upgrading only the sources.

For the second situation we propose ORMCC. It uses a novel metric called Throughput
Rate At Congestion (TRAC) for the sake of selecting the most congested path. By using

TRAC, the design eliminates the needs to measure RT'T between the source and all receivers

(except the slowest one), therefore suppresses this type of redundant control traffic required
by other similar protocols. TRAC is also used to suppress feedback from other receivers.
As the result, the feedback traffic volume of ORMCC remains approximately constant with-
out regard to the total number of receivers when the network is stable. The computation
complexity and state requirement at both source and receiver side are O(1). As shown
by simulations, ORMCC achieves more TCP-friendly throughput and incurs less feedback
traffic than two best-known schemes of the same kind, PGMCC [94] and TFMCC [114].

For the third situation, we extend ORMCC into a multi-rate framework. By smoothly
combining the fine-granularity control with the coarse-granularity control, we have a multi-
rate scheme called GMCC. It provides a dynamic set of sub-sessions to receivers within
an overall multicast session. In each of these sub-sessions, the sending rate is adjusted
using ORMCC-like mechanism independently from other sub-sessions according to network
congestion status (fine-granularity control). A receiver can join or leave these sub-sessions
to get different sums of throughput rate according to the capacity of the path between the
source and itself (coarse-granularity control). It reduces the IGMP join and leave operations
dramatically, and avoids redundant layer settings (e.g. number of layers), therefore reduces
the control traffic and the burden of intermediate routers. In this scheme, a technique called
probabilistic inter-layer bandwidth shifting is developed to distinguish intra-layer congestion
from inter-layer congestion and explore hidden available bandwidth. That problem has never
been discussed before. In summary, GMCC is a fully adaptive multi-rate protocol with low
complexity.

The last situation we study is the congestion avoidance [23] with support from receiver
side given only one multicast group. We propose MCA+. While congestion control as a
reactive measure takes effect when bottleneck queues are full and packets are beginning to
be dropped, congestion avoidance as a proactive measure responds when backlog is being
built up in bottleneck queues. We do not study other two situations. On one hand, it is
impossible to do congestion avoidance without special receiver support; on the other hand,
we can extend MCA+ to do multi-rate as we extend ORMCC to GMCC.

MCA+ adopts a new congestion detection mechanism based on a new concept called
accumulation. This mechanism allows incipient congestion to be detected at receiver side
in multicast. Once backlog is found to be building up on bottlenecks, the source can get

the information from receivers and adjust the transmit rate early. To our best knowledge,

MCA-+ is the first end-to-end multicast congestion avoidance scheme with good scalability. It
incurs shorter average bottleneck queue and achieves higher throughput without necessarily
incurring packet loss.

To verify the scalability of our schemes, we have developed a multicast discrete event
simulation model in ROSS [19]. With this ROSS model we can easily simulate large scale
multicast sessions on personal computers. In this dissertation, simulations of up to 10,000
receivers (each behind a different bottleneck) have been successfully conducted (and we have
the potential to include more receivers). By doing this, we have increased the order of
magnitude of receiver node number in multicast simulation history by two.

Last but not least, the rate adaptation modules in all the protocols above can adopt
any policy. We actually substitute AIMD with TFRC in LE-SBCC and achieve smoother
throughput rate. For ORMCC, GMCC and MCA+, although we have not done any such
kind of test, due to their modularized design, we believe they also can serve as frameworks

for different rate adaptation policies as well as LE-SBCC does.

1.5 Performance Evaluation Methodology

To show the effectiveness of the multicast congestion management solutions developed
in this dissertation, we need to evaluate their performance. As we assume the network to be a
blackbox, the analytical study of the performance of multicast congestion control schemes is
intractable. Consequently, we use simulations and experiments as the major methodology for
performance evaluation. However, we do provide some theoretical analysis for several aspects
of some schemes after making some simplifying assumptions, e.g. for ORMCC (Chapter 3).

The scales against which we evaluate the performance of our schemes are those chal-
lenges listed at the beginning of this chapter. The performance evaluation methods of some

aspects may not seem obvious at the first thought. Hence we explain them in the following.

Feedback Traffic — For the schemes with feedback suppression (e.g. ORMCC (Chapter 3)),
we count the total number (z1) of feedback packets from all receivers. We also count
the hypothetical number of feedback packets from each receiver if without suppression,
and calculate the average value (z5). If 9 = axy, where « is a small number even
with a large number of receivers, the multicast feedback traffic volume is comparable

to that of a unicast, which indicates the scalability of a feedback mechanism.

10

Drop-To-Zero — To show that the transmit rate of a multicast session is subject to drop-
to-zero problem, we compare it in figures with the rates of unicast sessions that share
the same bottlenecks. For example, as in LE-SBCC (Section 2.2.1.1), we use Figure
2.7 (a) (copied below as Figure 1.2) to show the drop-to-zero problem of a multicast

session with inappropriate feedback filtering:

Multiplexing (drop-to-zero)

1.6
14

12

o8/

Rate (mbps)

osH /|

0.4 H

0.2

.
0 50 100 150 200 250 300 350 400 450
time (s)

Figure 1.2: Drop-To-Zero Example
(The multicast flow (“RM main”) has dramatically lower transmit
rate than those of the unicast flows (“RM1” and “RM2”).)

As a positive example in which a multicast session is not subject to drop-to-zero prob-
lem, the figure (Figure 3.4 (a)) used for ORMCC (Section 3.3.1) is copied below (Fig-
ure 1.3).

The topologies we used for testing drop-to-zero problem basically only contain inde-
pendent bottlenecks. One example is the topology with 10000 receiver nodes for ROSS
simulation (Figure 1.4 copied from Figure 3.5). We focus on independent bottlenecks
and ignore dependent bottlenecks due to the following reason: Recall that we use
“most congested path” approach to tackle the multicast congestion control problem
(Section 1.3). To do the abstraction, we need to compare the congestion status of
the paths between the source and each receiver. Let X; denote the congestion level
of the path between the source and i-th receiver. Therefore, our objective is to select
min;cp X; where R is the set of receivers. Given a subset R’ C R, if the receivers in
R' are behind a common bottleneck, we have X; = X, Vi,j € R',i # j, and our
objective is reduced to min;e(r r)u{x;} X; where j is any receiver in R'. As the result,

independent bottlenecks present more stressful network conditions.

11

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Simulation (ORMCC)

Mul{i-rcvr flow
Single-revr flow -------
Cli

Theoretical share

0.8

0.6

Over-time Average Rate (Mbps)

| | | |
0 200 400 600 800 1000
Time (sec)

Figure 1.3: Drop-To-Zero Avoidance And TCP-Friendliness Example

(The average rate of the multicast flow (“multi-rcvr flow”) is close to that of the unicast flow
(“single-rcvr” flow). That is, the multicast flow avoids drop-to-zero problem. Moreover, the
average rate of the multicast flow is also close to that of the TCP flow (“T'CP”), showing
that it is also TCP-friendly.)

Source

Multicast tr%Wi cast traffic
TR R

Multicast traffic

Cross trafﬁ?l 1 Mbps F TLast hop

Receiver Receiver

Figure 1.4: Example Topology With Large Number of Independent Bottlenecks
(For multicast congestion control, independent bottlenecks present more stressful situations
than common bottlenecks do.)

TCP-Friendliness Similar to drop-to-zero problem, we describe the results in figures. In
the drop-to-zero avoidance example figure (Figure 1.3), we can see that the multicast

flow is TCP-friendly because it gets approximately the same throughput as TCP gets.

Since it is possible for a multicast session to have a large number of receivers, we
deem it important to evaluate the performance of multicast schemes at the presence of many

bottlenecks and receivers. Discrete event simulation is a credible way as we can mimic

12

the real networks very closely with it. Therefore, we develop a multicast simulation model
in ROSS [19] and run simulations of up to 10000 receivers with each receiver behind a
different bottleneck and a couple of crossing flows going through the bottleneck to generate
background traffic. It is worthy of mention that before us, the largest multicast discrete

event simulation only has several hundred receiver nodes.

1.6 Related Work

Since the proposal of IP multicast in RFC1112 [26], researchers have proposed various
solutions for multicast congestion control. In the following, we will first briefly discuss end-
to-end unicast congestion control which is the foundation of our work. After that, we will
discuss both end-to-end and network supported multicast congestion control solutions. Since
end-to-end solutions are similar to our work in this dissertation, we discuss them in more
details. For network supported solutions, we will just review them briefly since they are in

a different domain.

1.6.1 End-to-End Unicast Congestion Control

Obviously, TCP [45] is the most popular and dominant end-to-end unicast congestion
control protocol on the Internet nowadays. To improve its performance, people have proposed
various flavors of TCP such as Reno, NewReno, SACK [49], Vegas [15] and Westwood [20].
Other people have also provided generalized end-to-end unicast congestino control algorithms
such as MCFC [40] and Binomial [5]. Of them TCP is a special case.

Although the unicast work provides concepts and inspirations of how to preform net-
work congestion control, due to the reasons we discussed in Section 1.1, we cannot easily
migrate them to multicast context. Instead, there are some special considerations to be

made, as listed at the beginning of this chapter, which is the focus of our study.

1.6.2 End-to-End Single-rate Multicast Congestion Control
Since LE-SBCC and ORMCC are also single-rate, we compare them with some of the

well known schemes in this class.

13

1.6.2.1 DeLucia et. al’s Scheme Using Representatives

DeLucia et. al’s work in [25] is an early single-rate multicast congestion control scheme
using representatives. It requires two types of feedback from receivers, Congestion Clear
(CC) and Congestion Indication (CI). CC is equivalent to ACK, sent probabilistically, and
CI is equivalent to NAK. A fixed number of receiver representatives are maintained at the
source. If a representative does not send CI or CC for a while, it is ultimately removed
from the set. When the source receives a feedback packet from one of the representatives,
it multicasts an echo packet to all the receivers. The echo packets arriving at receivers
suppress new feedback packets scheduled to be sent. The source uses only the feedback
from representatives to do MIMD (multiplicative increase and multiplicative decrease) rate
adaptation. The scheme specifies some priority levels in the processing of CC and CI for the
purposes of feedback suppression and representative selection.

In this scheme, the representative set is not guaranteed to include the slowest receiver.
Furthermore, it assumes that only a few bottlenecks cause most of the congestion. Based
on this assumption, suppression using echoes is the only mechanism for filtering feedback
from receivers. All feedback packets arriving at the source are used for rate adjustment. In
a heterogeneous network, where there may be many different bottlenecks and asynchronous
congestion, the assumption may not be true. Consequently, the transmission rate may be
reduced more than necessarily and stay very low or close to zero. That is, this scheme may
suffer from the Drop-To-Zero problem.

In comparison, LE-SBCC does not maintain any representative and only requires NAK-
equivalent feedback from receivers. The rate adaptation policy is AIMD (additive increase
and multiplicative decrease). LE-SBCC does not suffer from Drop-to-Zero problem.

ORMCC also maintains a representative, similar to DeLucia’s work. However, ORMCC
only has at most one representative at any time, while DeLucia’s work requires a pool of
representatives. Moreover, ORMCC uses explicit rate feedback instead of single-bit feedback.
Feedback suppression in ORMCC is not timer-based. That means, in ORMCC, feedback is
suppressed as the result of comparing certain metrics, while in Delucia’s scheme, feedback
is suppressed by the arrivals of feedback echoes. Finally, ORMCC adopts AIMD instead of
MIMD, and does not suffer from Drop-to-Zero.

14

1.6.2.2 PGMCC

Rizzo’s PGMCC [94] is built on top of a reliable multicast transport protocol PGM
[106]. At any time it keeps an acker, a representative receiver which dictates the source for
rate adaptation.

PGMCC requires two types of feedback packets, ACK and NAK. NAKs are sent by
all receivers when they detect packet losses, and contain packet loss rate and the highest
received sequence number. The source uses the information carried in NAKs to compare the
estimated throughput of different paths between the source and receivers. To compute the
estimated throughput, PGMCC uses a simplified TCP average throughput formula [85, 76].
Packet loss rates are measured locally by receivers, and RTTs are measured by the source in
terms of packets when it receives NAKs. The receiver with the lowest estimated throughput
is chosen as the acker.

The source requires ACKs from the acker and does window-based congestion control
similar to TCP, while using an extra token mechanism to regulate packet sending. PGMCC
itself does not provide any feedback suppression. Instead, it relies on the intermediate nodes
(network elements) of the underlying PGM protocol to aggregate feedback packets.

Since the source in PGMCC needs to calculate the estimated throughput for each
receiver, its computation complexity is O(N) (N is the number of receivers). Furthermore,
receivers need to send feedback continuously to the source for RTT estimation purpose. We
can see that PGMCC may not be suitable for very large groups. Also, according to Seada
et al’s work [100], feedback aggregation can degrade PGMCC performance.

LE-SBCC differs from PGMCC mainly in the following aspects: (a) LE-SBCC is a
purely source-based protocol. It does not require receivers to do any measurement except
the simplest packet loss detection (which is needed by any congestion control protocols),
and only needs NAKs. PGMCC, instead requires more information in feedback packets, e.g.
packet loss rate, and it needs two types of feedback, ACK and NAK. (b) LE-SBCC does
not maintain any representative. (c) LE-SBCC does not assume any underlying transport
protocols.

However, similar to PGMCC, LE-SBCC requires O(N) computation complexity. Feed-
back aggregation can also pose performance problems to LE-SBCC, as we will show in Chap-
ter 2.

ORMCC only requires NAK-like feedback, making the scheme simpler, though receivers

15

in ORMCC also have to measure the receiving rate and include it in the feedback. ORMCC
also uses the concept of representative, but it does not depend on TCP throughput formula
to select representative. ORMCC has other major advantages in that (1) ORMCC does
not require all receivers to continuously send feedback to the source, (2) The computation
complexity at both source and receiver side is O(1), and (3) ORMCC provides feedback sup-

pression by itself, without assuming any underlying transport protocol or network support.

1.6.2.3 TFMCC

Widmer’s TFMCC [114] extends equation-based congestion control TFRC [33] to mul-
ticast. The source controls the sending rate by setting it to the expected throughput of the
current limiting receiver (CLR), where CLR is the receiver found to have the lowest expected
throughput of the group, similar to acker in PGMCC. Expected throughput of a receiver is
calculated at receivers using the full TCP throughput formula [85, 76]. For the calculation,
all receivers need to measure packet loss event rate and RTT between the source.

The RTT measurement in TEFMCC has the following procedure: Each receiver needs
to get an initial RT'T measurement by exchanging timestamps with the source. After that,
one-way delay from sender to receiver is used to adjust RTT estimation. If one-way delay
indicates that RT'T may have changed significantly, the receiver exchanges a packet with
the source to measure real RT'T. Receivers are prioritized when their packets need to be
individually echoed by the source for the purpose of RTT measurement. In addition to
receiver side RTT measurements, TEFMCC also has sender-side RTT measurements, with
which the source adjusts a reported expected rate if necessary to avoid oscillation.

TFMCC provides feedback suppression. When a receiver has a new calculation of ex-
pected rate, it starts a timer of random expiration time, calculated as a function of estimated
upper bound on the number of receivers. If before the timer expires, an echo from the source
arrived with the current sending rate, the receiver compares its own expected rate with the
current sending rate. If less, a feedback packet is sent, otherwise, it is suppressed. On the
other hand, if no echo from the source arrives before the timer expires, feedback is sent.

Still, TEMCC requires receivers to measure RTT, which has some negative effects: (a)
The sender needs to send echoes to receivers individually. Let alone the relative complexity
(e.g. the echo precedence), the processing overhead of the sender increases constantly with

the group size. (b) Although with the one-way delay adjustment mechanism, in a dynamic

16

network environment, receivers may need to send feedback to the source for the sake of RTT
measurements relatively frequently. In consequence, traffic going toward the source may
grow as the number of receivers increases.

TFMCC’s feedback suppression is an enhanced version of Fuhrmann’s work [37]. It
needs an estimated value of maximal receiver number. The number can be either estimated
by the mechanisms such as those in [36, 69], which introduces more complexity to the scheme,
or has to be guessed. An estimation diverging too much from the real value may degrade the
performance of the feedback suppression. Besides, because the suppression is probabilistic
timer-based, additional delay is introduced into feedback.

LE-SBCC differs from TFMCC mainly because of its simplest requirement for feedback
information and receivers, but TFMCC has advantage of doing feedback suppression.

ORMCC, on the other hand, distinguishes from TFMCC because receivers do not
need to measure RTT. Source in ORMCC does not need to do individual packet echoing.
Moreover, the feedback suppression in ORMCC is not timer-based. The feedback packets
are decided to be sent or not at the moment when congestion is detected, instead of waiting

for timer expiration or echo arrival.

1.6.2.4 MDP-CC

In Macker et al's MDP-CC [75], the source collects feedback with loss event rates
from receivers, and predict their estimated throughputs again by TCP throughput formula
(85, 76]. According to the results, the source selects a pool of slowest receivers as congestion
control representatives (CCRs). Among the CCRs, the source chooses the slowest one as
worst path representative (WPR). Then, the source increases/decreases the transmission rate
exponentially toward the predicted rate of the WPR. The feedback suppression in MDP-CC
is probabilistic timer based.

As shown in that paper [75], maintaining multiple representative candidates requires
considerable complexity. The computation of the estimated throughput by the source for all

receivers for representative selection restricts its scalability, as we discussed before.

1.6.2.5 LPRF
In Bhattacharyya’s LPRF scheme, receivers’ feedback is also filtered by the source for

rate adaptation, as in LE-SBCC. However, the filter does not guarantee to catch the most

17

congested path and therefore can suffer from performance degradation. In fact, one of LE-
SBCC's filter is an improved version of LPRF. More details are covered in Chapter 2 Section
2.1.1.

1.6.2.6 Other Schemes

There are also several other schemes in this class.

Wang et al’s scheme [111] proposed an ACK-based and window-based protocol. There
is no feedback suppression, and all receivers send congestion signals to the source. Assume
there are N receivers, the source accepts each signal with probability 1/N. Therefore, it
needs to estimate the total number of receivers.

In TCP-SMO [67], apart from the multicast session, the source maintains a separate
TCP connection to each receiver, and use the aggregate congestion information of all these
TCP connections to do congestion control. As mentioned in the paper, TCP-SMO can only
be used for up to medium group size with 1000 receivers.

Another scheme SRM-TFRC [117] is designed for SRM [34]. It assumes the old mul-
ticast model, i.e. every node can be source in a group. The source collects feedback and
calculate “rate states” for each receiver using average TCP throughput formula like TFRC
[33] does. A feedback synthesizer calculates the weighted average of all receiver “rate states”,
and gets a target rate toward which the source adjust the sending rate.

Shi’s work [104] is similar to TFMCC. Receivers measure estimated throughput using
a simplified TCP throughput formula. The one with the lowest estimation communicate
with the source which does AIMD instead of TFRC. RTT estimation problem is left open
in this paper.

Ha’s work [43] divides time into epochs. In each epoch, the source reacts to the max
number of loss notifications by any receiver. However, epoch is not clearly defined here. If
epoches are small, the scheme can suffer from drop-to-zero.

Morris’ work [80] chooses the receiver with the lowest receiving rate in each period and
adjusts the transmit rate according to the minimum reported receiving rate. It could also
suffer from drop-to-zero if different receivers have minimum receiving rates alternatively in
consecutive periods. Besides, the way it adjusts rate is not TCP-friendly.

Liu’s work [70] actually borrows the ideas from LE-SBCC and other work. Similar
to TFMCC, receivers use TCP formula or TEAR [92], then the one with lowest estimation

18

sends NAK to the source for rate adapation. It suppresses NAK from receivers who have
higher estimations.

Bouras’s work [13] fits ATM network or DiffServ network better. The source collects
loss rate and delay jitter from receivers, and check their congestion status with these values,
calculate the rate that can satisfy receivers the best (with regard to a utility function) for

the next step.

1.6.3 End-to-End Multi-rate Multicast Congestion Control

McCanne et al in [77] proposed the first end-to-end multi-rate congestion control
scheme for multicast. In RLM, the source sends data over several separate multicast groups
(layers). Beginning from the lowest layer, each receiver periodically joins a group of higher
layer to explore available bandwidth. If packets are lost after the join, the receiver will leave
the group. The bandwiths assigned to layers are static.

RLM is found to be unfriendly to TCP and improved by the RLC scheme [109]. Periodic
traffic bursts are generated in RLC for bandwidth inference. At synchronization points,
a receiver may join a higher layer depending on the inference. Bandwidth of layers are
exponentially distributed, though still statically, to generate exponential rate decrease (like
TCP) when receiver leave higher layers due to packet losses.

Still, RLM and RLC sometimes exhibit pathological behaviors, shown by [60]. The
authors of that paper proposed PLM, using packet pairs to infer the bottleneck bandwidth
and decide which layer to join. Some fair queueing mechanism on router is assumed for
assuring the performance of this scheme. Nonetheless, bandwidths allocation of layers are
still fixed.

RLS [57] is a work similar to RLC, but with more carefully designed join and leave
interval.

In MSC [55], receiver monitor the effect of their joining experiments (using RLM) on
all layers and base their join and leave on the observation.

RPLM [83] observed that in sparse mode multicast routing schemes such as PIM-SM
[29] and CBT [3], different multicast groups with the same set of nodes may use different
multicast trees and fail layered multicast congestion control protocols such as RLM, RLC and
so on. It therefore proposed a layered multicast scheme based on rendezvous points (RP),

improved old layered schemes by differentiating congestion on common multicast trees from

19

per-RP congestion. Although it fetches rendezvous point information from designated routers
(the multicast routers directly connected to receivers), other parts of design are end-to-end.

MLDA [105] is a little different from the schemes above in that receivers measure
maximum possible receiving rate by TCP throughput formula [85] and then decide which
layer to join. For RTT estimation, it uses frequent one-way measurement complemented
by infrequent two-way measurement. In each round, the source collects receiver’s estimated
throughput and adjust the layer setting. It assumes old multicast model, in which every
node in a group can be source, and uses local representatives to alleviate the scalability
problem introduced by RTT measurement. Note that in each round, the sending rate is
fixed, therefore some adaptability is sacrificed.

HALM [71], is a scheme with fixed number of layers but the layer bandwidth may
change dynamically. Receivers estimate throughput rate using the TCP formula and send
this information back to the source. The source gets samples from some receivers and
calculate the optimal rate allocation for each layer periodically. The RTT measurement
procedure in HALM is similar to MLDA. Feedback from receivers is suppressed by using
probabilistic timers. The computational complexity of HALM increases dramatically with
the number of layers.

There are also several other schemes FLID-DL [16], Fine-Grained Layered Multicast
[18], STAIR [17], Wave and Equation Based Rate Control [74]. They emulate rate in-
crease/decrease by requiring receivers to join and leave groups/layers while the source sends
data to each group. That means they are closely coupled with routing and IGMP. This
coupling leads to some potential problems. For example, these schemes assume that all
groups in a multicast session follow the same path, but this may not be true as shown by
RPLM [83]. These schemes assume that a receiver leaving a group can make the multicast
tree pruned and reduce the traffic on certain paths. However, aggregated multicast trees
[30] do not necessarily prune trees dynamically and hence break the assumptions of these
schemes. Besides, frequent group joins and leaves can introduce significant contral-plane
load at routers in the entire tree.

In Wu’s work [115], receivers measure the difference between expected throughput and
actual throughput (similar to Vegas) and join or leave based on the difference. Two other
papers [93] and [58] proposed that receivers estimate their throughput using TCP throughput

formula and decide which layers to join or leave. The sending rates in the layers in all these

20

three schemes are fixed.

In SAMM [118], receivers estimate available bandwidth and send it toward the source.
The reports are aggregated by the router (in network-supported scheme) or by source only
(end-to-end scheme), then the source adjusts sending rate and layer number. Between the
adjustments, the sending rates in the layer are fixed. This paper does not discuss how to
dictate join and leave operations of receivers.

Jiang et al’s scheme [48] uses a concept different from other end-to-end multi-rate
schemes. In this scheme, receivers are split into two disjoint groups, V-group and B-group
(note that in other schemes receivers join groups cumulatively). The source sends data to
B-group at the lowest possible rate allowed by the application, and it sends data to V-
group at a variable but higher rate. The source polls the whole group and gets estimated
“Isolated loss rate” (expected max-min share of bottleneck bandwidth) from receivers. It
then calculates the rate that can lead to max “inter-receiver fairness” for V-group receivers.
Receivers unable to receive data at B-group rate are pruned. Other receivers switch between
the two groups according to their maximum receiving rates. This scheme cannot have many
groups because otherwise there will be great redundancy of traffic.

Similarly, Cheung’s work [21] also use separate groups. Receivers try different groups
when they receive invitation from the source. On the other hand, the source polls receivers
periodically, and adjusts sending rate in each group according to how many receivers in each
group are “unloaded/loaded/congested”.

Gu-In Kwon and John Byers’ scheme SMCC [59] is similar to our multi-rate scheme
GMCC, using single-rate multicast congestion control (in particular, TFMCC) to simplify
the task of multi-rate control. However, it has certain limit on the rate adaptation within
each layer, and therefore is not fully adaptive. More detailed discussion has been included

in the introduction part of GMCC chapter 4.

1.6.4 Network Supported Single-rate Multicast Congestion Control

Unlike end-to-end schemes, network supported algorithms need support from routers
or nodes other than source and receiver.

Siu’s work [108] is an early single-rate solution for ATM network. It extended unicast
congestion control functions on switches to support multicast and preserve max-min fairness

characteristics.

21

Sedano’s work [101] is based on active networks where functions can be added to router
using active service [107]. It does hop-by-hop congestion control. A receiver sends calculated
“proper rate” (at congestion) and ACK (at packet arrival) to upstream routers toward the
source. Fach router on the path adjusts its forwarding rate for this flow in accordance with
the reports.

Chiu et al’s work [22] is a window-based single-rate scheme. It assumes an underlying
repair tree [50]. Receivers send ACKs, aggregated by intermediate nodes in the repair tree.
Upon receipt of aggregated ACKs, the source adjusts its congestion window. The sending
rate is smoothed to avoid the window-related burstiness. In this scheme, receivers unable to
receive data at the minimum rate are pruned so that the average throughput of the group
can be higher. Another single-rate scheme MTCP [91], assumes a logical tree topology. In
this tree, each internal node acts as a receiver and a source at the same time. It aggregates

the congestion information from its subtree and does window-based congestion control.

1.6.5 Network Supported Multi-rate Multicast Congestion Control

With network support, some schemes of this class have optimal performance as their
goals.

In Sarkar’s work [97], for each session/flow going through a link, routers detect its
saturation status, i.e. whether this flow is using its bandwidth share fully. According to
the saturation status, routers update the control packets exchanged between the source and
receivers. The source then update rate according to the information in control packets.
Max-min fairness [46] is achieved by this scheme. Another Sarkar’s work [99] let routers
drop packets if their calculated downstream rates are smaller than incoming rates. It also
achieves max-min fairness.

Kar’s work [52] and Sarkar’s another work[98] are another two papers in which routers
regulate multicast session rates. In Kar’s work [52], control packets are sent back and forth
with “prices” (a measure of congestion) updated by routers. Upon receipt of control packets,
routers calculate optimal session rates with an optimization algorithm. In Sarkar’s work [98],
routers monitor buffered packets for each session in order to decide whether or not to forward
a packet for the session. This scheme attains max-min fair rates. Another Kar’s paper [53]
is an enhanced version of [52], and allows different types of user utilization to be maximized.

MFQ [32] utilizes active queue management on routers. By dropping and queueing

22

packets properly, it can achieve any of the several inter-session fairness such as max-min
[46]. The source in MFQ is not adaptive or just changes sending rates with some fixed
pattern such as that in FLID-DL [16].

LDMCC [38] works on DiffServ [10] network. It needs support from routers to separate
multicast traffic from best-effort traffic, and to provide two-level priority packet marking
and dropping to guide receivers to stable optimal subscription levels. Max-min fairness is
achieved.

There are also other schemes in this class that do not aim for optimal performance.

SIM in [42] is more or less similar to end-to-end multi-rate congestion control, but it
does require the routers to detect congestion and set congestion marks on packets as well as
to aggregate receivers’ feedback. Using the congestion marks and the aggregated receiving
rate in the feedback packets, the source adjust layering settings (called “menu” in this paper)
including the layer number and sending rate, and maintains the settings till next adjustment.

Rainbow [119] is the only window-based multi-rate scheme. Each receiver maintains a
window of data to request. This window is increased when data packets arrive, and halved
when loss is detected. Requests with window size are sent to the source, and are aggregated
by routers before reaching the source. The source then sends packets according to the
aggregated feedback which has minimum requests.

RLMP [41] requires routers to support two-level priority of packets. When congestion
happens. low priority packets are dropped first. If a receiver is in multiple layers, the top
layer is of low priority and other layers are of high priority. RLMP uses RLM-like methods
for receivers to decide when to join or leave.

Similar to Cheung’s work [21], in Ramamurthy’s work [90], each receiver joins one of
the separate group exclusively so that those with similar metrics of bottleneck bandwidth
and RTT are grouped together. However, these groups are formed during the process of
building multicast tree. That is, it is combined with multicast routing. In each group there
is a single-rate control. In a dynamic best effort network, consistently changing bottlenecks
may pose serious problems to this scheme.

An earlier work that also combines routing with congestion control is Shacham’s work
[102]. It assumes network topology knowledge and bandwidth knowledge, which are used
to construct best multicast trees. Fixed rates are assigned each layer, and there is no join

and leave by receivers. TopoSense [47] assumes multicast tree knowledge as well. Receivers

23

decide whether to join or leave according to the tree topology information they have.

In a different SAMM [1] (not the one in [118]), every router watches the credit (available
buffer space) and allows a packet through if all downstream routers have enough credit.
Receivers send receiving rates back. These packets are merged by routers, which calculate
the desired number of layers and rates in each layer. The source at the receipt of these
reports adjusts the layer setting accordingly.

Legout’s work [61] proposed a different routine for allocating bandwidth to multicast
flows that is not TCP-friendly. Routers allocate bandwidth to multicast flows as a logarith-
mic functions of the number of receivers downstream. This paper argued that this can be
an incentive to deploy multicast. In this scheme, receivers use protocols like RLM/PLM to
join/leave layers.

LVMR [65] organizes a multicast session as a hierarchy with agents. These agents,
which can be receivers themselves, collect information from the receivers in subtree and
coordinate them for joining and leaving. Like other receiver-driven methods, the source does
not provide rate adaptation. Some of the authors of this paper later proposed “layer-based
congestion sensitivity” [66]. It makes receivers in different layers respond (join and leave)
differently to congestion so as to enforce inter-layer fairness.

Some schemes do not require receiver to join and leave layers to achieve different
throughput. Instead, they put functions on routers which control the layers each receiver
can have. WRHMCC [95] lets each receiver maintain a window (of packets to be received)
and a RTT between the source. The window is maintained in a way similar to TCP. Receivers
calculate their estimated rates as the window size divided by RTT, and send them to the
source and routers. The source sends at the fastest rate reported, the routers filter packets to
regulate the flows to downstream receivers in accordance with the rates reported by receivers,
and thus achieve multi-rate. NLM [51] uses the TTL field in IP headers and routers’” TTL
threshold to let router control the layers. In Nakauchi et al’s work [82], there are actually
not multiple multicast groups as layers. Instead, packets in different layers are distinguished
by some bits in their headers. Routers filter packets belonging to higher layers and request
upstream ones to do so (by signaling) in accordance with their capacity. In consequence,

each receiver gets different subset of data.

24

1.7 Dissertation Structure

In Chapter 2, we present the filter cascade design of LE-SBCC. Some simulations and
analytical discussion are provided to show the necessity of each filter. Other simulations are
used to evaluate its performance such as drop-to-zero avoidance and TCP-friendliness. We
also describe the positive results of replacing AIMD rate adaptation with TFRC module.
An experiment using Linux implementation of LE-SBCC to show its performance in real
networks is included as well.

In Chapter 3, we follow the scheme details with simulations. Along with some basic
simulations to verify its performance, we compare ORMCC with two other well known single-
rate multicast congestion control PGMCC [94] and TFMCC [114], showing that ORMCC
outperforms them under most situations. We also provide emulation results in Emulab [113]
and large scale simulation results (of 10000 receivers) in ROSS [19]. Analytical study of some
aspects of ORMCC’s performance are provided in Appendix C.

In Chapter 4, we compare our scheme with a recently proposed similar work SMCC
[59] qualitatively. After defining the metric to measure congestion, we describe how to use
it to dictate receivers’ join and leave operations. The new technique of probabilistic inter-
layer bandwidth shifting used to explore hidden available bandwidth is presented there. ns-2
simulation results and large scale ROSS simulation results are provided.

In Chapter 5, we begin with the theoretical description of the concept accumulation,
then develop an end-to-end framework to measure accumulation at receiver side and associate
it with congestion. Two flow charts along with detailed description are given to help readers
understand the operations of the source and receiver respectively, followed by simulation
results.

We conclude our work in Chapter 6 and discuss the future research briefly.

CHAPTER 2
LE-SBCC: Loss-Event Oriented Source-based Multicast

Congestion Control

In this chapter, we address the multicast congestion control problem for such a situation:
No support particular for congestion control is provided by receivers.

That means, receivers have facilities of multicast transport protocols (without built-in
congestion control functions) such as receiving data and monitoring their quality, but they
do not have any designs specific for congestion control purposes such as measuring available
bandwidth. One scenario with this situation is that, an administrator installed a multicast
transport protocol commonly on all user machines (as receivers) and a multicast server (as
source). Later, he/she wants to upgrade these machines for better multicast congestion
control but does not have access to all user machines any more. The only choice is to
upgrade the server as the source.

We present a single-rate multicast congestion scheme LE-SBCC as the solution. The
scheme is purely source-based in the sense that it operates on a stream of loss-indications
(LIs) from the receivers and does not require any other support from network elements,
receivers or in the packet format of underlying multicast transport protocols. This feature
distinguishes it from other single-rate schemes like PGMCC [94], Equation-based TFMCC
(114, 112], MTCP [91], Kasera et al [54], Golestani et al[39], and our later scheme ORMCC
in Chapter 3. These latter schemes require some form of special support at receivers (eg:
acker capability, RTT/loss estimation capability), network elements (eg: scheme-specific
aggregation capability, active services) or protocol packet-formats (eg: new header fields).

A purely source-based scheme can be implemented by a simple upgrade of the source
of a multicast transport protocol without touching the receivers as long as they generate
minimal congestion feedback (as in the example scenario above). The source-based nature
of the scheme does not incur extra congestion-related (S,G) state in network elements and
receivers, which can be directly exploited to support multi-source multicast applications (like
interactive multi-player games and online military training simulations). Although at the

source we maintain some per-receiver state in the worst case, efficient implementations can

25

26

reduce the average case memory requirement to below 1MB for 10,000-50,000 receivers. This
scheme is modular and can allow different control policies like AIMD (for data) or TFRC (for
multimedia). This holds tremendous potential in the implementation of multimedia services
and applications such as live media streaming, video conferencing and video-on-demand.
The LE-SBCC scheme leverage Bhattacharya et al’s LPRF [7, 9]. It differs from LPRF
in that it tackles the drop-to-zero problem under high degrees of multiplexing, addresses sev-
eral implementation issues and has a much faster transient response. We believe that it is the
first purely source-based scheme to fully address all components of single-rate source-based
multicast congestion control, i.e. drop-to-zero issues, TCP friendliness, RTT estimation,

robustness and scalability up to 10,000 receivers.

2.1 LE-SBCC: Scheme Description

Loss event

Loss
Indication

ATF Module

v v

RIT
¥ Estimator

Figure 2.1: Cascaded Filter Model of LE-SBCC

The LE-SBCC scheme consists of a purely source-based cascaded set of filters and
RTT estimation modules feeding into a rate-based additive increase/multiplicative decrease
(AIMD) module (Figure 2.1). These filters, elucidated in section 2.1.1, together transform
the multicast tree to appear like a unicast path for the purposes of congestion control. Also,
unlike TCP, the scheme is not self-clocked but acts upon a stream of loss indications (LIs)

from receivers. The filters are then designed to address the following key problems:

Drop-to-Zero: is the problem of reacting to more loss indications (LIs) than necessary
leading to a beat-down of the multicast flow’s rate[112, 9]. This occurs because the

multicast flow receives LIs from multiple paths and may not filter Lls sufficiently.

27

TCP-unfriendliness: is the problem of reacting to less LIs than a hypothetical TCP flow
would on the worst loss path [14, 112, 114]. TCP-friendliness is a subject of current
debate [33, 94, 114]. In particular, Padhye et al’s TCP throughput formula [85] requires
the definition and estimation of “loss rate” and “RTT” of the paths. The unicast
scheme, TFRC [33] introduced the concept of loss events (LEs) and uses the LE rate
instead of the LI rate as the “loss rate.” An LE is a binary number defined every
RTT per receiver which is 1 when one or more Lls are generated in that RTT by the
recetver, and is 0 otherwise. Like TFRC [33], this paper will also first derive LEs from

LIs before responding to congestion.

RTT estimation: PGMCC and TFMCC [94, 114] have receivers estimate RTT and drive
the control based upon paths having the maximum value of (RTT/p), where pj is
the per-packet LE probability. Our proposed scheme LE-SBCC computes max RTT
and max p;, concurrently and uses both these estimates to drive the AIMD module.
This decoupled use of max RTT and maxp, represents a sub-optimal approach in
general[94, 114, 112]. However, our RTT-estimation approach tends to measure the
max RTT from the currently congested sub-tree, which reduces this suboptimality in

practice.

2.1.1 Cascaded Filter Model

Figure 2.1 illustrates the outline of the building blocks of the scheme implemented
at the multicast source. The cascade of filters converts a stream of loss indications (LIs)
from receivers into per-receiver LEs, filter the LEs further, and finally outputs a stream
of rate-reduction indications (RRs) to the rate-based AIMD module (at most one RR per
RTT). The AIMD module performs multiplicative rate decrease (MD) upon receipt of a RR
and performs additive rate increase (AI) each time a RR is not received within an increase
interval. Observe that this closely models the behavior of AIMD control on a single path
where RRs are triggered by LEs [33]. The modules work as follows:

LI2LE filter: This filter converts per-receiver loss indications (LIs) into per-receiver loss
events (LEs). Recall that an LE is a per-receiver binary number which is 1 when one
or more LIs are generated per RTT per receiver, and 0 otherwise. The source stores

a per-receiver timestamp (Trqstpassea) Which records the time when the last LI was

Loss
indication

Per receiver
meanoss delay
table

—»
To Max-LARF filter

Figure 2.2: Loss Indication to Loss Event Filter (LI2LE)

RTT estimate

28

converted and passed as an LE. If a new LI arrives from the receiver after a period

SRTT + 20 of® TrastPassed, it is converted into an LE and passed, and the timestamp

TrastPassed 1S updated to the current time. Else the Lls are filtered. This filter is critical

because the rate-based AIMD module is not self-clocked (no acks like TCP, PGMCC

[94] or Golestani [39]); which leads to large burst losses with drop-tail queues (see

section 2.2.1.3).

Loss event

Per receiver
L.E. counter

Y%

Periodically decay

max LPRF
manager

Loss event from
“Worst” receiver

RTT estimate

Figure 2.3: Max-LPRF: Max-Linear Proportional Rate Filter

Max-LPRF: The goal of this filter is to pass, on the average, the number of LEs corre-

sponding to what the source would have received from the worst case receiver. This

worst-case loss rate estimation problem has been studied earlier in the literature (see

[7] and references therein). Our filter is an extension of Bhattacharya et al’s Linear

Proportional Response Filter[7] (LPRF). The LPRF is a filter which passes loss in-

3SRTT = average of RTT samples similar to the variable used in TCP

29

L;
3L

dications (LIs) with a probability where L; is the number of LIs from receiver
1.

We found that we could not use the LPRF filter directly because of a number of
issues. Firstly, it was originally presented under Markovian model assumptions [7]
which do not hold under high multiplexing conditions. Therefore we found that it
was susceptible to the drop-to-zero problem. Second, LPRF did not quickly adapt to
sudden increases in worst-case loss rates. For example, consider a steady state case
with N receivers, where each receiver has a loss rate of 1%. If one of the receivers

11

suddenly starts experiencing a loss rate of 10%, then LPRF converges to the “worst”

receiver very slowly, shown in the following.

Assume on average n packets are lost by each 1% loss receiver since the status
changes, therefore 10n packets are lost by the 10% loss receiver. LPRF passes

each loss indication (LI) from receiver ¢ with probability «;, where

i=1,2,...N (2.1)

X; is the total number of LIs from receiver . Therefore, the average total

number of LIs passed by LPRF under the above situation is,

Ni n 10 10n N +99n
n n prny
it (N=1)n+10n (N —=1)n+10n N+9

If N is very large and n is small, the value of above formula is approximately
one, instead of 10n which is the packet number loss by the most congested
receiver. Only when n is very large can the value converge to 10n. If the

packet loss history is considered, it converges even slower.

Third, the passing probability of Equation (2.1) above does not guarantee passing
the number of LIs corresponding to the most congested receiver under all situations.
Fourth, LPRF works with LIs instead of LEs. Our subsequent arguments show that
using LEs is much superior to using LIs. Finally, it does not specify an RTT estimation

procedure.

30

The Max-LPRF works as follows: Assuming X is the count of LEs from receiver 7, this
probabilistic filter takes as input all the LEs from receivers (£;X;) and on an average
passes the maximum number of LEs from any one receiver (i.e. max; X;). In particular,
it passes each LE with a probability % The LE counts per receiver (X;) are decayed
periodically by 10% every 100 SRTTs. The O(N) state requirements of both LI2LE
and Maz-LPRF are not a big issue because single-rate schemes are typically targeted
for a small-medium scale (< 10000 receivers). Maz-LPRF tracks the worst path better
than LPRF and is the crucial building block for drop-to-zero avoidance. It operates
on per-receiver LE counts since they differ dramatically from LI counts in drop-tail

queueing networks with no self-clocking.

Subsequent LEs
Fast LE ignowed for rate
followed by 2

rate reduchon

reduction

§— Congestion Epoch ——Pp

b SRTT+ 4 SRTT+2
.S'RTTI.?‘_ o —e— s —
+lo

= 4 - B
4 ~q ; L | -
Silence Fenod
Ho data Ho rate Limear rate
trananisson increase i ease

Figure 2.4: Adaptive Time Filter (ATF)

>
Time line —Pp

Adaptive Time Filter (ATF): This filter shown in Figure 2.4 simply drops excess LEs
passed by Max-LPRF in any RTT to enforce at most one rate reduction (RR) per
SRTT + 4o. In addition, the filter also imposes a “silence period” of 5(SRIT + 40)
when no packets are sent. The goal is to reduce the probability of losing any control

traffic or retransmissions during this phase.

RTT Estimation: All filters and the AIMD module need RTT estimates which is fed by
the RTT estimation module. It works similar to the TCP timeout procedure i.e. it
calculates a smoothed RTT (SRTT) and a mean deviation which approximates the

standard deviation 0. However the set of samples is pruned to exclude a large fraction

31

of samples which are smaller than SRTT/2 (i.e. smaller by an order of magnitude)
to bias the average RTT higher. The rate increase uses intervals of length SRTT +
20 while other functions differ in their use of o as described earlier. Observe that
this LI-driven RTT estimation procedure will tend to opportunistically measure the
worst RTT of paths which are generating more LIs. That is, the procedure tends
to estimate the worst RTT from the currently congested sub-tree. Therefore, the de-
coupling of RTT estimation from worst-case loss rate estimation does not lead to

significant suboptimality in practice.

In summary, for ideal operation, the scheme expects: (a) at least one LI per receiver
seeing loss per RTT if packets are lost in that RTT (i.e. at least one LE per RTT) and
(b) timely generation/forwarding of feedback by receivers/network elements to allow reliable
RTT sampling *. In general, if expectations (a) and (b) are not satisfied completely or satis-
fied in an unreliable manner, the scheme performance will degrade. In particular, the scheme
is sensitive to arbitrary delays introduced by receivers/network-elements in generating an LI
corresponding to a lost packet. Further LI aggregation like in PGM [106] itself is a form of
filtering which suppresses receiver IDs, timing information and reduces LI or LE counts, thus
conflicting with (a) and (b) above®. We examine such performance effects in the following

sections. The pseudo code for the scheme is presented in Appendix A.

2.1.2 Scalability Discussion

As readers have noticed, in LI2LE filter we maintain a state for each receiver reporting
LI (loss indication). Therefore, the number of states grows linearly with the number of loss
reporting receivers. However, notice that the set of receivers that experience and thus report
packet losses is different from the set of all receivers in a multicast session. Let M be the
receiver amount of the former kind and NV be that of the latter kind. Clearly, M < N because
all receiver do not necessarily experience packet losses at any moment. Consequently, the
number of states we maintain at the source for LI2LE filter (i.e. M) does not necessarily

grow linearly with the total number of receivers.

4Within these constraints the scheme may be successfully applied to unreliable multicast transport pro-
tocols

SLIs carry RTT information which affects the RTT estimation, and LEs carry receiver IDs which affects
the max-LPRF filter.

32

Another potential problem is the risk of feedback implosion. Since LE-SBCC is a
purely source-based scheme, it does not have control over receiver facility and thus leaves
the task of feedback suppression to other parts of multicast transport protocols.

In summary, in terms of scalability, we believe that LE-SBCC has done the best a

purely source-based multicast congestion control protocol can do.

2.2 Performance Evaluation

We have evaluated the performance of LE-SBCC to test for Drop-to-Zero avoidance,
TCP-friendliness and LI aggregation effects. We use the following methods to test our

scheme:

1. Simulations to observe the detailed scheme dynamics and background TCP dynamics

for tens of receivers, and to explore the scheme performance for up to 10000 receivers.

2. Simple Markov chain based modeling to obtain a better understanding the choice of

LEs as opposed to LIs in our scheme.

3. Linux-based implementation/experimentation (high multiplexing degrees and up to
tens of receivers) to understand implementation issues and test performance on a real

network.

2.2.1 Evaluation: Drop-to-Zero Avoidance
Recall that Drop-to-Zero Avoidance is the problem of reacting to more loss indications
(LIs) than necessary leading to a beat-down of the multicast flow’s rate. Drop-to-Zero

problem occurs in the following scenarios :

1. High multiplexing, where many flows share a common bottleneck; and the multicast
flow receives independent feedback from several such paths. In such a case, the loss
rates observed at the source are independent of sending rate, and the multicast flow

receives feedback from several paths which requires filtering.

2. Large receiver sets with heterogeneous loss probabilities for different receivers result in
a huge number of LIs. It becomes important that the scheme does not react to more

LIs than that generated by the worst-loss receiver.

33

3. LI aggregation leads to degradation of loss and timing information as some LIs are
suppressed by the intermediate aggregator. Aggregation effects are discussed in a later

section.

We have analyzed the drop-to-zero issue using simulations and Markov Chain based

theoretical analysis.

2.2.1.1 Simulations Illustrating Drop-to-Zero Avoidance

Topology: Multiplexing Packet size = 560 bytes
Link delays (each) = 10ms
DropTail policy
Queue size = 125 pkts

Receiver 1

_ /' Receiver 2
Receiver 3

Receiver 4

Main RM Source

Figure 2.5: Topology to Test Drop-to-Zero Avoidance and TCP-Friendliness

Consider a set of reliable multicast (RM) flows that goes to receiver 1 through receiver
4 as shown in Figure 2.5. The capacity of the links connecting the sources (on the left) to
“Router 1”7 are 6 Mbps each. The link from “Router 1” to “Router 2” has 6 Mbps for each
flow (totally 102Mbps). There is a Main RM source which sends data to receivers 1 through
4. The links from “Router 2” to each of the receivers are bottlenecks at 5 Mbps each. A set
of 4 background unicast flows implementing the LE-SBCC algorithm compete on each of the
4 bottlenecks links. The unicast flows in “Set 1”7 through “Set 4” compete on the bottleneck
links to “Router 2-Receiver 1” through “Router 2-Receiver 4” respectively. The fair rate
for all flows is therefore 1 Mbps. The buffer size (125 pkts) is roughly twice the bandwidth
times fixed delays. The packet size is 560 bytes. This topology tests the performance of the

34

Multiplexing (drop-to-zero)
2.2 T T T T

16 B
14 S E

12

Rate (mbps)

0.8

06 [

04l Voo

0.2

L L L L L L L L
0 50 100 150 200 250 300 350 400 450
time (s)

Figure 2.6: Drop-to-Zero Avoidance Results
(LE-SBCC competes fairly with unicast background flows and
does not suffer from drop-to-zero problem.)

multicast congestion control scheme under independent loss rates on paths, and reasonable
degrees of multiplexing on each path. In effect, the loss rate on such congested paths is less
dependent on the rate change of any single flow on the path (especially the multicast flow).

Figure 2.6 (rate graph) shows that the multicast flow rate (solid line) competes fairly
with a selected subset of unicast background flows (dotted lines) and the average rate is close
to 1 Mbps, the fair share. More importantly, the multicast flow does not get beaten down
because of the independent loss indications received from each path. This is a non-trivial
illustration of drop-to-zero avoidance. Observe that the same topology also illustrates the
basic applicability of LE-SBCC to multi-sender multicast, because the competing unicast
flows use the same congestion control scheme. Each sender’s multicast traffic is controlled
as if it were the only sender.

The analysis of the number of packets transmitted, the number of LIs and LEs and
rate reductions (RRs) also illustrates the impact of the cascaded set of filters. In particular,
the main RM flow transmitted a total of 167762 pkts in 450s and received 949 LIs. After
LI2LE filtering, there were only 32 LEs, a dramatic reduction! The Max-LPRF and ATF
further filter LEs to result in a total of 12 rate-reductions. When we go back to the graph in
Figure 2.6 and count the number of rate-reductions in multicast as well as unicast flows, we
observe that all flows have 12 rate-reductions. This is another measure of the fairness of the

scheme to AIMD-based background traffic. The issue of TCP fairness is further explored in

35

section 2.2.2.
As discussed in the next section, the dramatic difference between the number of LIs and
LEs is because of bursty losses caused by the lack of self-clocking (unlike TCP), rate-based

nature of control and the use of sizable drop-tail buffers.

2.2.1.2 Effects of Removing a Filter From the Cascade

Multiplexing (drop-to-zero) Multiplexing (drop-to-zero)
16 T T T T T T T T 14

14
12
1

08
osf /

0s 1

0.4

Rate (mbps)
Rate (mbps)

0.6

0.4

02} 02

0 I I I I I I I I 0 I I I I I I I I
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450

time (s) time (s)

(a) Removing both LI2LE and maxLPRF (b) Removing maxLPRF

Multiplexing (drop-to-zero)
16

14

12

1

0.8

Rate (mbps)

0.6

0.4

02

0

1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450
time (s)

(c) Removing LI2LE
Figure 2.7: Effects of Removing A Subset of Filters from The LE-SBCC Cascade

(Removing any of the filters results in performance degradation.)

A natural question is the relative importance of each filter in the LE-SBCC’s cascade
of filters. To further demonstrate the important role that each filter plays in our scheme, we

repeat the simulations for the configuration shown in Figure 2.5 for three different cases:

(a) Removing both LI2LE and mazLPRF filters

36

(b) Removing only the mazLPRF filter, and
(c¢) Removing only the LI2LE filter.

In all these experiments all other parameters are kept constant as before. The results
are illustrated in Figure 2.7. Clearly, we observe the drop-to-zero problem to some degree in
all cases (solid curves always below dotted curves). The results are also affected by the fact
that in some cases the max-LPRF operates on LIs. In these cases, the max-LPRF processes
a larger absolute population of samples, and deals with a different relative distribution of
counts from receivers (which affects the critical ratio: m_g);%) Thus each filter in the cascade
has a key role in filtering of LIs and avoiding the drop-to-zero problem.

2.2.1.3 Theoretical Analysis of LE vs LI Probability

Recall that our scheme uses LEs instead of LIs for the max-LPRF filter and ultimately
in rate reduction decisions. Therefore, our scheme is critically dependent on the number of
LEs passed by filters at the source. Thus it becomes important to study the relationship
between LIs and LEs to get an understanding of when it is really important to use LEs
instead of LIs.

This section presents a simple theoretical analysis to show that using LEs in general
leads to a reduced probability of drop-to-zero because the number of LEs is always less
than the number of LIs. Moreover, under bursty loss conditions, the number of LEs is
significantly less than the number of LIs. This justifies the presence of LI to LE filter used in
the cascade. Also, observe that the ratio % (used in MaxLPRF) could be very different
if X; represented the count of LEs vs if it represented the count of LIs. These two reasons
justify the use of LEs instead of LIs.

Consider the following Markov Chain model for unicast transmission. Assume that
the RTT is constant and that the system moves in cycles of RTT. In each RTT, the source
transmits with a constant rate, and may experience one or more packet losses. At the end of
each RT'T, it changes its rate based upon the AIMD policy and depending upon the receipt of
LEs. Therefore the system may be modeled as a Markov chain with N discrete states (from
1 to N), where the state x specifies the number of packets sent during that RTT. Therefore,
x = Rate(z) x RTT. The process starts in state 1, and may go up to the maximum allowable

rate (which corresponds to state V). When a loss event (LE) is encountered within an RTT,

37

the system transitions to state [z/2]. When there is no loss event in an RTT, the system
moves to state x + 1. This Markov chain model is illustrated in Figure 2.8. The goal of
this Markov chain is to estimate the ratio of per-packet LI probability (p;) to per-packet
LE probability (pi), i.e., E(pi;)/E(pi). We analyze this chain for two cases: the non-bursty

and bursty packet loss case.

Non-bursty Loss Case

We assume that the packet loss probability is uniform. Define p: the probability that
a packet is lost, and a: 1 - p. In this case p; = p. In state z, the probability of having
at least one loss is 1 — a®. The LE probability (p;.) is thus Y s(x)(1 — a*) where s(x)
is the probability of being in state z. Let m = | N/2|. We have five cases to consider :

i N
-p) (-pf a-p” (-pt - a-p'

—(1-p) —(1-p)¥
e) parree 1-a-p)

Figure 2.8: State Transition of Packets Sent Per RTT

1. We are in state 1. We could increase the rate and move to 2. We could also get
losses at states 2 or 3, and move to 1. We could also get a loss, and stay in 1. In
steady state,

s(1) x a =5(2) x (1 —a?) +s(3) x (1 —d®

2. We are in any state x between 2 to m — 1. This is the general case mentioned

above. In steady state,
s(k) = s(k — 1) x a* " + 5(2k) x (1 — o) + s(2k + 1)(1 — ™)

3. We are in state m. We could increase the rate and move to m + 1. We could also

get loss at state N only, and move to m. In steady state,

s(m) = s(m —1) x (@™ ') + s(N) x (1 —a™)

38

4. We are in any state x between m + 1 to N — 1. The only difference between
this state and 3 is that we cannot enter this state by a rate reduction, as the

N = max(rate x RTT). In steady state,

s(k) =s(k —1) x aF*

5. We are in state N. We cannot increase the rate further. The only way to leave

this state is by cutting its rate, and moving to state m. In steady state,
s(N) x (1 —a")=s(N—-1)xa"!

We did a Matlab analysis to numerically solve the chain for different large N’s. The
solutions yield the steady state probabilities s(z) and hence the probability p,.. We
then plot the ratio of LI probability p; and LE probability pj ratio in Figure 2.10 (a).
The plot shows that there is not much difference between LI and LE probability. In
particular, the maximum ratio of LI to LE probability is less than 1.25. In other words,
the number of LEs is at most 25% smaller than the number of LIs (which happens when
the LI rate is 30-40%, a large absolute loss rate).

The uniform loss probability assumption made above is not valid in bursty packet loss
scenarios (though it could apply to RED gateways). The combination of our scheme
with a drop-tail buffer leads to a very bursty packet loss pattern, which yields a very
different picture of LI vs LE probability.

Bursty Loss Case

Our scheme uses a rate-based AIMD policy, which is not self-clocked (unlike TCP).
This lack of self-clocking is because the scheme depends only upon LIs and not a
stream of acks for its basic operation. A simple control-theoretic analysis [89] shows
that a rate-based scheme with linear rate-increase, and lack of self-clocking leads to a
bottleneck queue which grows quadratically. Therefore, if the bottleneck has a larger
buffer, the queue increases quadratically for a longer period of time. Moreover, when
the buffer is full and packets are about to be dropped, the sending rate differs signifi-

cantly from the optimal transmission rate. So, when the queue overflows, the number

39

of packets dropped corresponds to (R — C)T where R is the aggregate transmission
rate (which is much larger than C) and C is the bottleneck capacity, and T is the
round trip time (RTT) including the queueing delay. This leads to a large burst of
packets dropped during the RTT before the receivers send LIs and the sources detect
congestion. Therefore it is important to understand how the number of LEs differ
from the number of LIs under such bursty loss conditions. We show that under such

conditions, the choice of LEs is even more justified.

We use the Markov chain model as used earlier, albeit with some changes. To approx-
imate the bursty loss behavior, we assume that if a packet is lost during any instant
within the RTT, all remaining packets transmitted during that RTT are also lost. This
assumption is also made by Padhye et al [85] for TCP throughput modeling. Under
this assumption, the probability p assumes different semantics. p here is defined as the
probability that a packet is lost given that either it is the first packet in the RTT or
the preceding packet in the RTT is not lost. Assume like before that a =1 — p.

No

Packets are lost Loss

Packets are lost
| |

Figure 2.9: p’s Semantics in Bursty Loss Case

RTT RTT

1/p packets are sent

l«—— RIT | RTT

In this case, p # pi; (see Figure 2.9) because py; is affected by every packet loss unlike p.
However, the overall real LI probability p; can be derived from p. First, recall that the
state x specifies the number of packets transmitted during a certain RTT. Assuming
that the first ¢ packets are not lost, x — ¢ is the number of lost packets in that RTT.

Under our assumption, during a RTT,

P(The first i packets are not lost and the subsequent packets in the round are lost) = (1—p)’p

Therefore, at state x, the expected number of lost packets is Z (x —4)(1 — p)'p. The
LI probability p;; is the expected number of lost packets d1v1ded by the expected total

40

number of packets transmitted:

> s(z) ¥ (@ = i)(1 - p)ip
P = = zO_OO

> z-s(x)
=0

At state x, the expected number of loss events (LE) is the probability that there is at
least one loss, that is 1 — (1 — p)*. Therefore,

o0

pe=_s(@)-(1-(1-p))

z=0

As a result, ratio of LI and LE probabilities (?+) is substantially altered. This is
illustrated in Figure 2.10 (b). The figure plots the ratio as p;; ranges from 0 to 1. The
ratio 1% is huge when py; is small (which is the common case of network operations).
This is because the small overall LI probability leads to concentrated burst loss in few

RTTs leading to a small number of LEs in comparison to LlIs.

For lower loss probabilities, the py;/pie values are higher. To see the relation between
LI and LE more clearly in this region, we have plot another graph for the low LI prob-
ability region (Figure 2.10 (c)). We observe high pj;/p;e ratios (9-90). Comparing these
numbers to the numbers of LIs and LEs observed in simulation (see section 2.2.1.1), we
observe that the model gives the same order of magnitude of results as the simulation
results. In that case p;/p. = 949/32 = 29.7. Therefore, we can conclude that the

LI2LE filtering is critical in our cascade filter design.

2.2.1.4 Drop-to-Zero Avoidance in Medium-Large Scale Trees

Recall that large receiver sets result in increased number of LIs being generated. To
test the performance of our scheme in such scenarios we gradually increase the number of
receivers in the multicast session, and run simulation for each addition with the assumption
of constant RTTs and that each path experiences a uniform loss probability. We use a
topology shown in Figure 2.11 where all the receivers and the single source are connected
to the same router. One of the receivers in the session has the worst loss rate, and the rest

have lower loss probabilities. We expect that the number of LEs passed by source for rate

41

LE Probability vs. LI Probability (Bursty Loss)
LE Probability vs. LI Probability (Non-bursty Loss) 80 T T T T T
T T T T T T

12f

50

=
i
a

=
N
LI probability / LE probability

LI probability / LE probability

N
=]
T

1.05

=
o
T

1 L L L L L L L L L 0 L L L I I T T T T
0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5
LI probability LI probability
(a) Non-bursty loss (All loss probabilities) (b) Bursty loss (All loss probabilities)
LE Probability vs. LI Probability (Bursty Loss)
100 T T T T
9
80t
_ ToF
§ 60|
o
i 50
g s
. 30
201
10+
00 0.‘01 0. ‘02 0.63 0.64 0. ‘05 0.66 0.67 0.08

LI probability

(c) Bursty loss (Low loss probabilities)
Figure 2.10: Ratio of LI and LE Probabilities

(LE is superior to LI as congestion signals.)

reduction should remain fairly constant and equal to the number of LEs generated by the
worst loss receiver.

The number of receivers in the multicast tree is increased from 1 to 10001 in a gradual
manner. We assume one receiver has 10% loss, all others have 2% loss and study the effect of
increasing the number of 2% receivers. The above numbers and topology were chosen as they
represent a general case where one of the receivers (the 10% one) clearly has the worst loss
rate. The expected number of LEs passed by the filters should be almost equal to the number
of LEs generated by the worst loss receiver. The number of LEs passed for rate reduction

by the source is plotted against the number of receivers(Figure 2.12(a)). The experiments

42

Source
Routerl
O e o o O
Receiverl Receiver2 Receiver N

Figure 2.11: Topology : Large Heterogeneous Receiver Sets

were repeated for different random seeds and 99% confidence intervals are plotted. Under
no aggregation, the number of LEs passed by source remains fairly constant(500-520). The
number of LEs passed are consistent with the non-bursty theoretical analysis performed
above. The expected number of LIs by the 10% receiver would be 0.1 x 6000 = 600. By
referring to the LI probability(p;;) vs LE probability(p,.) graph(Figure 2.10 (a)) for the non
bursty model, we see that for 10% loss p;;/pie ratio is around 1.2. Therefore the expected
number of LEs would be 600/1.2 = 500. This number agrees very closely with the numbers
obtained by simulation. We also repeated the same experiment with the max loss receiver
having a loss rate of 20%. Again, the number of LEs passed (Figure 2.12(b)) remains
fairly constant (around 1000). This indicates that under same RTT, fixed uniform loss
probabilities, and no aggregation conditions our scheme passes a fairly constant number of
LEs even when large number of receivers are present. This number is equal to the LEs
generated by the worst loss receiver. Thus we achieve Drop-to-Zero avoidance in medium-

large scale trees.

2.2.2 Evaluation: TCP friendliness

TCP-friendliness is a subject of current debate [33, 94, 114]. A good measure of TCP-
friendliness would be the average throughputs of the competing TCP and RM flows. To
illustrate TCP-friendliness, we use two topologies, a) where a common bottleneck is shared

by many RM flows and a single TCP flow and, b) many TCP flows and a single RM flow.

43

Scalability analysis in Unaggregated case Scalability analysis in Unaggregated case
One receiver has 20% loss rate, all others 2%. One receiver has 20% loss rate, all others 2%.
The number of LE's passed is independent of the number of receivers connected to it The number of LE's passed is independent of the number of receivers connected to it
6,000 packets sent 6,000 packets sent

1200 1200

1000 - i 1000 A H
800 | 800 |

600

400 |-

Number of naks passed by source
Number of naks passed by source

200 1 200

I I I I I I I I
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of receivers Number of receivers

mean naks passed with 99% confidence

mean naks passed with 99% confidence

(a) 10% Max loss receiver (b) 20% Max loss receiver

Figure 2.12: Scalability Analysis

(LE-SBCC avoids drop-to-zero in medium-large scale trees.)

LE-SBCC would be TCP-unfriendly if either of the TCP or RM flow is beaten down. In
Figure 2.5, consider two cases: case (a) when one of the flows of “Set 4” is replaced by a
TCP Reno flow while the rest are LE-SBCC flows; and case (b) when all the flows in “Set
1”7 through “Set 4”) are replaced by TCP flows.

Simulation results: The simulation results for these two cases is shown in Fig-
ures 2.13(a) and 2.13(b) 5. The dips by the TCP flow close to zero represent timeouts.
Again observe that the main RM flow (solid line in both graphs) shares the bottleneck(s)
fairly with the competing TCP flow(s). This becomes clearer by observing that the rate
graphs for the RM and TCP flows oscillate about roughly the same mean and with the same
variance. The horizontal dotted line is the expected TCP throughput plotted post-simulation
using the simplified TCP equation (1.22M SS/RTT/pi.), where pj is the LE probability of
the worst-loss receiver. Recall that for the purpose of congestion control, we aim to reduce
the multicast tree to a unicast path with the worst-loss receiver being the only one with LE
probability p,. and a worst RTT. Clearly from the Figures 2.13(a) and 2.13(b), the rate
values oscillate about the theoretical mean shown by horizontal dotted line. This fact is a
good measure of the TCP friendliness of our scheme, further demonstrates the validity of

choosing LE rather than LI probabilities in our scheme.

6To avoid cluttering, the TCP throughput is sampled every 2s

Rate (mbps)

44

Experimentation results: The scheme is implemented in a Linux 7.0 testbed. The

topology used is identical to the one used for the simulations as described above. Again the

RM flows are fair to the competing TCP flow (Figure 2.13(c)).

presented in the section on implementation issues.

1.6

14

1.2

0.8

0.6
0.4

0.2 ¢

2.2.2.1

TCP-friendliness (15 unicast RM, 1 main RM, 1 TCP)

TCP-friendliness (16TCP, 1RM)

More details on this are

18 . . n

16

TCP
Expected throughput —-—~

14

Rate (mbps)

TCP
Expecteg‘ throughput
A

TCP1 -------

RM ——
2 e i

i
50

L L i
100 150 200
time (s)

(a) 1 TCP Reno vs 16 RM

Rate (mbps)

L L L i L L L L
250 300 350 400 450 0 50 100 150

TCP Friendliness (16TCP, 1RM)
0.6

" Multicast
Multicast Avg. -------
TCP1

TCP 1 Avg.
0.5

Al
02 [
0.1

0

.
0 50 100 150 200 250 300 350 400
time (s)

(c) Experimental (1IRM vs 16 TCP SACK)

450

L
200

time (s)

L
250

L
300

Figure 2.13: TCP-Friendliness Results (Simulation and Experiment)

(LE-SBCC shares the bottleneck(s) fairly with the competing TCP flow(s).)

DropTail vs

. RED Queues

L
350

(b) 1 RM vs 16 TCP Reno

L
400 450

We evaluated the TCP-friendliness performance of our scheme with the two queue

management policies - Tail Drop and Random FEarly Detection (RED). These are the two

widely used queue management policies and it is important to test the performance of LE-

SBCC with both the policies. The topology used for this purpose is the same as in the

45

above experiment with the following key parameters: TCP version: Reno, Queue size = 125

packets, Packet size = 560 bytes.

TCP-friendliness (15 unicast RM, 1 main RM, 1 TCP) TCP-friendliness (15 unicast RM, 1 main RM, 1 TCP)
16 T T T T T T T T 16

14 - i TCP
12 H
1 H

0.8

Rate (mbps)

0.8 .

Rate (mbps)

0.6 [0.6

0.4 = 04 H

02 q 0.2 Hf

0 I I I i I I I I o L I I I I I P I I
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
time (s) time (s)

(a) DropTail (b) RED

Figure 2.14: Droptail vs. RED: Rate Graphs
(LE-SBCC remains fair towards the competing TCP flows with either droptail or RED queues.)

As we can see from Figure 2.14, the throughput is marginally lower with RED than
with DropTail and so is the measured RTT (Figure 2.15). (The absolute RTT values are
smaller in RED, because when losses occur, RED has lower average queue length.) Also
observe that the RTT converges much faster with RED than DropTail. This is because the
RED policy drops packets before the queue is full resulting in more frequent and timely loss
indication from the receivers. The scheme remains fair towards the competing TCP flows in

both cases and we do not observe any drop-to-zero with RM flows.

2.2.2.2 Different Loss Paths

It was speculated that the scheme would not perform as well with the multicast tree
having paths with varying degree of loss probabilities and RTTs. We perfomed the following
simulation to test the robustness of our scheme under these heterogeneous conditions. Again
the topology remains the same as the above experiment with modifications in following key
parameters: The buffer is 125 packets on all links except that it increases on the four links
from the router to receiver 1, receiver 2, receiver 3 and receiver 4 with the values 25, 50, 75
and 100 respectively.

Having different buffer sizes is an indirect way to affect RTT and loss probabilities on

a link. The link from router to receiver 1 has the smallest buffer (25 packets). Therefore,

Rate (mbps)

15 unicast RM, 1 multicast RM(4 rcvrs), 1 TCP

0.8

0.75

0.7

0.6

50 100 150 200 300

time (s)

(a) DropTail

250

350

RTT (s)

TCP-friendliness (15 unicast RM, 1 main RM, 1 TCP)

46

50

100 150 200 250

time (s)

(b) RED

300

Figure 2.15: RTT Convergence - Droptail vs. RED
(The RTT measured by LE-SBCC converges much faster with RED queues than with droptail queues.)

Diff loss paths (15 unicast RM, 1 main RM, 1 TCP)

¥

i
I

50 100 150 200 250 300
time (s)

(a) Rate

350

400

450

RTT (s)

Diff loss paths (15 unicast RM, 1 main RM, 1 TCP)

350

400 450

150 200 250

time (s)

(b) RTTs

300

350

Figure 2.16: Rate and RTT Graphs for Topology with Different Buffers (Loss Rate and

RTTs)

(LE-SBCC works well under heterogeneous loss probability and RTT conditions.)

it has the smallest RT'T and the largest loss rate. On the other hand, the link from router

to receiver 4 has the largest buffer (100 packets). So it has the largest RTT and smallest

loss rate. For the Main Source, MaxLPRF will respond to LEs from receiver 1, whereas its

RTT would be biased higher (average of the 4 different RTTs measures received from the 4

receivers). The graph (Figure 2.16) clearly demonstrate that the algorithm works well under

heterogeneous loss probability and RTT conditions.

47

Topology: Multilevel Treewith L1 Aggregation

Router 2 .
* X% Receivers

: y% Receivers

Router 3

Figure 2.17: Topology to Illustrate LI Aggregation Effects

2.2.3 Ewvaluation: LI Aggregation Effects on Performance

Aggregation of loss indications (LIs) has an effect on the number of LEs and timing
information reaching the source, and therefore affects the performance of LE-SBCC. To
evaluate these effects, consider the simple multi-level topology in Figure 2.17. As the number

of receivers and their loss rates are varied, consider three cases which we simulated:

1. No LI Aggregation performed at the routers.

2. Partial LI Aggregation: LI aggregation performed at router 2 and router 3 only (and

not in router 1).

3. Complete LI Aggregation: LI aggregation performed at all routers.

Consider cases 2 and 3. Assume one receiver X has a fairly high loss rate, and all
others have very low loss rates. Ideally, the number of LEs reaching through the source
(after filtering) should be equal to the number of LEs generated by worst-loss receiver X.
If a larger fraction of the LIs sent by X are suppressed by those sent from other low-loss
receivers, then fewer and fewer LIs generated by X might reach the source. We call this the
partial aggregation case (case 2). This could occur because X has a longer RTT, and as the
number of receivers increase, we expect more overlaps between sequence numbers lost by X
and other receivers. In the worst case, no LIs generated by X would reach the source. Then
even after LI2LE filtering, the maximum number of LEs generated by any single receiver
would now become much lower, and thus affects the critical ratio m—;f@)%@ used by Max-LPRF.
Hence MaxLLPRF would pass through lesser number of LEs. The source hence would make

fewer rate reductions, becoming more aggressive compared to TCP flows on the worst loss

48

path. Observe that fewer rate reductions also means that the multicast flow even under cases

of full (worst-case) aggregation does not experience the drop-to-zero problem.

Comparision of No. of Le’s passed under different distributions of receivers under aggregators.
One receiver has 4% loss rate, all others 2% 6,000 packets transmitted

300 T T T T T T T

Number of LE’s passed by the system

50 [1

I I I I I I
20 40 60 80 100 120 140 160 180
Number of receivers

mean naks passed in unaggregated case with 99% confidence
mean naks passed by Multilevel aggregator(10%,90%) with 99% confidence --------
mean naks passed by Single aggregator near source with 99% confidence ----

(a) (10,90)

Comparision of No. of Le’s passed under different distributions of receivers under aggregators.
One receiver has 4% loss rate, all others 2% 6,000 packets transmitted

300 T T T T T T T
£
8
g
g
3
°
£
>
3
>
3
3
§ o . “ .. |
- UK
* e %
é‘ N B Kok B AR S
Z S K
5 100 - L Ko+ b
z L e N
£ B
5
Z 50]
o
20 40 60 80 100 120 140 160 180

Number of receivers

mean naks passed in unaggregated case with 99% confidence
mean naks passed by Multilevel aggregator(50%,50%) with 99% confidence --------
mean naks passed by Single aggregator near source with 99% confidence ----

(b) (50,50)

Comparision of No. of Le's passed under different distributions of receivers under aggregators.
One receiver has 4% loss rate, all others 2% 6,000 packets transmitted

300 T T T T T T T

N
a
3

N
o
3

=
1)
3

Number of LE’s passed by the system
=
@
3

@
S
T
L

0 L L L L
20 40 60 80 100 120 140 160 180

Number of receivers

mean naks passed in unaggregated case with 99% confidence
mean naks passed by Multilevel aggregator(90%,10%) with 99% confidence --------
mean naks passed by Single aggregator near source with 99% confidence ----

(c) (90,10)

Figure 2.18: Partial Aggregation Effects
(Aggregation poses a TCP-friendliness performance problem for LE-SBCC in
the cases where the worst-loss receiver’s feedback is significantly suppressed.)

The graphs shown in Figures 2.18 (a), (b), (c) illustrate the effects of no aggregation,

partial and worst-case aggregation. The graphs plot the number of LEs passed by the filter

cascade against the total number of receivers.

The topology is same as in Figure 2.17.

One receiver has loss probability of 4% (and has a longer RTT) while all others have 2%.

This would bias the aggregation process against the worst-loss receiver’s LIs. We vary the

distribution of receivers under the two aggregators in the multicast tree.

The notation

(x,y) in Figure 2.18 indicates that % of all the receivers (including the receiver with 4%

loss probability) are attached to Router2 and remaining y% are attached to Router3. The

experiments were repeated for different random seeds and confidence intervals plotted. In

49

each experiment, 6000 packets were sent which leads to an expectation of 240 LEs (given a
worst-loss receiver having 4% loss rate) after the cascade of filters is applied. If fewer than
240 LEs are passed, the multicast rate would be higher than competing TCP on the worst
path.

In all graphs of Figures 2.18, the no-aggregation case passes just under 240 LEs (99%
confidence intervals), which implies that the scheme works very well without aggregation.
This is also similar to the results seen in Figure 2.12 where we used different loss probabilities
and examined a larger number of receivers (up to 10,000 receivers). Now, the performance
of the intermediate curve (partial aggregation) in Figures 2.18 varies depending upon the
pattern of aggregation. Observe that if more LIs from the max loss receiver get through
without begin aggregated, the intermediate (partial aggregation) curve is almost comparable
to the scenario with no aggregation (eg: Figure 2.18 (a)). However, in the case of Figures 2.18
(b) & (c) the max loss receiver is present in the subtree with a larger number of receivers.
Combined with the effect of longer RTT, these configurations bias the aggregation process
against the worst-loss receiver because of the increased probability of overlap between the
ranges of lost packets seen by the worst-loss receiver and other receivers connected to Router2.
Hence Figures 2.18 (b) & (c) shows the partial aggregation curve closer to the worst-case
curve. The worst-case curve in all the three graphs depicts the effect of complete aggregation
done at Routerl, which suppresses all the LIs from the worst-loss receiver.

In summary, aggregation poses a performance problem for LE-SBCC in the cases where
the worst-loss receiver’s feedback is significantly suppressed. However the effects lead to TCP
unfriendliness only. Stability and drop-to-zero avoidance are solved. It should be noted
that aggregation issues pose a problem for PGMCC too (see [100]). Any randomization or
technique to break the bias against such worst-loss receivers in the aggregation process (eg:
see [100]) would solve this performance degradation issue both for LE-SBCC and PGMCC.

2.3 TFRC module

TFRC [33] is a congestion control policy which provides smooth rate changes, which
makes it suitable for audio/video applications. TFRC was originally designed for unicast.
But our approach allows the use of the TFRC policy instead of the AIMD policy for rate

adaptation. However, we need to modify TFRC to fit it into our framework.

20

2.3.1 TFRC Module Design

For AIMD, we used loss events (LEs) to trigger rate reductions. However, for TFRC
we need to convert them into a LE rate to update the data transfer rate. TFRC [33] requires
the receiver to calculate the LE rate and send it back to the sender. In contrast, our scheme
is purely source based. There is no such kind of feedback from the receivers. We modify this
mechanism so that the LE rate can be calculated at the source. Recall that the output of
cascaded filters (Section 2.1.1) are loss events (LEs). The source can count the loss intervals
(the number of packets between consecutive LEs) and calculate the LE rate and therefore
the data transfer rate. The details follow.

With the following definitions,

So: the interval since the most recent LE.

s;: the i-th most recent loss interval. (i > 1)

N: the total number of loss intervals from the beginning of the data transfer.
n: an integer greater than 0.

a 0<a<l.

the average loss interval §; is calculated as following.

n N

k—ient1
> Sitk—1We+ Y spaf Tt
k=1 k—itn

In [33], n =8, @ = 0, w; to wg have values of 1, 1, 1, 1, 0.8, 0.6, 0.4, 0.2 respectively. In
our scheme, the randomness of the MaxLPRF filter can cause larger variance of the average
loss interval and therefore more oscillation of the LE rate. To counter this effect, we chose
different values for these parameters. In our experiments, n = 8, w; to wg are all 1, and
a = 0.95. (When there are not enough loss intervals, (1) N < n, set wyy1, ..., w, and «
to 0, (2) N = n, set a to 0.) They yield satisfying results. Note that this method and the
parameter values need not be the only viable set for calculating average loss interval. Other
methods and parameter values could be explored.

Whenever a LE is detected, $; is calculated, the reported LE rate p is 1/8;. Then the

data transfer rate T (bytes/sec) is calculated with the following formula [33] and enforced.

o1

S
T =
R\Z + trro(3/22)p(1 + 32p?)

where s is the packet size, R is round-trip time, p is LE rate, tgro = SRTT + 4 % 0.

During absence of congestion, after each RTT, §; is re-calculated. The final average
loss interval § is max(Sy, §1). If it is different from the previous value of §, the rate 7" will be
updated with the reported LE rate p = 1/§. If congestion is absent for a long time, §5 will
become larger and larger, so is 5, and the reported LE rate will drop. Consequently, the rate
T will increase, given that the RT'T does not vary much. Note that our adaptation of TFRC
for multicast differs from the recent work in TFMCC [114] where each receiver measures the

RTT and loss event (LE) rate and the source has a filter to decide which feedback to use.

2.3.2 Simulation Results
The results presented here show that the LE-SBCC scheme with the TFRC module

works relatively well.

TCP Friendliness (16 TCP, 1 RM) TCP Friendliness (16 TCP, 1 RM)
22

RM —— " RMavg
TCP1 ———-- TCPlavg -—---—-
2r TCP2 f------ . TCP2avg -------

18

: 09 Hifi
16 i

14 08 f
12 i
07 A
1

Rate (Mbps)
Rate (Mbps)

0.8 0.6

0.6 |
0.5 F

0.4

d 0.4 -
0.2 -

0 0.3

I I I I I I I I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
Time (second) Time (second)

(a) 1 RM vs 16 TCP Reno (instant rates) (b) 1 RM vs 16 TCP Reno (avg. rates)

Figure 2.19: TFRC Module Simulation Results
(LE-SBCC with TFRC module has smoother rate changes and is still fair with TCP flows.)

We tested the scheme with the TFRC module on the topology shown in Figure 2.5. The
instant rates of multicast low and two randomly selected TCP flows are shown in Figure 2.19
(a). Compared to Figure 2.13 (b), the rate changes are much smoother. Furthermore, the
multicast flow is still fair to other TCP flows, as shown in Figure 2.19 (b) 7.

Tavg. rate at time ¢ = amount of data sent in period [0,t] / ¢

52

In a summary, TFRC as a module can be installed into our framework and work well,

demonstrating the modularity of the scheme and its applicability to multimedia.

2.4 Linux Implementation and Experimentation

For any scheme to be deployable it needs to be implemented and tested in real-world
networks. We implemented LE-SBCC on a real network to study implementation issues
and performance under real-world conditions. Specifically, we tested TCP friendliness and
drop-to-zero problems. Lot of real world issues and limitations not found in simulation had

to be tackled. Such issues are discussed in detail in the following sections.

2.4.1 Implementation

The scheme is implemented on a simplified version of PGM. However, it is not limited
to PGM or just reliable multicast.It has been implemented on top of UDP using RedHat
Linux 7.0. The following aspects of PGM have been implemented:

e ODATA (original data packet), RDATA (retransmitted data packet), NAK (negative
acknowledgement packet), NCF (NAK confirmation packet) packet formats specified
in PGM.

e Transmit window at source.

e Receive window at receiver.

By implementing the features mentioned above, we achieved a reliable transport layer.

On the other hand, for the sake of simplicity, we omitted certain aspects of PGM:

e SPM (source path message) packets.

e Network elements support.

SPM packets are sent by source periodically to receivers. They carry information about
transmit window which affects the generation of NAK’s. To compensate this, each packet
from source carries the information about transmit window. Whenever a receiver gets a
packet (ODATA, RDATA or NCF), it checks the sequence number continuity and sends
NAK’s if needed.

93

The program runs as a user process without requiring any root privileges. As a result,
the granularity of the timer used is 10 ms which is quite coarse. Coarse timers can introduce
unnecessary delays. Assume that an event is supposed to occur at time ¢ + 0¢. The timer
for it is started at t. If the dt is less than 10 ms, due to the coarseness of the timer, the
event will actually occur at t + 10 ms. Then extra delay of 10ms — 0t is introduced. Notice
that the extra delay can accumulate. That is, the extra delay introduced by the first event
can be added to that introduced by the second event. To reduce such negative effects, the

following mechanisms are used:

e After processing any timeout event, the next event is checked against the current time
obtained with the API gettimeofday(). If the timeout should actually happen, it will
be processed. This process continues until no more timeout events are available. Since
times returned by gettimeofday() have microsecond resolution, the interval between
two successive events can be less than 10 ms, provided events are processed sufficiently

fast.

e When a timeout event is scheduled, its timeout value is checked. If its timeout is
within 5 ms (half of the timer granularity) from now, it is immediately triggered.
This introduces a minor random factor (< 5ms) into event scheduling, but reduces
the unnecessary accumulative delays mentioned above. In fact, together with the first
mechanism, this results in possible bursty events. When the events are for packet
transmission, bursty packet transmission occur. The optimal solution for this problem

would be to get a system timer of finer granularity.

e We introduce a variant of TBF to control the packet transmission rate at source. Upon
arrival of a token, if there are enough packets, the source will transmit as many packets
as needed to maintain the required transmission rate. If there are not enough packets,

all of them would be transmitted.

By inspecting the time out information, we have observed that the mechanisms de-
scribed above worked as expected, although the approximation leads to somewhat bursty

transmissions.

o4

2.4.2 Experimentation

The experiments were conducted on our testbed consisting of RedHat Linux 7.0 sys-
tems. During the experiments, the diff-serv package tc in RedHat Linux 7.0 were used to
restrict bandwidth and link latency. Also, a multicast router daemon mrouted 8 was used to
route multicast packets from one LAN to others.

The LE-SBCC program runs in user mode subject to OS priority and timer constraints.
It cannot send packets at high rates (> 1Mbps). Furthermore, in real experiments, it is very
difficult to strictly control certain parameters such as link latency. Thus it is not possible
to match the simulations exactly. However, we show that our scheme is TCP friendly and

avoids drop-to-zero in real networks.

2.4.2.1 TCP Friendliness Experiment
During the TCP friendliness experiment, TCP SACK was enabled. We used TBF
queue discipline of a software package tc to restrict the bottleneck bandwidth. Details of the

configuration are listed as follows:

e Round trip link latency (set by tc): 500 ms

e Bottleneck bandwidth (set by ¢c): 1Mbps

Source initial transmission rate: 200Kbps

Source initial RTT estimate: 200 ms

Receiver maximum random backoff before sending NAK’s: 100 ms

The fixed part of RTT is the round trip link latency of 500 ms. Therefore, any RTT
sample is at least of that value. Other parts of delay include hardware I/O delay, router
buffer delay, OS processing time and so on. It is very hard to find out the exact delay.

Upon detecting a packet loss, a receiver waits for a certain amount of time before
sending a NAK. This time is called backoff time in PGM. A backoff time is chosen randomly
from the interval [0, max random backoff] according to uniform distribution. This backoff
increases the RTT. The maximum random backoff time is a configurable parameter. When

it is large in relation to RTT, it will affect RTT estimation. We chose this time to be 100ms

8Source code and binaries of mrouted can be found online at http://www.vcas.video.ja.net/mice

95

so that the receivers have sufficient time to listen for NCF after a loss detection. This helps
to avoid duplicate NAK’s for the same sequence number from different receivers. At the
same time, this does not affect RT'T significantly.

For this experiment, we used the topology in simulation (Figure 2.5) with the band-
widths and delays changed. All TCP sources and the multicast source ran on one machine.
Behind the bottleneck, there were four receiver machines. To achieve load balancing, each of
the receiver machine had four TCP receivers and one multicast receiver. The result, shown
in Figure 2.20, roughly agrees with that of simulation.

In the graph, the average rate of multicast is higher than that of TCP. The reasons

can be:

1. The approximation we introduced in the source rate-controller leads to somewhat

bursty transmissions for multicast sources.

2. The implementation of our scheme is in user space, thus has lower priority and is
less reactive to the network situation than TCP which runs in kernel and has higher

priority.
3. The timer of our program is coarse, which could make our program less reactive.

4. TCP timeouts are triggered due to small window size, while the multicast scheme does

not have such rate-cutting mechanisms.

The TCP flow in the graph was randomly chosen from 16 TCP flows. The results

indicate TCP friendliness and drop-to-zero avoidance of our scheme.

2.5 Summary

In this chapter, we have presented an LE-oriented, purely source-based multi-sender
multicast congestion control scheme (LE-SBCC). It can be used for both reliable and unreli-
able multicast transport. Since the scheme is completely contained at the source, it is simple
to implement and deploy.

The model is a simple cascade of filters followed by an AIMD module. The filters
together transform the multicast tree to appear like a unicast path for the purposes of

congestion control. In the section of theoretical analysis of loss events (LEs) probability

o6

TCP Friendliness (16 TCP, 1RM)
0.6 T T T T

T T

Multicast

Multicast Avg. -------
TCP1

TCP 1 Avg.

05 |r

Rate (mbps)

. L 1 Il Il L Il il Il
0 50 100 150 200 250 300 350 400 450
time (s)

Figure 2.20: TCP-Friendliness Experiment Result (Linux Implementation)
(LE-SBCC avoids drop-to-zero and is roughly TCP-friendly in real networks.)

versus loss indications (LIs) probability, we justified our choice of LEs for rate reduction
consideration. By studying the effects of removing a filter from the cascade, we showed that
all filters are important. Several simulation and Linux-based implementation experiments
confirm the effectiveness of our scheme.

Without LI aggregation, the scheme correctly filters the LEs (converted from Lls);
avoids the drop-to-zero problem while being TCP-friendly. With aggregation, the scheme is
likely to be more aggressive towards TCP, but never incurs the drop-to-zero problem. Like
all single-rate schemes, its scalability is limited by the heterogeneity of the tree which may
depress the source rate. Besides, LE-SBCC maintains a number of states which grows with
the number of receivers experiencing congestion (not the total number of receivers), and there
may be heavy feedback traffic as LE-SBCC does not control the receiver side. However, we
believe LE-SBCC has the best scalability given the purely source-based restriction.

In general, the AIMD module in LE-SBCC may also be replaced by a source-based
TFRC scheme [33] or rate-based binomial scheme [5]. With some modifications, we adapted
the TFRC for unicast [33] to our framework. The performance shown by simulation experi-
ments is satisfying. Since TFRC is suitable for audio/video transportation, our scheme can

be applied to multimedia.

CHAPTER 3
ORMCC

In this chapter, we consider the multicast congestion control problem for the following situ-

ation:

Support is allowed on recewer side, but only one multicast group s allowed for

each multicast session.

For example, if a company needs to multicast some data over the public network
(assuming multicast is supported) using the open group model [26], but it only has one
class-D address from TANA (Internet Assigned Numbers Authority) because there is not
enough multicast address resource, it will encounter such a situation.

Here we present ORMCC. It assumes a new metric TRAC (Throughput Rate At Con-
gestion) in feedback and other support from receivers, so that some processing can be dis-
tributed to receivers and most feedback can be avoided, making ORMCC truly scalable.
Features of ORMCC include O(1) state, statistics-based feedback suppression etc. Compari-
son with PGMCC [94] and TFMCC [114] in simulation shows that ORMCC achieves better
performance under most situations. ORMCC has also been implemented and tested on real
systems in Emulab [113].

The general concept of ORMCC is as follows: The source dynamically selects one of
the slowest receivers as Congestion Representative (CR), and only considers its feedback for
rate adaptation. The slowest receivers are those with the lowest average TRACs. When
there is no CR, all receivers may send feedbacks to the source. Once a CR is selected, only
the CR and those receivers with average TRAC lower than that of the CR can send feedbacks
so that feedbacks are efficiently suppressed. Also notice that the scheme is not concerned
with reliability issue and only considers congestion control. Therefore, like LE-SBCC, it is
applicable to both reliable and unreliable multicast.

An example operation can illustrate how our scheme works more clearly. In Figure 3.1
(a), the source has chosen a receiver behind the most congested path as CR by comparing
average TRACs of receivers. Only the CR will send feedback while other receivers suppress

their feedback. The feedback is CI(x) in Figure 3.1 where CI means congestion indication

o7

o8

H : Throughput Rate At Congestion (TRAC)

Source Source

Most congested pat /\ //\%S@d path
Receiver Receiver Receiver Receiver
Cl(ll) CI(H) \\N(H)

Receiver Receiver Receiver Receiver Receiver Receiver Receiver Receiver
(CR) (CR)

(a) (b)

Source

Most congested path
X
O
Recewer Receiver
\\o (W

Receiver Receiver Receiver Receiver

(CR)
()
Figure 3.1: Example of ORMCC Operation

and g is TRAC measured by receiver. After a while, another path becomes the new most
congested path. Those receivers behind that path will see average TRACs lower than that
of the current CR, and will send feedbacks (Figure 3.1 (b)). As a result, one of them will be
chosen as the new CR. After that, again, other receivers suppress their feedback (Figure 3.1
()

In the following sections, we will describe the details of the scheme, followed by simu-

lation and experiment results. Theoretical analysis is in Appendix C.

3.1 Scheme Details

As we have mentioned in the introduction, in ORMCC, receivers send TRACs back to
the sender whenever necessary, and the sender dynamically chooses a representative (CR)
out of them and use only its TRACs to adjust the sending rate. In this section, we will

present the details of how the whole scheme works, followed by a list of the features of

ORMCC.

99

3.1.1 Feedback Required from Receivers — CI(u)

When receivers detect congestion by packet losses, they need to inform the source so
that the source can adjust the transmission rate accordingly. We denote a feedback packet
as CI(u) (CI stands for congestion indication, u stands for rate information). Like NAKs,
CI(p)s may be sent only when a receiver detects packet losses (though they may also be
suppressed). Assume that at the arrival of packet A, a receiver detects that some packets
have been lost. It will then send a CI(u) to the source. Such a CI(u) contains (1) The
sequence number of A, for the sake of RT'T measurement, and (2) The output rate measured
at the arrival of A, for the sake of CR allocation. Note than when multiple packet losses are
detected by the arrival of one packet, only one CI(x) will be sent (if without suppression),
while multiple NAKSs are generated for the same situation. With suppression, CI(u)s may
be sent at a less frequency.

To avoid oscillation, we average the output rate over a short period of time.® Note
that the output rates used here are different from those in normal sense, because they are
measured only when packet losses are detected due to congestion. To distinguish them, we
give the notation Throughput Rate At Congestion (TRAC).

TRAC is different from packet loss rate since it captures the congestion status of
bottlenecks better. Consider two flows going throughput different bottlenecks at different
rates, for example, 1Kbps and 100Kbps respectively. If both flows experience 0.5% packet loss
rate on average, we cannot say that the bottlenecks they go through are equally congested.
TRAC is also superior than average receiving rate because most packets not contributing to

congestion are excluded and the noise of measurement is reduced.

3.1.2 Allocation of The Slowest Receiver

ORMCC compares average TRAC of all receivers to locate the slowest ones, and choose
one of them as the Congestion Representative (CR). By using TRAC, it avoids computing
TCP throughput formula [76] [85] which requires RTT and packet loss rate.

Since TRACs are measured at receivers upon packet losses, they indicate how much
bandwidth a flow can get out of the fully loaded bottleneck, assuming congestion is the only
reason for packet losses. The less it can get, the more congested the bottleneck is. Therefore,

we choose one receiver with the lowest average TRAC as the CR, and let the source only

9In our simulations and implementation, we use one second.

60

consider the CI(u)s from that receiver for rate adaptation. Average TRAC is calculated by
means of EWMA (Ezponentially Weighted Moving Average). Denote TRAC as U, average
TRAC as E(U). With asample U, E(U) is updated as E(U) < (1—«a)E(U)+aU. Deviation
U, is also updated as U, < (1—a)U,+a|E(U)—U]| for the sake of CR updating and feedback
suppression (see Section 3.1.3 and 3.1.4).

The receivers help the source to select a receiver with the lowest average TRAC by
sending in CI(u)s only if their average TRACs are low enough to qualify them as CR. More

details of how receivers help will be covered in Section 3.1.4 of feedback suppression.

3.1.3 Update of CR under Dynamic Conditions

Network conditions always keep changing, and we need to continuously keep our choice
of CR up-to-date. There are mainly two situations under which CR needs to be updated:
(1) The situations of some non-CR receivers change so that one of them sees more severe
congestion than the current CR does. (2) While the situations of all non-CR receivers remain
unchanged, the previously most congested path is improved so that the current CR sees less
congestion than other receivers, or it leaves the multicast session.

Tracking the slowest receiver by examining average TRACs can deal with situation
(1), but to cope with situation (2) needs more effort. Under this situation, there can be no
CI(p)s from the current CR. Recall that the source only consider the CI(u)s from the CR
for rate adaptation and ignores all other CI(u)s. If the source does not change CR. in time,

the transmission rate will be out of control. To detect that, we estimate an upper bound

(denoted as T"

max

) of the idle time (denoted as T°") before the source receives a first CI(u)
from the CR when the bottleneck is fully loaded. To use 7)., suppose we somehow detect
that the bottleneck is fully loaded at time t. If there has been no CI(x) from the current CR
for T, . since t, we can say that the current CR is now inactive and needs to be changed.
Let’s look at Figure 3.2. When the CR is still active, we measure samples of 17"
at the source, using feedback packets only from CR. When the transmission rate reaches
E(U) + 4U 1% where E(U®) and US" are the average and deviation of the current CR’s
TRAC respectively, we assume that bottleneck becomes fully loaded and start to count. Let
the current time be ¢y. At a later time ¢, the first CI(u) since ¢y arrives at the source from

the CR. t; — tp is then a sample of 7" and we update the average and deviation of 7" with

10 According to Chebychev Inequality, about 94% of the random sample are less than this value.

61

The bottleneck is

assumed to become fully loaded.
Iﬂ The bottleneck is The source sends

I
I
I
|
I
' assumed to become fully loaded. invalid E(U") & U
I
I
I
I
I

cr
Tmax

'

e T

New CR is selected

or cr
-—— —
T max ‘ ‘

Source 0 a i
Packets transmitted
Receivers .

f

The CR sends CI(| Non-CR receivers send CI(Ps
|
|
|
|
|

Time

CRisactive CR isinactive and needsto be changed

Figure 3.2: Congestion Representative (CR) Update Procedure

EWMA. T¢ is the average value of T°" plus eight times its deviation!'!. When the CR is

mazx

not active, for the duration of 7" =~ since we start to count, no CI(u) will be received by
the source. The source then requests feedback from other receivers for new CR selection, as

described in Section 3.1.4.

3.1.4 Feedback Suppression by Receivers

Effective feedback suppression can reduce the risk of feedback implosion, and allow a
multicast congestion control scheme to be used for large groups. In ORMCC, the source
conveys the average E(U®) and the deviation US" of the CR’s TRAC to receivers whenever
the CR is updated or E(U°") and US" are changed. Only if a receiver’s own average TRAC
E(U) is less than E(U) — U2 will it send CI(u)s. Note that a receiver does not maintain
TRAC deviation U, because it is computed by the source with the help of TRAC in CI(u)s.

E(U°) and UZ" conveyed by the source can be set to infinitely large values so that all
receivers can send CI(u)s. This is needed when the current CR is inactive and the source
needs to trigger feedbacks from all receivers for new CR selection (Figure 3.2).

To avoid the pathology that many non-CR receivers send Cls at the same time, each
feedback packet from non-CR receivers is delayed for a random period ¢, where ¢ is in the

interval of [0, T] and conforms to a truncated exponential distribution [84],

1 A 2z
—~— - 2eT 0<z<T
fX(x) — er—1 T ’ - =

0, otherwise

1We choose the value of 8 to be conservative.
12We don’t use E(U) > E(U°") because we want to be conservative and keep CR stable.

62

T is set to 2RTT,,,, in our simulations, where RTT,,,, is the maximum RTT the
source has ever seen. By the delayed sending time of a CI at a receiver, if an incoming
packet indicates that a new CR has been chosen and the CR’s statistics (E(U") and US")
suppresses Cls from this receiver, the scheduled CI will be canceled. In this way, synchronous
bursts of CIs are avoided.

It should be noticed that the feedback suppression in our scheme is based on statistics
(i.,e. TRAC) comparison, and no knowledge of the whole group is needed. The major
difference from previous probabilistic timer-based feedback suppression schemes is that in
those schemes, scheduled feedback packets are canceled by the arrivals of echo packets from
the source. Our feedback suppression mechanism is effective since the amount of CI(u)s sent
to the source is independent of the total receiver number. More insight will be given in the

theoretical analysis at Appendix C.4.

3.1.5 Rate Adaptation

ORMCC is a rate-based scheme, using the policy of additive increase and multiplicative
decrease (AIMD). That is, if there are no CI(u)s from the CR, the transmission rate is
increased by s/RTT per RTT, where s is the packet size, RTT is that between the source
and the CR. If a CI is received from the CR, let the TRAC in this CI be u, we adjust the
transmission rate to the minimum of Sy and the current rate. CI(u)s from other non-CR
receivers will be ignored, and at most one rate cut is allowed per RT'T.

The rate reduction factor £ is an important parameter of ORMCC. The larger the g,
the more aggressive is ORMCC. To keep ORMCC TCP-friendly, from a later discussion in
Appendix C.2, we will see that 5 must be at least 0.5. Moreover, the exact value of 5 depends
on how ORMCC is implemented. According to the simulation and experiment results, we
suggest 5 = 0.65 for implementation on user level, and g = 0.75 for implementation in
system kernel. The reason is that, if ORMCC is implemented on user level, due to the
coarseness of timers, its traffic is more bursty than that of TCP running in kernel. To cancel

that effect, 5 should be set lower.

3.1.6 RTT Estimation
Unlike a NAK, which includes the sequence number of a lost packet, a CI(x) of ORMCC

includes the sequence number of a packet upon the arrival of which packet losses are detected.

63

The source calculates the difference between the sending time of this packet and the arriv-
ing time of this CI(u) to get a sample of RTT. By doing this, we avoid the unnecessary
delay between the supposed arriving time of a lost packet and the time of its loss being de-
tected. Nevertheless, since CI(u)s are sent only when packet losses occur, RTT estimated by
CI(p)s includes the maximum bottleneck queueing delay and thus is still the upper bound.
On the other hand, ACKs as those in TCP may or may not include bottleneck queueing
delay. Therefore, on average, RTT estimated by CI(u)s is larger than that by ACKs un-

der the same situation. In fact, this is the reason why we set 8 to some value higher than 0.5.

As we can see from the details above, ORMCC has the following features:

e O(1) States The states maintained by source and receivers are O(1). That is, the
number of states is constant and independent of the number of receivers in a multicast

session.

e Simple Operations Operations of source and receivers are all simple, without re-
quiring intense computation. In particular, there is no need to do per-receiver RTT

estimation.

e Effective Feedback Suppression With our statistics-based feedback suppression
mechanism in place, the amount of feedbacks is independent of the total number of

receivers.

The pseudo code of ORMCC'’s algorithm is provided in Appendix B for reference. The

code for ns-2 and Unix can also be found at [120].

3.2 Properties about ORMCC Performance

It is desirable to check the performance of a multicast congestion control scheme by

theoretical analysis. We have done that for ORMCC to show the following properties:

Property 1 ORMCC is capable of tracking the slowest receiver and select it as CR (Con-

gestion Representative) to direct rate adaptation.
proof (See Appendix C.1.)

Property 2 ORMCC is TCP-friendly on the representative path, i.e. the path between the
source and the CR.

64

proof (See Appendix C.2.)

Property 3 ORMCC is immune to drop-to-zero problem, i.e. the sending rate won’t be

reduced more than enough and converge toward zero upon asynchronous congestion.

proof (See Appendix C.3.)
Property 4 Feedback suppression in ORMCC is very effective.

proof (See Appendix C.4.)

3.3 Simulations and Experiments

We have run simulations on ns-2 [2] (for small topologies) and ROSS [19] (for large
topologies) as well as experiments in Emulab [113] to validate the performance of ORMCC.

The simulations checked the following aspects:

(1) TCP-Friendliness

(2) Drop-to-zero avoidance

(3) Performance at CI loss

(4) Multiple bottleneck fairness
(5) Slowest receiver tracking

(6) Feedback suppression

We also compared the performance of ORMCC with PGMCC[94] and TFMCCJ[114]
on both ns-2 ¥ and ROSS . In all simulations, the data packet size is 1000 bytes, the
bottleneck buffer size is 50K bytes, the initial RTT is 100 milliseconds.

For experiments on real systems in Emulab[113], we implemented ORMCC on top of
UDP as a user level program. TCP-friendliness and drop-to-zero behavior are tested. The

is section.
Bywe used ns2.1b7a for ORMCC and TFMCC, but used ns2.1b5 for PGMCC, due to the restriction of its
source code.
14The ROSS implementations of PGMCC and TFMCC are based on their ns-2 source code.

65

3.3.1 TCP-Friendliness and Drop-To-Zero Avoidance

We used a star topology (Figure 3.3) to generate asynchronous and independent con-
gestion on different paths. There are 129 ends nodes in the topology. Between each pair of
source ¢ and receiver i (i = 1...64), there are one TCP Reno flow and one single-receiver
ORMCC flow. Furthermore, there is a multi-receiver ORMCC flow from source 65 to all

64 receivers. Therefore, on a path between the router and any receiver, the multi-receiver

ORMCC flow competes with a TCP flow and a single-receiver ORMCC flow.
source1 © Receiver 1
source2 O O Receiver 2

5Mbps,20ms 1Mbps, 20ms °

Source63 O O Receiver 63

Source64 O O Receiver 64
Source 65

Figure 3.3: 64-Receiver Star Topology with TCP Background Traffic

We randomly chose a receiver node and plot in Figure 3.4(a) the over-time average
rates 15 of all three flows going to it. The fact that the average rates of the TCP flow, the
single-receiver ORMCC flow and the multi-receiver ORMCC flow are close to each other
indicates that (1) ORMCC is TCP-friendly, and (2) ORMCC does not suffer from drop-to-
zero problem.

We also conducted experiments on the same configuration for PGMCC!® and TFMCC.
Results in Figure 3.4 (b) and (c) show that but the average rates of their multicast flows
deviate more from corresponding unicast flows.

For ROSS simulations, we used a tree topology (Figure 3.5). Since there has not been
TCP implementation on ROSS yet, we did not test TCP-friendliness on ROSS but focused
on the drop-to-zero problem. The ORMCC multicast traffic is from the source at the root
to all the receivers at the bottom of the tree. The last hop of every path from the source

to the receiver is the bottleneck (1Mbps), and has some unicast flows on it as background

150ver-time average rate at time ¢ is defined as the traffic volume between [0, ¢] divided by t.

16For PGMCC simulations, since ns2.1b5 can only accommodate up to 128 end nodes, we can only have
63 pairs of unicast source and receiver instead of 64 pairs. Moreover, we only measure the sending rate of
original data packets, because repair packets for PGMCC are routed by net elements to individual receivers
whoever need them instead of all receivers. Nevertheless, the proportion of repair packets is less than 1/10
and is thus negligible. This has the same effect as measuring sequence number increment in [94].

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Simulation (ORMCC)

08 |

06

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Simulation (PGMCC)

66

T

Multi-revr flow

Single-rcvr flow -------
CP -

TCP
Theoretical share

08 |

T
Multi-revr flow

Single-rcvr flow
CP -

T
Theoretical share

Over-time Average Rate (Mbps)

Over-time Average Rate (Mbps)

0 200 400 600
Time (sec)

(a) ORMCC

I 0 I I

800 1000 0 200 400

600

Time (sec)

(b) PGMCC

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Simulation (TFMCC)

08 f
0.6

04

Over-time Average Rate (Mbps)

T
Multi-revr flow
Single-revr flow -------

TCP
Theoretical share

200 400 600 800 1000
Time (sec)

(¢c) TFMCC

Figure 3.4: TCP-Friendliness and Drop-to-Zero Avoidance
(ORMCC is more TCP-friendly and avoids drop-to-zero better than PGMCC and TFMCC.)

800

1000

traffic. The end-to-end propagation delay of both multicast and these unicast flows are set

to be the same.

The first ROSS simulation has ten thousand receivers involved in an ORMCC multi-

cast session. The background traffic consists of single-receiver ORMCC flows. Figure 3.6

shows that the average throughput over the simulation stays at a reasonable level. Four ran-

domly chosen background traffic flows are plotted for comparison. Although the multicast

throughput is slightly lower than those of the unicast flows, it is understandable because the

multicast session always tracks the slowest receiver which changes over time.

The second ROSS simulation is used to compare the performance of ORMCC, PGMCC

and TFMCC when they run along with each other. The topology in Figure 3.5 is still used

but with different number of receivers. Three simulations with the receiver number of 10,

67

Source

Multicast tr%Wi cast traffic
\ (oo R

AN INA

Multicast traffic

Cross trafﬂ 1 Mbps r

Receiver Receiver

Figure 3.5: Tree Topology for Large-Scale Simulations in ROSS

Over-time average throughput of ORMCC with 10,000 receivers
1

T T
Multicast ORMCC ——
Unicast ORMCC 1 -------
Unicast ORMCC 2 --------
Unicast ORMCC 3
Unicast ORMCC 4 -~
0.8 [4

0.6 -

Throughput Rate (Mbps)

0

L L L L L L L
0 50 100 150 200 250 300 350 400
Time (sec)

Figure 3.6: Drop-to-zero Avoidance in 10,000-Receiver Simulation
(ORMCC still avoids drop-to-zero at the presence of large number of receivers and independent bottlenecks.)

100 and 500 have been conducted. Single-receiver PGMCC flows instead of ORMCC flows
are used for background traffic due to the close-to-TCP design of PGMCC. The series of
figures (Figure 3.7) show that ORMCC always gets the approximately the same throughput
as the unicast PGMCC flows do. The multicast PGMCC gets slightly lower but consistent
throughput, while the throughput of TFMCC decreases as the number of receivers increases.

As the result, we can see that ORMCC outperforms PGMCC and TFMCC in terms of

drop-to-zero problem.

68

Over time average throughput of ORMCC, PGMCC and TFMCC (10 receivers) Over time average throughput of ORMCC, PGMCC and TFMCC (100 receivers)
0.55 T T T T T T T 0.7 T T T T T T T

PGMCC
Unicast 1 -
Unicast 2 --------
Unicast 3
Unicast4 ---—

PGMCC ===
Unicast 1 ------- 4
Unicast 2 --------
Unicast 3

Unicast 4 ---—

Throughput Rate (Mbps)
Throughput Rate (Mbps)

0 50 100 150 200 250 300 350 400 100 150 200 250 300 350 400
Time (sec) Time (sec)

(a) 10 receivers (b) 100 receivers

Over time average throughput of ORMCC, PGMCC and TFMCC (500 receivers)
0.6 T T T T T

T
ORMCC ——
TFMCC
PGMCC
Unicast 1
05 Unicast 2 -
Unicast 3
Unicast 4 —--—

Throughput Rate (Mbps)

0 50 100 150 200 250 300 350 400

Time (sec)

(c) 500 receivers

Figure 3.7: Over-Time Average Throughput of ORMCC, PGMCC and TFMCC Running

Together
(When competing with each other, ORMCC gets best average throughput and is fairest with background
unicast flows.)

3.3.2 Performance at CI loss

Since ORMCC heavily relies on Cls from the receivers, it is a concern whether CI losses
can negatively affect the performance of ORMCC. To check this aspect, we ran a set of 500-
receiver simulations on ROSS with different CI loss probabilities for the multicast flow, again
using the topology of Figure 3.5 and single-receiver ORMCC flows for background traffic on
the last hops. The results in Figure 3.8 show that ORMCC does not suffer from performance
downgrade when up to 10% ClIs are dropped. The reason is that, if a CI from CR is lost and
the source does not reduce the sending rate, the bottleneck keeps being congested, packets
keep being dropped and therefore, more CIs are sent from the CR. Some CIs finally arrive

at the source and trigger rate reduction.

Over-time average throughput of ORMCC with CI loss probability as 0.01

T T
Multicast ORMCC
Unicast ORMCC 1
Unicast ORMCC 2
Unicast ORMCC 3
Unicast ORMCC 4
0.8

06

0.4 .

Throughput Rate (Mbps)

0 I I I I I I I

0.2

0 50 100 150 200 250 300 350
Time (sec)

(a) CI loss proportion = 1%

400

08 |

Throughput Rate (Mbps)

Over-time average throughput of ORMCC with CI loss probability as 0.05

69

06

T T
Multicast ORMCC ——
Unicast ORMCC 1
Unicast ORMCC 2 --------
Unicast ORMCC 3

Unicast ORMCC 4 —-—--

50 100 150 200 250 300 350
Time (sec)

(b) CI loss proportion = 5%

Over-time average throughput of ORMCC with ClI loss probability as 0.1

0.8

06 -

T T
Multicast ORMCC ———
Unicast ORMCC 1
Unicast ORMCC 2 --------
Unicast ORMCC 3

Unicast ORMCC 4 -~

Throughput Rate (Mbps)

0 50 100

150

200
Time (sec)

250

300 350 400

(c) CI loss proportion = 10%

Figure 3.8: Over-Time Average Throughput of ORMCC When There Are CI Losses
(Feedback packet loss does not affect ORMCC’s performance.)

3.3.3 Multiple Bottleneck Fairness

400

In real world, there are usually more than one bottleneck on a path. It is desirable to

check how long ORMCC flows compete with short ones and what kind of fairness ORMCC

can achieve. we ran a simulation on Figure 3.9. There is a long multi-receiver multicast flow,

going through two bottlenecks, from Src 1 to receivers in Group 1. There are also two short

multicast flows going through only one bottleneck from Src 2 to Group 2 and from Src 3 to

Group 3 respectively. Each group has 16 receivers. RED queues are used on the routers to

reduce the effect of RTT estimation.

According to proportional fairness, the long ORMCC flow should get one-third of the
bottleneck bandwidth, 0.33Mbps. The result in Figure 3.10 (a) shows that ORMCC achieves

approximately proportional fairness. Similar fairness achieved by PGMCC and TFMCC in

70

Src2 Revr group 2
eee O

5Mb, 20ms_—C
Scl Lo 1Mb, 20ms / .
O O O = \ * Revr group 1

5Mb, 20ms iMb,20ms |1
O

Src3 Revr group 3

Figure 3.9: Linear Network with Multiple Bottlenecks (Totally 48 Receivers)

the same configuration is also shown in the figure.

Over-time Average Rates of Multiple Bottleneck Fairness Simulation (ORMCC) Over-time Average Rates of Multiple Bottleneck Fairness Simulation (PGMCC)
1 T T T T 1 T T T T
ORMCC long flow PGMCC long flow
ORMCC cross traffic 1 ------- PGMCC cross traffic 1 -------

ORMCC cross traffic 2 -------- PGMCC cross traffic 2 --------
Optimal share of long flow Optimal share of long flow

Optimal share of cross flows ---- Optimal share of cross flows ----
0.8 1 0.8

Over-time Average Rate (Mbps)
Over-time Average Rate (Mbps)

0.2 |

0 I I I I 0 I I I I
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (sec) Time (sec)

(a) ORMCC (b) PGMCC

Over-time Average Rates of Multiple Bottleneck Fairness Simulation (TFMCC)

1 T T T T
TFMCC long flow
TFMCC cross traffic 1 -------
TFMCC cross traffic 2 --------
Optimal share of long flow
Optimal share of cross flows -~
08

Over-time Average Rate (Mbps)

0.2

0 L L L L
0 200 400 600 800 1000

Time (sec)

(c) TFMCC

Figure 3.10: Fairness of Sharing Bottleneck Bandwidth
(ORMCC, PGMCC and TFMCC all achieve approximately proportional fairness.)

Table 3.1: Dynamics in Slowest Receiver Tracking Simulation

71

0 - 200 sec | 200 - 400 sec | 400 - 600 sec | 600 - 800 sec | 800 - 1000 sec
Most congested bottleneck Link 1 Link 2 Link 3 Link 2 Link 1
Supposed CR Receiver 1 Receiver 2 Receiver 3 Receiver 2 Receiver 1
3.3.4 Slowest Receiver Tracking
Source
O
Router
Receiver 1 O O * oo O O Receiver 32
Receiver 2 Receiver 31

Figure 3.11: One-Level Tree with 32 Receiver Nodes

This simulation is used to test ORMCC’s capability to quickly track the slowest receiver
and select it as CR. In the tree topology of Figure 3.11, there is an ORMCC flow between
the source and all the 32 receivers. There are three dynamically generated bottlenecks using
TCP Reno flows. Denote link 7 as the link between the router and receiver i (i = 1...32),
each link has 2Mb bandwidth and 20 ms delay. The simulation time is 1000 seconds. During
the whole simulation, one TCP flow runs on link 1; between 200th and 800th seconds, three
TCP flows run on link 2; between 400th and 600th seconds, seven TCP flows run on link
3. The most congested bottlenecks and the supposed CRs at different time are shown in
Table 3.1.

The dynamics include both conditions causing CR switches, i.e. (1) A slower receiver
appears, (2) The current slowest receiver is absent. RED and drop-tail queue management
policies are used separately in our simulations. Simulation results are shown in Figure 3.12
(a) and (b). Vertical dash lines show when the ORMCC source switched CR. We can see
that ORMCC updates CR and adapts its transmission rate in a timely manner. Note that

72

when using RED queues, the ORMCC source sometimes switched CR a little slower than
drop-tail situation. The reason is because RED queue drops packets in a random manner,
it takes longer for the slowest receiver to have a lower average TRAC measurement.

Under the same situation, as shown in Figure 3.12 (c),(d), (e) and (f), PGMCC and
TEFMCC also track the slowest receiver, though sometimes with more representative switches.
We also noticed that there is much oscillation of PGMCC’s rates due to its design of mim-
icking TCP, while the rates of ORMCC and TFMCC have similar smoothness.

Moreover, to further verify the mechanism of CR absence detection, we tested a patho-
logical situation in ROSS, where any receiver stops sending CIs after being CR for 20 seconds.
If the source can detect the in-activeness of CR and switch CR quickly, the sending rate will
be adjusted lower in time and the bottlenecks won’t be kept congested. The simulation
used the configuration in Figure 3.5 and there are 500 receivers. By comparing the result in
Figure 3.13 and Figure 3.6, we can see that the throughput patterns of both simulations are

the same, which indicates that the mechanism we designed to detect CR absence is effective.

3.3.5 Feedback Suppression

To check the effectiveness of the feedback suppression mechanism in ORMCC, we
refer back to the ns-2 simulation of TCP-friendliness and drop-to-zero avoidance. In totally
ten simulations, the average total number of CI(u)s sent by all receivers is 816 (standard
deviation is 14.8), the average total number of suppressed CI(u)s is 34601 (standard deviation
is 422.0). The average number of CI(u)s would have been sent by a receiver if without
suppression, is (34601 + 816)/64 ~ 553. As we discussed in the analysis (Appendix C.4),
realistic measurement error can lead to a little bit more ClIs. Since 816 < 2 x 553, we
can still say that the overall feedback volume with suppression is approximately equal to
that from a single receiver if without suppression. The high ratio of CI(u)s suppressed,
34601/(34601 + 816) x 100% ~ 97.7%, shows that our feedback suppression is very effective.

For comparison, in a typical PGMCC simulation with the same configuration, the total
number of feedback packets received by the source is 74830 (NAK 55222, ACK 19608); for
TFMCQC, it is 5344. Their feedback volume is much larger.

25

15

Rate (Mbps)

0.5

15

Rate (Mbps)

0.5

25

15 H

Rate (Mbps)

05

Rate of Slowest Receiver Tracking Simulation (Drop-tail, ORMCC)

' ' ' " ORWICC flow
GR switch -------
. . L . i . . .
100 200 300 400 500 600 700 800 900 1000

Time (sec)

(a) Droptail Queue (ORMCC)

Rate of Slowest Receiver Tracking Simulation (Drop-tail, PGMCC)

PGMCC flow'
CR switch

i
100 200 300 400 500 600 700 800 900 1000

(c) Droptail Queue (PGMCC)

Rate of Slowest Receiver Tracking Simulation (Drop-tail, TFMCC)

' ' ' ' ' ' TAMCC flow’
CR switch ————
L L L L : L L L L L
100 200 300 400 500 600 700 800 900 1000

Time (sec)

(e) Droptail Queue (TFMCC)

Rate (Mbps)

Rate (Mbps)

Rate (Mbps)

73

Rate of Slowest Receiver Tracking Simulation (RED, ORMCC)

25 T T T T T T T T
ORMCC flow
R switch -------
2L]
15 1
1
0 \ \ \ \ \ J \ J \
0 100 200 300 400 500 600 700 800 900 1000
Time (sec)
Rate of Slowest Receiver Tracking Simulation (RED, PGMCC)
25 W T T T T
H | PGMCC flow
CR switch ——-----
2
15 ’
1 l!
0.5 ‘
. ‘ i ‘ j ; ‘ i ‘
0 100 200 300 400 500 600 700 800 900 1000
Time (sec)
Rate of Slowest Receiver Tracking Simulation (RED, TFMCC)
25 T T T T T T
TFEMCC flow
R switch -------
2]
15 q
1
0.5
0 . . M i . A .
0 100 200 300 400 500 600 700 800 900 1000

Time (sec)

(f) RED Queue (TFMCQ)

Figure 3.12: Capability of Tracking The Slowest Receiver
(ORMCC tracks the slowest receiver in time with fewer representative switches than PGMCC and TFMCC.)

3.3.6 Comparision with PGMCC and TFMCC in Heterogeneous Dynamic Net-

work

As the last simulation, we constructed a dynamic network to test the stability and
adaptability of ORMCC, again compared with PGMCC and TFMCC. In Figure 3.14, each

74

Over-time average throughput of ORMCC with regular CR change
1 T T T T

T T
Multicast ORMCC ——
Unicast ORMCC 1 -------
Unicast ORMCC 2 --------
Unicast ORMCC 3
Unicast ORMCC 4 -~

0.6 -

Throughput Rate (Mbps)

L L L L L L L
0 50 100 150 200 250 300 350 400
Time (sec)

Figure 3.13: Average Throughput With Frequent CR Quitting
(ORMCC switches CR in time if the CR stops reaction.)

Source

8 layer—1 routers

16 layer-2 routers

32 receivers

Figure 3.14: Heterogeneous Dynamic Network

link has 2Mbps bandwidth. 2 links at the first level, 4 links at the second level, and 8 links at
the third level has 200ms delay. All other links have 20ms delay, while on any path between
the source and a receiver, there is at most one link of 200ms delay. On each link, two TCP
Reno flows are randomly turned on and off according to Pareto distribution with average
value of 60 seconds, and two UDP flows of 200Kbps on and off with average value of 1
second. These flows dynamically generate bottlenecks and make the network heterogeneous.
At last, there is a multicast flow from the source to all the receivers. The multicast flow can
use either ORMCC, PGMCC or TFMCC. Therefore, at any moment, there are at most five
flows on any link: one multicast flow, two TCP flows and two UDP flows, and the multicast
flow is expected to get an average throughput rate of 500Kbps or so.

We ran 10 simulations for each of the three schemes. In Table 3.2 we can see that with

smaller amount of feedbacks, ORMCC can achieve higher throughput. That means, ORMCC

75

Table 3.2: Comparison of Average Throughput and Feedback Volume in Heterogeneous Dy-
namic Network

ORMCC PGMCC TFMCC
Average Throughput 415.4 Kbps 126.6Kbps 226.7Kbps
Average Feedback Number 866.9 5009.6 (NAK only) | 3312.9

(ORMCC has higher throughput and needs less feedback in heterogeneous and dynamic environment.)

has better stability and adaptability in heterogeneous and dynamically changing networks.

3.3.7 TCP-Friendliness and Drop-To-Zero Avoidance Test in Emulab

To do a preliminary check of ORMCC’s performance in real world and understand
the issues of implementation, we implemented ORMCC in C++ on top of UDP as a user
level program and ran it in Emulab [113] 1. The operating system we used is RedHat 7.1,
and mrouted[81] is used for multicast routing. On the topology shown in Figure 3.15, the
links between the peripheral nodes and their parent nodes have 50 ms propagation delay
and 1.0Mbps bandwidth. All other links have 100Mbps bandwidth and 0 ms propagation
delay.!® From the center node to any peripheral node, there is a single-receiver ORMCC
flow and a TCP flow. Also, there is a multi-receiver ORMCC flow from the center node to
all 36 peripheral nodes. The experiment time is 1000 seconds.

Since we implemented ORMCC on user level, its traffic is more bursty than that of TCP
running in kernel. As described in Section 3.1.5, the rate cut factor () should be adjusted
accordingly. We tried three different values: 0.5, 0.65 and 0.75. According to Figure 3.16 19,
when 3 = 0.5, the TCP flows got more bandwidth; when g = 0.75, the ORMCC flows are
more aggressive. 3 = 0.65 works the best, where the multi-receiver ORMCC flow got almost
the same bandwidth as TCP flows did, and thus TCP-friendly. Moreover, among all the
values tested for 3, the average rates of the multi-receivers ORMCC flow and single-receiver

ones are always close, showing that ORMCC is immune to drop-to-zero problem.

3.4 Summary

Another single-rate multicast congestion control scheme ORMCC is presented in this
chapter. It uses an conventional concept of representative named Congestion Representative

(CR) here. However, by leveraging a new metric TRAC, the whole scheme is simple while

"Emulab is accessible at http://www.emulab.net.
18The propagation delay here means the delay artificially introduced by some particular software.
19The mean and confidence interval are calculated out of all the flows of the same category.

76

el

%_3_1 e
i

nade—(-:

Thode0-3- =
node-0-312%F node-0-3nade-0-3-2-2

Figure 3.15: Topology Used in Emulab for TCP-Friendliness and Drop-to-Zero Test (36 Re-
ceiver Nodes)
still capable of effectively addressing the problems of TCP-friendliness, drop-to-zero, slowest
receiver tracking and feedback suppression. The states maintained by source and receivers are
O(1); operations of source and receivers are all simple without requiring intense computation,
in particular there is no need to measure RTTs between all receivers and the source; statistics-
based feedback suppression is highly effective. To confirm the performance of ORMCC, we
have not only provided theoretical analysis, but also run simulations to compare our scheme
with PGMCC[94] and TFMCC[114]. Furthermore, we have implemented ORMCC on top of
UDP and run it on real systems in EMulab[113]. The results are promising. As an emphasis,
we summarize the comparison with PGMCC and TFMCC in simulations in Table 3.3. We
can see that ORMCC achieves better performance than PGMCC and TFMCC under most

situations. Code for ns-2 and Unix is available at [120] for public test.

7

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Test in Emulab Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Test in Emulab
05 T T T T 05 T T T T
Multi-revr ORMCC flow Multi-revr ORMCC flow
Mean of Single-rcvr ORMCC flow rates w/ 95% conf. itvl. ——+— Mean of Single-rcvr ORMCC flow rates w/ 95% conf. itvl. —+—i
0.45 Mean of TCP Flow rates w/ 95% conf. itvl. =-->--- 0.45 Mean of TCP Flow rates w/ 95% conf. itvl. =->---+ -

0.4 0.4 1
N I
i3 0.35 i=3 0.35 |- q
= =
o o
2 5 2 o3} g
« XX g «
% e FAFEE K F g x E L S R ST S qé‘ 0.25 1 i
! R e ;;f}HHH'H‘HHHHHHH—HHHH
o 02 o /
£ FEFFERL e £ | RS
I I
g 01577 g

0.1 f

0.05 0.05 |- 1
0 1 1 1 1 0 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (sec) Time (sec)

(a) =05 (b) B =0.65
ORMCC is less aggressive than TCP ORMCC is TCP-friendly

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Test in Emulab

05
' ' Multi-revr ORMCC flow
Mean of Single-rcvr ORMCC flow rates w/ 95% conf. itvl. ——+—

0.45 - Mean of TCP Flow rates w/ 95% conf. itvl. =--x--- o

04 1

g: 0.35 q
=)
o

2 o3t g
4
@
>

g 0.25 ’%%E_}{.},f}}}{{{i§%~§—§$§gfé_tiié,?%i‘?*%%§‘$§§~$—$—$$$$éé¢§—$:

2 /

.2 q

g o M
5

2]
o

FXXEXFEFEXXLLZEXE LT KR T XS

0.05 1

0 1 1 1 1
0 200 400 600 800 1000

Time (sec)

(c) B =0.75 ORMCC is more aggressive than TCP

Figure 3.16: TCP-Friendliness and Drop-to-Zero Test Result in Emulab
(ORMCC is TCP-friendly and avoids drop-to-zero on real systems with proper parameter setting.)

Table 3.3: Summary of ORMCC Performance Compared with PGMCC and TFMCC in Sim-

ulations
Simulation Name Performance Comparison Figure/Table
TCP Friendliness and Immunity to Drop-to-Zero Better than PGMCC and TFMCC Fig. 3.4
Multiple Bottleneck Fairness Comparable with PGMCC and TFMCC Fig. 3.10

Slowest Receiver Tracking Better than PGMCC and TFMCC Fig. 3.12

Feedback Suppression Better than PGMCC and TFMCC Table 3.2

Performance in Heterogeneous Dynamic Network Better than PGMCC and TFMCC Table 3.2

(In general, ORMCC outperforms PGMCC and TFMCC.)

CHAPTER 4
GMCC: Generalized Multicast Congestion Control

In this chapter we counter the multicast congestion control problem in the situation as

follows:

Support is allowed at receiver side, and unlimited multicast groups are allowed

for a multicast session.

This situation will usually be seen when we are using the SSM (source specific multi-
cast) model [44]. SSM allows each source to have almost infinitely many multicast groups.
Therefore multicast group address resource won’t pose a serious problem.

By developing a multi-rate framework and incorporating an enhanced version of ORMCC
into it, we have a new solution for this kind of situations. The new scheme provides the multi-
rate feature at low complexity by encompassing a set of independent single-rate sub-sessions
(a.k.a layers). Various receivers can subscribe to different subsets of these layers to achieve
different throughput. Since single-rate congestion control is just one of the special cases of
this new scheme, we named it Generalized Multicast Congestion Control, in short, GMCC.

GMCC is similar to a recently proposed scheme SMCC [59] but with certain advantages.
SMCC is also a hybrid of single-rate and multi-rate multicast congestion control. It combines
a single-rate scheme TFMCC[114] with the receiver-driven idea. In each layer, the source
adjusts sending rate within a certain limit based on TEFMCC, and receivers join or leave layers
cumulatively according to their estimated maximum receiving rates using TCP throughput
formula [85]. Since the flows in each layer are adaptive to network status, the number of join
and leave operations are greatly reduced. The congestion control is more effective.

SMCC requires static configuration of the maximum sending rates for each layer. For
example, the lowest layer is set to 1Mbps maximum, the second layer is set to 2Mbps
maximum, and the i-th layer is set to 2" 'Mbps. A receiver with an estimate of maximum
throughput rate as 3Mbps needs to join the lowest two layers. This static setting can
negatively affect the performance of SMCC. Consider the following scenario: with the settings

above, all receivers have their estimated throughput rate below 1Mbps. Some receivers are

behind 100Kbps bottlenecks, some behind 300Kbps, and others behind 800Kbps. Since

78

79

there is only one layer for bandwidth less and equal to 1Mbps, all these receivers have to
receive at a single rate. That means SMCC is degraded to a single-rate scheme under this
situation. Consider another scenario: still with the above layer settings, all receivers have
100Mbps bandwidth. To fully utilize their bandwidths, they will need to join seven layers.
Obviously, if the source is configured properly, only one layer is need. Therefore, six layers

are redundant due to the mis-configuration.

— Throughput adjusted by source

Throughput (Mbps) Join/Leave by receivers

AMbPS [Throughput limit of Layer 3
2Mbps Throughput limit of layer 2

1Mbps Throughput limit of layer 1

Time
(a) SMCC overview (with per-layer throughput limit)

— Throughput adjusted by source

Throughput (Mbps) Join/Leave by receivers

4AMbps
3Mbps
2Mbps

1Mbps

Time
(b) GMCC overview (no per-layer throughput limit)

Figure 4.1: Qualitative Comparison of SMCC and GMCC
(GMCC without per-layer restriction is more flexible than SMCC.)

GMCC solves these problems while having the merits of SMCC. Figure 4.1 shows the
difference between SMCC and GMCC visually. With GMCC, in the first example scenario
above, receivers will be able to receive data at 100Kbps, 300Kbps and 800Kbps respectively,

and in the second example scenario, only one layer will be used. All these are done without

80

changing any setting of the GMCC source.
In brief, GMCC has the following advantages:

(1) It is fully adaptive. The sending rate in each layer can be adjusted without rigid
limits. Together with the automatically adjusted number of layers, it always allows

heterogeneous receivers to receive at different rates.

(2) The number of layers used is just enough to accommodate the differences among the

throughput desired by receivers. No redundant layers are used.

(3) It is not coupled with equation-based rate control mechanism such as TFMCC. The
rate control mechanism at source can be replaced by others based on representative

(the most congested receiver).

GMCC also addresses the issue of starting and stopping traffic within layers depending
on whether there are receivers in the layers.
In the remainder of this chapter, we will describe the details of GMCC, and show some

simulation results to demonstrate the performance of GMCC.

4.1 Scheme Details

The goal of multi-rate multicast congestion control is to fully the available bandwidth
on different paths between the source and receivers. One key issue is then how and when a
receiver joins or leaves a layer to increase or decrease its total throughput rate. The second
issue is how the source controls the throughput in each layer. The basic ideas of GMCC

solutions to these issues are the following:

e In each layer, the source chooses a most congested receiver as congestion representa-
tive (CR) and adjusts the sending rate of this layer according to the CR’s feedback
(Section 4.1.2).

e The source starts traffic in a layer when the first receiver joins and stops traffic in a

layer when the last receiver leaves (Section 4.1.3).

e Each receiver joins layers cumulatively, and is allowed to be the CR of at most one

layer.

81

e When a receiver detects that it is much less congested than the most congested receiver
(i.e. the CR) in the highest layer it has joined, meaning it can potentially receive at a

higher rate, it joins an additional layer successively (Section 4.1.4).

e When a receiver detects that it is the most congested receiver in more than one layer,
which means it confines or can potentially confine the sending rates of more than one

layer, it leaves the highest joined layer (Section 4.1.5).

e Receivers make decisions of join and leave based on statistics. Statistics can be used
only if (1) At least a certain number of samples have been collected, and (2) Every

layer has a CR.

As shown in the above ideas, it is important for a receiver to detect whether it is more
congested than another. We propose to use Throughput Attenuation Factor (TAF) for this
purpose described in next section. After that, we describe various aspects of the GMCC

scheme.

4.1.1 Throughput Attenuation Factor

Throughput Attenuation Factor (TAF) ?° is a metric measured at the receiver side to
indicate how congested the receiver is. It comprises two parts, Individual Throughput Atten-
uation Factor (ITAF) and Congestion Occurrence Rate (COR), each describing a different

aspect of congestion.

4.1.1.1 Individual Throughput Attenuation Factor
ITAF is defined as

.

A
measured only in congestion epochs (A congestion epoch is an event when one or more
consecutive packets are lost.?!) u is the instantaneous output rate and X is the rate of input
generating this portion of output. It shows how much proportion of input is lost during an
instance of congestion, and therefore indicates how sertous this instance of congestion is.
ITAF may be measured in the following way in implementation: Each data packet

carries the instantaneous sending rate information, assumed to be)\, for the packet of

20This section is a self-contained overview of our technical report [63] which covers more details.
21'We assume that packet loss is due to congestion only.

82

sequence number n. When a packet of sequence number n arrives, the receiver divides
this packet size by the latest packet arriving interval and gets the instantaneous receiving

rate u,. If the receipt of sequence number n indicates a packet loss, a ITAF is obtained as

where m is the received sequence number immediate prior to n.

4.1.1.2 Congestion Occurrence Rate

COR is defined as the reciprocal of the interval between two consecutive congestion
epochs. For instance, if the loss of packet n and n + i (i > 1) is detected at time t; and ¢,
respectively (with the packets from n+1 to n+i— 1 received), then a sample of COR would

be
1

to — 1t

COR shows how frequently congestion happens.

With ITAF and COR defined, TAF is the product of these two factors, i.e.
TAF = ITAF x COR

The larger TAF, the more congested is a receiver. Usually the samples of ITAF and
COR change abruptly (e.g. due to bursty loss). Therefore, we collect a certain number?? of
ITAF and COR samples, average the samples and use the mean value for TAF calculation.
That means, we compare congestion on an average sense. For more detailed analysis of
TAF, please refer to our technical report [63]. In GMCC, each receiver measures its own
TAF and maintains the mean © and standard deviation ©7 of the latest N TAF samples for

the purpose of TAF comparison.

4.1.2 Sending Rate Control Within A Layer

Given a layer with active receivers, the source chooses a most congested receiver (e.g.

Receiver 2 in Figure 4.2) in this layer as congestion representative (CR) and uses its feedback

22 A number of 30 is used in our simulations.

83

Table 4.1: Some Key Symbols in Section 4.1

Symbol | Meaning

O, Average TAF of receiver

o7 Standard deviation of receiver i’s TAF

6 Average ITAF of a receiver’s highest joined layer measured during periods
without bandwidth shifting
o' Average ITAF of a receiver’s highest joined layer measured during bandwidth
shifting periods
Number of TAF/ITAF samples kept for calculation
Number of positive TAF/ITAF comparison results required to join an addi-
tional layer

~|=

for rate adaptation. When the CR detects packet loss, it sends feedback packets called
congestion indications (Cls) back to the source that decreases the sending rate by half. To
avoid reducing rate too much, the source decreases the sending rate at most once per SRTT
(smoothed RTT). The samples of RTT are collected by the source at the receipt of Cls.
The value of a sample is the time difference between the CI arrival and the departure of the
data packet triggering the CI. SRTT is calculated by exponential weighted moving average
formula: SRTT = (1-¢) SRIT + ¢ RTT (0 < e < 1, we use 0.125). At the absence of CIs,
the sending rate is increased by s/SRTT each SRTT, where s is the packet size.

To choose or update a CR, the source needs to compare the TAF statistics from re-
ceivers sent in by CIs. Given receiver ¢ and j, and j is the CR, assume their average TAFs
are ©; and O}, their TAF deviations are ©7 and ©f respectively. If the following condition
is satisfied, receiver ¢ is chosen as the CR (When there is no CR yet, ©; and ©F can be
adjusted to make the condition always true.) This condition and those to appear later are

all based on statistical inference [78].

07 + (1 07)?

~ (4.1)

61' > 011@]' + OJQ\I

a1, g are configurable parameters. In our simulations, a4 is set to 1.25 since we want
to bias toward the current choice of CR to avoid unnecessary oscillation, as is set to 1.64 for
a 90% confidence level.

Although the source needs to perform TAF comparison, it is not necessary for all

84

receivers to send Cls to the source. In GMCC, receivers check the condition of (4.1) in
advance. Only if the condition is true do they send CIs. The information of CR is broadcast
to all receivers for the checking beforehand.

Notice that there is no limit to the maximum or minimum sending rate of each layer as
in SMCC. The sending rate in each layer can be increased or decreased to any level required
for adaptation. Besides, other rate control mechanisms such as those in PGMCC [94] and
TFMCC [114] can be used in place of the current one, as long as the transmission rate is

controlled by the source based on the feedback packets from the most congested receiver.

4.1.3 ON-and-OFF Control of Layers (by Source)

In any GMCC session, there is always a basic layer in which the source keeps sending
packets subject to rate control. All other layers must be turned on (i.e. start traffic) or shut
down (i.e. stop traffic) at right time to avoid bandwidth waste. Each GMCC session can
limit the number of layers to be used. This number is configured at the source and broadcast
to receivers periodically. Receiver subscriptions must not exceed this limit. Therefore, if
only one layer is allowed, GMCC works the same as a single-rate scheme. The source can
potentially control the number of layers to limit the throughput of the whole session.

ON: When a receiver joins a layer which did not have any receiver yet, the source needs to
start sending packets in this layer, i.e. turn on this layer. Since this receiver can infer that
there is no CR in this layer yet from the CR statistics conveyed by the source, it will send
CIs. Upon the receipt of these Cls, the source realizes there is at least one receiver in this
layer and therefore begins transmitting data. The receiver will be immediately chosen as the
CR for rate adaptation need.

OFF: If all receivers have left a layer, the source has to stop sending data in this layer,
i.e. shut down this layer. Each CR (one per layer) needs to send heartbeat packets once
per RTT (known from the source) to the source to maintain its validity. If the source has
not received any heartbeat packets from a CR for 8 RTTs, it will request Cls from receivers
to choose a new CR. If after 4 RTTs, there is still no CR chosen, the source will set the
sending rate to a very low level (e.g. one packet per RT'T) and wait for another 20 RTTs.?
The layer will be shut down if no response comes in during all these periods. In the above

procedure, the second period is needed to avoid sudden rate decrease in case there are still

23 All the numbers used here are heuristic.

85

other receivers in this layer. On the receiver side, to cooperate with the source, the receivers
need to send back Cls to the CR once they know the previous CR is invalid. To reduce the
total number of feedback packets, receivers may randomize their feedback according to their
TAF value (e.g. the larger the TAF, the sooner CIs are sent). Once a new CR is chosen, its
TAF statistics can be used by other receivers to suppress their feedback packets scheduled
to send (Section 4.1.2).

4.1.4 Joining An Additional Layer (by Receiver)

Whenever a receiver enters a GMCC session, it subscribes to the basic layer of GMCC
and stays there till it quits the session. Beyond this basic layer, the receiver must perform join
operations to increase its total throughput rate at right time. A receiver joins an additional
layer successively when it detects that its throughput rate can be potentially increased. There

are three situations, and we describe how the join decision is taken in each case.

O Multicast source

O. Router
Less congested More congested
O O
Reciever 1 Receiver 2
Smaller TAF measured Larger TAF measured, selected as CR
Will join an additional layer Will not join

Figure 4.2: A Topology Example for Join Operations under Situation 1 and 2

4.1.4.1 Situation 1: Frequent congestion epochs

This case is suitable for those receives that frequently detect congestion and thus gather
enough samples for TAF measurement quickly. Assume we observer receiver ¢, and the CR
is receiver 7. When there is congestion in the highest layer that receiver i is in, it measures

TAF. Once there are at least N TAF samples, it check the following condition,

86

©; > £10; + 52\]

(8:07)* + ©7*
N

(4.2)

b1 and (B, are parameters. We are conservative about join, therefore we heuristically
choose 81 = 2, and By = 2.58 for a 99% confidence level. If the condition in (4.2) is true for
J consecutive times, the receiver will join an additional layer. J > 1 is another parameter
controlling conservativeness of join operations and we use J = 30 in our simulations. The
reason to use relatively small N for samples and J for TAF comparison results, instead of
to use a single large N for samples, is that calculating the mean and deviation of a large set
of samples is expensive. Meanwhile, this method can catch the dynamics of networks.

For example in Figure 4.2, Receiver 1 is behind a less congested bottleneck and mea-
sures smaller TAF on average. Receiver 2 is behind a more congested link and have larger
TAF on average. At some point, Receiver 1 will have detected that the condition in (4.2)
has been true for J times, and decide to join an additional layer.

Although the TAF comparison in other layers can also stimulate the receiver to join
more layers, restricting it in the highest joined layer has equivalent effect and simplifies the

design.

4.1.4.2 Situation 2: Infrequent congestion epochs

If the congestion detected by a receiver is light, it may take a long time for this receiver
to collect enough samples to make a join decision under situation 1. The solution is to let
receivers join under another situation.

When a CR gets a new TAF sample and updates its TAF statistics, it sends a CI to
the source with new TAF information. The information is then broadcast to all receivers.
When a non-CR receiver notices that the CR of its highest joined layer has updated TAF
statistics, this receiver assumes that there is packet loss at this moment and calculates a
test version of TAF using its current average I'TAF value and the hypothetical packet loss
interval. For example, a receiver has joined up to layer L. At time t; the receiver detects
packet loss at layer L and calculates average ITAF as x, COR and then TAF. At a later
time t5 (no packet loss between ¢; and t;) the receiver notices that the CR in layer L has
updated TAF statistics. It then calculates a test version of average COR y using the sample

1/(t1 —t2), and computes a test version of TAF as zy together with the mean and deviation

87

of TAF. Using this mean and deviation, it checks the condition in (4.2). Once there are .J
consecutive positive results, it joins layer L + 1 from layer L.

Note that the test version of COR and TAF are not accepted as permanent samples
since they are not true samples. Once used, they are discarded. Consequently, the judging

in situation 1 won’t be affected.

4.1.4.3 Situation 3: Multiple layers on a shared bottleneck

Still, there is a special case which cannot be dealt with by the solutions for Situation
1 and 2. Consider a topology in Figure 4.3 containing two bottlenecks. The links L, and L,
have ample bandwidth to avoid any congestion. At the beginning, R1 and R2 are both in
only one layer. Therefore, only Bottleneck 2 can be fully utilized, and R2 will join a second
layer. After that, Bottleneck 1 is also full. At a later moment, R3 enters the session. The
congestion it detects will be approximately the same as that detected by R1. In consequence,
R3 stays in only one layer, without knowing it can actually join an additional layer without
increasing the congestion on Bottleneck 1. The reason is that the congestion generated
by intra-session flows of other layers is not distinguished from that by inter-session flows,
whereas the congestion of the former kind can actually be ignored in the context of deciding
whether to join. In consequence, some available bandwidth that can actually be exploited is

hidden. This problem also occurs in SMCC, but the paper [59] did not consider it.

Source
O
Bottleneck 1
2Mbps
O
Bottleneck 2
0.5Mbps Lx Ly
O
R1 R2 R3

Figure 4.3: A Topology Example Where Probabilistic Inter-Layer Bandwidth Shifting Is
Needed (Situation 3)

88

A solution can be that, for the above example, sometimes we try to send more (e.g.
0.55Mbps on average) in the first layer, while sending less in the second layer (e.g. 0.45Mbps
on average). If R3 does not see any increased congestion, it will know that a portion of the
congestion is incurred by intra-session flows, therefore can join the second layer.

Certainly the above method should be carefully managed because sending more in
a layer might cause more severe congestion on some paths. We developed the following
technique called probabilistic inter-layer bandwidth shifting (PIBS). Assume multiple layers
(layer 1 to n, n > 1) are used in a multicast session. Let the period between two consecutive
rate reductions (in the same layer) be a rate control period (RCP). At the beginning of each
RCP at layer i (1 < ¢ < n), with probably p, the source decides that it will send data
at the (1 4 J) level (otherwise send normally). That is, at any moment during this whole
RCP, if the calculated sending rate is);, the source will actually send packets at the rate
of A\; + min(dA;, Aiy1). At the same time, at layer i + 1, the actual sending rate is adjusted
to max(0, \;11 — d\;). Briefly, the source “shifts” some bandwidth from layer i + 1 to layer
i. To avoid significant unfairness to non-GMCC flows, p and 6 must be small (both are 0.1
in our simulations). Also, at any moment, no two layers are allowed to perform bandwidth
shifting simultaneously.

Given a receiver R and a multicast session the receiver is in, assume ¢ layers go through
the bottleneck on the path between the source and R. If £ > 1, for any layer ¢ < ¢, according
to the definition of ITAF (Section 4.1.1), the average ITAF measured by R at layer ¢ during
bandwidth shifting periods (") should be approximately the same as that measured during
periods without bandwidth shifting (f). On the contrary, if §' is larger than 6, it means
shifting bandwidth to layer ¢ cause more congestion, indicating that no layer above i goes
through the same bottleneck.

Assume R’s highest joined layer is k£, and the highest layer with traffic for the whole
multicast session is L. If £ < L, R will check the following condition at layer £ once it has

at least N samples for both # and ¢'.

0%+ o"” 0%+ 0"
0 — — <0 <¥h _ 4.3
Wy SO0+ —% (4.3)

o and ¢’ are the standard deviations corresponding to 6 and 6’ respectively. If condi-

tion (4.3) is true, the receiver R will join layer k£ + 1. It should be noticed that although

89

ITAF samples are distinguished under this situation, they are treated as the same for TAF

calculation under situation 1 and 2.

4.1.4.4 Two Exceptional Cases

Even if a receiver decides to join under the three situations above, to prevent spurious

join, there are two more cases to be checked before the join operation really occurs.

(1) If any layer in the whole session does not have a CR yet, the join attempt should be

canceled.

(2) If a receiver is already a CR for some layer, or detects that it may become a CR in any
of its joined layers, it also refrains itself from join. The detection is done by checking

the following condition, assuming this receiver is ¢ and the CR is j,

|67% 4 992

w decides confidence level, and we used 3.5 for 99.99%.

The first case above means that if in a layer there is no CR yet, the sending rate may
not have stabilized. Either the sending rate has not been increased enough to fully utilized
the available bandwidth, or the rate is still in the process of decreasing to adapt to the
network situation. Under this vague situation, we cannot draw a conclusion whether it is
appropriate or not for a receiver to join, and therefore have to wait. The second case shows
that a receiver has the potential to become a CR in a layer. The reason of a receiver being
CR is because that the total throughput rate of this receiver has matched its share of the
bottleneck bandwidth. As a result, this receiver has to restrain the source from increasing
the sending rate too much. Obviously, as long as the receiver is a CR or may become a CR,

there is no more room for the its throughput rate to increase.

It is worth mentioning that we do not have “join attempt” as SMCC does. We believe
that in GMCC, since both the sending rates in each layer and the number of layers can
be dynamically adjusted, as a multicast session goes on, the combination of sending rate

settings and the choice of layer number will evolve to the extent that will accommodate

90

the heterogeneity among the receivers, so that a join won’t cause abrupt severe congestion.

Moreover, omitting join attempts significantly simplifies the design.

4.1.5 Leaving a Layer

A receiver always unsubscribes from the highest joined layer. After a receiver joins
a layer, it needs to wait for some time to allow the network stabilize. This is achieved by
collecting N more samples for TAF statistics in all joined layers before it checks whether to
leave. Then, if the receiver is the CR or satisfies the condition in (4.4) in more than one
layer, it leaves the highest layer it is in. The reason is the same as explained in the second

exceptional case of join at the end of Section 4.1.4.

4.2 Simulations

We have run several ns-2 [2] simulations and a large scale ROSS [19] simulation to test
the performance of GMCC. Drop-tail routers are used, router buffer size is set to 20K bytes.
Reno TCP is used for background traffic. The following aspects of GMCC performance have
been tested:

(1) Effectiveness of the adaptive layering, to show that GMCC does not use redundant

layers to satisfy heterogeneous receivers.

(2) Responsiveness to traffic dynamics, to show how GMCC responds to dynamically

changing competing traffic.

(3) Effectiveness of probabilistic inter-layer bandwidth shifting (PIBS), to show that the
technique of PIBS is valid.

(4) Throughput improvement, to show that GMCC can achieve good throughput for het-

erogeneous receivers.

In the third simulation, we will also show that feedback packets of non-CR receivers

can be suppressed efficiently, as described in Section 4.1.2.

91

GR: GMCC receiver node

TR: TCPreceiver node 100Mbps GR1

bps

/

ms

1M
100M bps

100Mbps) Gr2

Figure 4.4: Topology for Layering Effectiveness Test (Sec. 4.2.1)

4.2.1 Effectiveness of the adaptive layering

GMCC uses barely enough layers to satisfy heterogeneous receivers, as shown in the
following simulations. In the topology of Figure 4.4, four TCP flows go from node S to
TR1,TR2,TR3,TR4 respectively. A GMCC session has S as the source and GR1,GR2 as
the receivers. In the first simulation, the bandwidth of the link between R1 and R3 is set
to 5Mbps. In the second simulation, it is set to 10Mbps. Obviously, in both simulations, if
with efficient layer settings, only two layers are needed, where GR1 subscribes to only one
layer, and GR2 subscribes to both.

The throughput of the flows in these two simulations are shown in Figure 4.5. GR2
joined an additional layer at 15.8-th second and at 22.4-th second in the first and second
simulations respectively, and stayed in two layers till the end of simulations. In contrast,
GRI1 only subscribed to the basic layer. This conforms to the expectation above and shows
that the GMCC does not use more layers than necessary. For comparison, consider SMCC
with 1Mbps,2Mbps,4Mbps limits for the lowest three layers. In the second simulation, since
GR2’s average throughput rate is above 3Mbps, it will have to subscribe to at least three

layers with some redundancy.

4.2.2 Responsiveness to traffic dynamics

There are two types of response to traffic dynamics. The first type of response is by the

source that adjusts sending rates within layers. GMCC’s rate adaption by source is almost

92

GR2 Join ——--

Throughput Rate (Mbps)

0

L L 1l Al i
0 50 100 150 200 250 300 350 400
Time (sec)

(a) Throughput when the link (R1,R3) is 5Mbps

5

GR2 Join ——--

Throughput Rate (Mbps)

5 d o i et i h
0 50 100 150 200 50 300 350 400

Time (sec)

(b) Throughput when the link (R1,R3) is 10Mbps

Figure 4.5: Effective Layering Test Result (sec. 4.2.1): Instantaneous Throughput in The
Topology of fig. 4.4
(GMCC does not use redundant layers to differentiate receiver throughput.)

the same as that in the previous chapter of ORMCC. Therefore, we omit the examination
of source response to traffic dynamics here. The second type of response is by receivers by
means of joining and leaving layers. It can be considered as a complementary measure of
the first type response, since the latter is limited by CRs.

We used the star topology in Figure 4.6 to test the receivers’ responsiveness to the
dynamics of crossing traffic on the bottleneck. A GMCC session has GS1 as the source node
and R1, R2 as the receiver nodes. On each of the links of (R,R1) and (R,R2), there are six
TCP competing flows at the beginning of the simulation. During the period between 100-th
and 200-th second, five TCP flows on the link (R,R2) pause, leaving one TCP flow as the

93

GS: GMCC source node
TS: TCP source node

TS1 O

182 O

TS12

Figure 4.6: Star Topology for Testing Responsiveness to Traffic Dynamics (Sec. 4.2.2)

only competing flow.

R2 join
R2 leave ———-
25 F

15

Throughput Rate (Mbps)

0.5

0

| | | L |
0 50 100 150 200 250 300
Time (sec)

Figure 4.7: Responsiveness to Traffic Dynamics (sec. 4.2.2): Throughput of The Two GMCC
Receivers
(GMCQC receivers join more layers when there is more available bandwidth and leave when there is less.)

As shown in Figure 4.7, receiver R2 joined an additional layer at 135.412-th second.
After those five TCP flows pause, the link (R,R2) became much less congested than (R,R1).
Therefore, this join operation is appropriate. There is 35-second gap between the pause and
the join operation, though. That is relatively long because GMCC is conservative about join
and therefore requires enough number of samples and positive TAF comparison results (see
Section 4.1.4). However, GMCC is quicker when making decisions about unsubscription. In
this simulation, R2 left the layer at 205.178-th second. On the other hand, since there is no

traffic dynamics on the link (R,R1), receiver R1 remains in one single layer.

94

GS:. GMCC source node
TS: TCP source node

GsO ' ‘
100Mbsp, 5& GR2
2Mbps,5ms 100Mbsp, 5ms
100Mbsp, 5ms
100Mbsp, 5ms GR1
T8O 100Mbsp, 5ms
O TR

Figure 4.8: Topology for Testing Probabilistic Inter-Layer Bandwidth Shifting (Sec. 4.2.3)

4.2.3 Effectiveness of probabilistic inter-layer bandwidth shifting

Recall that probabilistic inter-layer bandwidth shifting (PIBS) is a technique we devel-
oped in Situation 3 of Section 4.1.4 to distinguish the congestion incurred by intra-session
flows from that by inter-session flows. This technique enables the receivers to join under
some situations with shared bottlenecks. To verify that PIBS is a valid technique, we ran a
simulation on the topology in Figure 4.8. A TCP flow originates at TS and ends at TR as
background traffic. The GMCC flows in a multicast session go from GS to GR1,GR2 and
GR3. The 2Mbps bottleneck is shared by all three GMCC receivers, and the 0.5Mbps bot-
tleneck only affects GR3. At the beginning of the simulation, only GR1 and GR3 are in the
session. At 100th second, GR2 enters the session. Figure 4.9 shows that in one simulation
instance, GR2 subscribed to an additional layer at 170.146-th second based on bandwidth
shifting. Again, there is long delay because GMCC receivers need to collect enough samples
before making decisions.

We noticed that in some other instances of this simulation, a join operation for another
reason (in particular, under situation 2 in Section 4.1.4) happened before the results of
bandwidth shifting took effect, and the joini operations triggered by bandwidth shifting
were suppressed. This is not unexpected because the flows are dynamic and the comparisons
in GMCC are all probabilistic. It is possible that during some random periods the condition
in situation 2 becomes true and triggers a join operation.

We can also see how feedback suppression works in this simulation. As the CR in layer
1, GR3 sent 4424 feedback packets; as the CR in layer 2, GR1 sent 5448 feedback packets.
Most of these packets are heartbeat packets, sent once per RTT of around 110 ms. GR2,

since it is not CR at any time, only sent 2 Cls. Therefore, feedback from non-CR receivers

95

GR2 join -~

15

Throughput Rate (Mbps)

05 {1

| | | |
0 50 100 150 200 250 300
Time (sec)

Figure 4.9: PIBS Result (sec. 4.2.3): Throughput of All GMCC Receivers
(The technique of probabilistic inter-layer bandwidth shifting (PIBS) can exploit hidden available bandwidth.)

is efficiently suppressed.

4.2.4 Throughput Improvement

GS: GMCC source

GR: GMCC receiver ~__—O cr1
TS: TCP source <8 TR1
TR: TCP receiver TR2

~—0OcRr2

—O TR3
TR4
2Mbps

~__—Ocrs

—O TR5

Mbps O TR6
4Mbps GR4
\048 TR7
M bps\o TR8
GR5
48 TR9
O TR0
~__—Ocrs

—O TR11

\O TR12

Figure 4.10: Topology for Testing Throughput Improvement (Sec. 4.2.4)

1Mbps
GS

TS1

100Mbps

TS12

6Mbps

The topology in Figure 4.10 contains six bottlenecks and is used to test how GMCC
improves the throughput of heterogeneous receivers with relatively slight difference of ex-
pected throughput. All the links are of 5ms delay. The bandwidths of the bottlenecks are
from 1Mbps to 6Mbps. On each of them, there are two TCP flows as competing traffic. A
GMCC session is held between the source GS and six receivers (GR1 to GR6). Simulation

time is 600 seconds.

96

GRL: 0.282 Mbps

Over-time Average Throughput Rate (Mbps)

| | | | |
0 100 200 300 400 500 600
Time (sec)

(a) Over-time Average Throughput Rate of GMCC receivers

3

T
TR1: 0.189 Mbps
TR2: 0.168 Mbps
TR3: 0.422 Mbps =------
TR4:0.337 Mbps -------
TR5: 0.622 Mbps ---
TR6: 0.556 Mbp:
TR7: 0.857 Mbp:
TR8: 0.833 Mbps
TR9: 1.208 Mbps - .

TR10: 1.155 Mbps -~

TR11: 1.429 Mbps ===~

TR12: 1.514 Mbps -------

25

Over-time Average Throughput Rate (Mbps)

600

Time (sec)

(b) Over-time Average Throughput Rate of TCP receivers

Figure 4.11: Throughput Improvement (Sec. 4.2.4): Receiver Throughput in The Topology
of Fig. 4.10
(GMCC receivers behind different bottlenecks get different throughput matching the bottleneck capacity.)

Figure 4.11 shows the over time average throughput rate of all receivers. Over time
average throughput rate at time ¢ is defined as the total throughput through time ¢ divided by
the total run time. We can see that the six GMCC receivers do achieve different throughput
rates, with GR6 being the highest and GR1 being the lowest.

Besides, there were only a few join and leave operations in this simulation. Compared
to the previous multi-rate schemes where join and leave happen every RTT or so, GMCC
clearly provides a great improvement. The number of join and leave operations of each
receiver is listed in Table 4.2. Note that since join and leave are triggered by statistical

comparisons, there were several oscillations that increased the operation numbers (e.g for

97

Table 4.2: Number of Join and Leave Operations
(The number of IGMP operations is small and incur very light control traffic.)

GR1 | GR2 | GR3 | GR4 | GR5 | G6
Join 4 12 11 10 9 7
Leave 4 11 8 6 4 2

GR2).

We need to mention that in this simulation, GMCC receivers achieve higher throughput
than TCP correspondents. The reason is that each flow in a GMCC layer is a single-rate
congestion control flow independent of other flows. It competes for bandwidth like any other
flow does. For example, when GR2 subscribes to two layers, there are then two TCP flows
and two GMCC flows on the 2Mbps bottleneck. The throughput of GR2 is the sum of both
GMCC flows, and therefore can be approximately twice as much as each of the TCP flows.
However, due to the limit by CRs in lower layers, assuming there are n TCP flows and m
GMCC flows on a bottleneck, a receiver may not get the share of m/(m + n). GR6 here
is an example. Although what we observed for GMCC in this simulation is different from
traditional TCP-friendliness concept, we don’t consider it as a serious problem, because each
GMCC flow within a layer still competes in a TCP-friendly manner. This is more or less the
same as people open multiple TCP connections to transmit a single object over the Internet.
More important, using independent GMCC flows of this kind greatly simplifies the task to
achieve multi-rate for multicast.

We have also run a large simulation in ROSS on the topology of Figure 4.12, the same
one used for ORMCC (3) large scale simulation. The background traffic on the last hops is
generated by two single-receiver PGMCC flows (since its behavior is close to TCP), and the
last hop is the only bottleneck on the path from the source to a receiver. There are 1200
receivers, each behind a different bottleneck. All the bottlenecks are divided into ten even
groups, their bandwidths being from 0.2Mbps to 1.2Mbp with difference as 0.2Mbps.

The simulation ran for 2000 seconds. The average throughput and the deviation of
each group of receivers is shown in Figure 4.13. The average throughput grows linearly with
the bottleneck bandwidth, again showing that the multi-rate feature of GMCC is effective.

The numbers of join and leave oeprations are in Table 4.3. (Group i is the group of receivers

98

Source

Multicast tr%Wi cast traffic
\ (oo R

AN INA

Cross trafﬂ

Receiver

Multicast traffic .

Receiver

Figure 4.12: Tree Topology for Large-Scale Simulations in ROSS

Table 4.3: Number of Join and Leave Operations in Large Scale Simulations
(The number of average per-receiver IGMP operations is still very small at the pres-
ence of many receivers behind different bottlenecks.)

Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6
Join 1913 2757 2986 2988 2896 2947
Leave 0 246 155 35 0 0

behind the bottlenecks of i x 200Kbps bandwidth) Even in the most active groups, on average,
each receiver has less than 15 join operations and much fewer leave operations (around 1)

within 2000 seconds. Obviously, the volume is very light.

4.3 Summary

We have presented a multi-rate multicast congestion scheme called GMCC. By com-
bining single-rate congestion control and traditional multi-rate techniques (mostly joining
and leaving layers by receivers) in a novel way, it provides a simple design for a perplex-
ing problem of which most previous solutions are complicated. While having the merits of
a similar previous scheme SMCC [59], it is fully adaptive and surmounts the limits posed
by SMCC’s required static configurations. A new technique called probabilistic inter-layer
bandwidth shifting is proposed as the solution to explore hidden available bandwidth, which
is a problem not mentioned in SMCC. Besides, the rate control mechanism at source can be

replaced by other representative-based mechanisms.

99

Average Throughput of Receivers Behind Different Bottlenecks
T T T

T T
12 Average +/- 4 * dev —o— |

0.6 - % N
04+ - .

Average Throughput (Mbps)

0.4 0.6 0.8 1.0 1.2
Bottleneck bandwidth (Mbps)

Figure 4.13: Average Throughput and Deviation of Differnt Groups of Receivers
(Different groups of GMCC receivers get different throughput proportional to their bottlenecks.)

There is still another potential problem of SMCC. Assume receiver R has joined a
set of layers £. In SMCC, R calculates its estimated throughput using TCP throughput
formula [85] with the overall “loss event rate” [59, 114] of all the layers in £ as one of the
parameters. If the layers in £ have different underlying multicast trees, the overall loss event
rate will be higher than the individual value of any single layer, thus the throughput will be
underestimated. Since in SMCC, receivers rely on estimated throughput to decide how many
layers to join, and the source uses estimated throughput from receivers to control sending
rates, the underestimation might degrade the performance. On the contrary, GMCC treats
each layer independently instead of considering all of them as a whole. Therefore, GMCC

does not have this problem. However, it needs more careful exploration.

CHAPTER 5
MCA+: An End-to-end Multicast Congestion Avoidance Scheme

with Feedback Suppression

In this chapter, we consider the multicast congestion avoidance [23] problem for the situation

as that considered in ORMCC (Chapter 3). Again, the situation is:

Support is allowed on recewer side, but only one multicast group is allowed for

each multicast session.

We do not study the situation as that in LE-SBCC (Chapter 2) since it is impossible
to do full congestion avoidance without special receiver support. On the other hand, we can
extend MCA+ to do multi-rate as we extend ORMCC to GMCC. Therefore, we save the
work and do not study the situation as that in GMCC (Chapter 4) either.

Congestion avoidance [23] is different from congestion control in the sense that our
scheme detects and responds to network congestion without necessarily inducing packet loss.
We propose MCA+. It is a single-rate scheme, i.e., it goes at the rate allowed by the
worst congested receiver, since only one group is allowed for each multicast session under the
situation we consider. One previous single-rate multicast congestion control work by DeLucia
et al [25] uses the congestion detection mechanism proposed in TCP Vegas [15], a unicast
congestion avoidance scheme. However, in DelLucia’s scheme, incipient congestion is only
measured at source side for the paths between the source and representative receivers, while
other receivers still detect congestion by packet losses. Therefore, it is not a fully congestion
avoidance scheme. For comparison, in our scheme, incipient congestion is detected at receiver
side for all paths. Other examples of single-rate multicast congestion control schemes include
PGMCC [94], TFMCC [114] and references within. These schemes are “congestion control”
schemes in the sense that receivers wait for a packet loss which is signalled back to the
source as loss indications. If bottlenecks provide packet marking support (similar to TCP-
ECN [88]), packet loss may be avoided in the above schemes, and they could also be classified
as “multicast congestion avoidance”schemes.

MCA+ is a revision of our previous scheme MCA (Appendix D) and accommodates

some contributions from the congestion control scheme ORMCC (Chapter 3). It responds

100

101

to incipient congestion in order to avoid packet loss. The schemes uses a new concept
of “accumulation” (defined as the number of buffered bits of a flow inside the network)
and simple thresholding techniques proposed in our recent unicast work [110] to achieve
congestion avoidance on a purely end-to-end basis, i.e., with no marking support from interior
bottlenecks. In this sense, our work is comparable to the unicast work of TCP Vegas [15]
which assumes a similar model, albeit in a unicast, window-based TCP context. Just like
TCP Vegas [79, 73|, our scheme’s congestion model detects congestion end-to-end as real
queues are being built up. This model is inherently incompatible with the TCP model of
waiting for packet losses to occur before detecting congestion. The only way to ensure
compatibility is to have a packet marking scheme at bottlenecks which indicates congestion
as the queues build up [72]. Therefore, in the absence of packet-marking support, our MCA
scheme (like Vegas [79, 73]) cannot directly compete with TCP in the same queue and will
be beaten down if it does. So, like Vegas, our scheme focusses on the conceptual rather than
deployment issues. We discuss possible deployment scenarios briefly in the conclusion of this
paper.

In this scheme, we use representative for rate control purpose at source?* side. That
is, at any time, the source keeps record of the slowest receiver (we call it Congestion Rep-
resentative (CR)), and adjusts the sending rate according to that receiver’s feedback. At
the same time, receivers themselves also suppress their feedback if necessary so that not to
overwhelm the source. Both mechanisms make use of a new metric Good Throughput Rate
At Congestion (G-TRAC), defined as the receiving rate upon congestion times one minus
congestion rate. Briefly speaking, the receiver with the lowest average G-TRAC is chosen
as the slowest receiver, i.e. CR, and other receivers suppress their feedback if their average
G-TRACs are higher than that of CR. Using G-TRAC is a contribution in that our scheme
then does not require receivers to continuously (either densely or sparsely) exchange packets
with the sender (e.g. to measure RTT).

MCA+ consists of four key building blocks (Figure 5.1), two at receivers and two at
the source. There is a congestion detection block at receiver side, which detects congestion
by accumulation and possible (though rare) packet loss. A congestion response block resides
at the source, which implements a rate-increase/decrease policy based on the CR’s feedback.

Moreover, a filtering block at receiver side blocks Congestion Indications (CIs) generated by

24Tn this paper, we use the terms source and sender interchangeably.

102

Cl: Congestion indication
Other receivers

Congestion / / Congestion

respt‘)nse detection
|

\ Data Data |

D Pkt Pkt m
Sender| fcl| Network g Receiver
|
Cl filtering Cl filtering
(Feedback suppression)

Other receivers

Figure 5.1: MCA+ Model

congestion detection block if necessary , i.e. does feedback suppression, and another filtering
block at sender side only allows CIs from CR through. All blocks only require small constant
number of states and light computation.

In brief, MCA+ has the following features:

(1) It is an end-to-end scheme, without requiring special support from network, such as

packet marking.

(2) It uses accumulation instead of packet loss to detect congestion, and thus can react to

incipient congestion.
(3) It provides efficient non-timer-based feedback suppression.

(4) State and computation complexity at both source and receiver side are O(1).

Simulations show that MCA+ achieves good bottleneck utilization, while avoiding
Drop-to-Zero problem [114, 94, 9]. Drop-to-Zero is the problem of reacting to more feedback
than necessary leading to a beat-down of the multicast flow’s rate[114, 94, 9]. This occurs
because the multicast flow receives feedback from multiple paths and may not filter them
sufficiently. TCP-unfriendliness is the problem of reacting to less feedback than a hypothetical
TCP flow would on the worst loss path [14, 94, 114]. Though the congestion detection model
is incompatible with that of TCP (and we cannot directly demonstrate fairness with TCP),

we demonstrate the fairness between multi-receiver and single-receiver MCA+ flows.

103

- y ™ : i At
L TTTTTTTTTTTmTmTmTm AT AT mmn AT bit s oY
ingress egress

node (a) Network Model node H
sy

qn(t_d/)\

I(t—d/ ,Ar) 4,(0)

> a,(1)

Oi(f,A[) Y t, time

(c) Arrival and Service Curves

time axis V.>
a(t+4)

(b) Accumulation

Figure 5.2: Network Fluid Model: Accumulation Concept

5.1 Concepts And Model

In MCA+, congestion detection is based on the accumulation concept. In this section
we define the accumulation concept using a bit-by-bit fluid model [24] [86], and develop an

algorithm for measuring it in a multicast context at receivers.

5.1.1 Accumulation

The concept of accumulation was first developed in our earlier unicast work [110]. We
summarize the core ideas here. The discussion below assumes unicast fluid flows, but we
extend it to multicast in a later section.

Consider an ordered sequence of FIFO nodes (routers) { Ry, ..., Rj, Rj;+1,..., R;} along
the path of a unidirectional flow i in Figure 5.2(a). The flow comes into the ingress node R;
and, after passing some intermediate nodes Ry, ..., Ry 1, goes out from the egress node R;.
At time ¢ in any node R; (1 < j < J), flow 4’s input rate is \;;(¢), output rate ju;;(¢). The
propagation delay from node R; to node R;.; is d;.

We define the arrival curve A;;(¢) of a flow ¢ at a node R, as the number of bits from
that flow which have cumulatively arrived at the node up to time ¢, and similarly the service
curve S;;(t) as flow ¢’s bits cumulatively serviced at node R; [24] [86], drawn in Figure 5.2(c).
For any FIFO node R;, both A;;(¢) and S;;(t) are continuous® and non-decreasing functions.

If there is no packet loss, then at any time ¢, by definition, flow i’s buffered bits ¢;;(¢) in

25This is strictly true if we accept that a bit is infinitely small.

104

node R; is the difference between A;;(¢) and S;;(t), as shown in Figure 5.2(c):
qij(t) = Ay (t) — Si; (1) (5.1)
The change of flow ¢’s queued bits at node R; is,
Agij () = qij(t + At) — g3 (t) = (Nij (8, At) — [5(t, At)) x At = Ljj(t, At) — Oy5(t, At) (5.2)

where I;;(t, At) and O;;(t, At) are incoming and outgoing bits of flow ¢ at node R; during
the time interval [t, t + At]; Ay;(¢, At) and 7z;,(t, At) are the correspondent average input and
output rates, respectively.

Now consider the flow’s queueing behavior at a sequence of FIFO nodes. Define flow
1’s accumulation as a time-shifted, distributed sum of the queued bits in all nodes along its

path from the ingress node R; to the egress node Ry, i.e.,

iqm t— Z di) (5.3)

which is shown as the solid slant line in Figure 5.2(b). Note this definition includes only
those bits backlogged inside the node buffers, not those stored on transmission links. With

the definitions of
Ai(t) = Xin(t), pi(t) = pas(t) (5.4)

we calculate flow i’s accumulation change as follows:

Aa;(t) = a;(t+At) — ai(t)
- ilAqij(t _ Jf dy)
= J[%,-(t —d, Ai)_]— s (t, At)] x At
= I(t—dl, At) — Oi(t, At) (5.5)

where dzf = Z]J;f d; 1is the forward direction propagation delay of flow 7 from node R; all
the way down to node R;. Similar to Equation (5.2), I;(t — d/, At) and O;(t, At) are flow

7’s bits coming into and going out of network during two different time intervals but both of

105

length At; while X;(t—df, At) and 7, (¢, At) are the correspondent average ingress and egress
rates. The result, illustrated in Figure 5.2(b), shows the change of a flow’s accumulation on
its path is only related to its input and output at the ingress and egress nodes. Further, this
means it is possible to control accumulation at only the ingress and egress nodes.

Given a time sequence {t1, ty, ..., tx, ...}, denote a;(t) as a;(k), Ni(ty — d{,At) as
Xi(k), and 1;(ty, At) as @;(k), according to Equation (5.5), we have,

ai(k+1) = a;(k) + Ni(k) — (k) (trs1 — ti)

It shows that accumulation can be measured by using correlated periods, e.g. [tk, tx11]
at egress and [t — d’,tps1 — df] at ingress. This can be done by sending synchronization
data “out-of-band,” i.e., the synchronization data experiences only the fixed one-way delays
and not the queueing delays.

Given the fluid flow assumption, denoting the queue length of node j at time #; —

Z‘(]w:j +1)dz as gj(k), accumulation also satisfies the following property:
a;(k) >0« 3j ¢j(k) >0and a;(k) =0« Vj ¢;(k)=0 (5.6)

In other words, for a network of fluid flows a zero-threshold for the per-loop accumu-
lation measure s equivalent to a zero-threshold on the real queue at some bottleneck. The
properties are rigorously developed in reference[110].

In summary, accumulation and output rate are quantities which can be measured with
only per-flow information. It allows us to build a fully distributed, transparent closed-loop
congestion avoidance mechanism using them. In particular, a simple congestion avoidance
approach would be:

a) Use simple thresholding techniques on the accumulation measure to detect epochs of con-
gestion.

b) Use feedback to guide the congestion response policy to achieve fine-grained control over
input rate dynamics.

While the above discussion referred to unicast, the same approach can be applied to
multicast if the machinery for accumulation measurement can be instrumented, which is the

focus of the following sub-sections.

106

5.1.2 Accumulation Measurement

CP: In-band Control Packet

T

\ Actual arcival time of CP 1 with queueing delay

9
Out 44% In — Out —>‘

| | _ .
Propagation f = Accumulation
delay

Expected arrival time of CP 1 without queueing delay

Time

Figure 5.3: Accumulation Measurement with In-band Control Packets

To perform end-to-end accumulation measurement in real world, we relax three key
assumptions made in the previous section. First, we send synchronization (or control) data
“in-band’ instead of “out-of-band’, i.e., it sees both fixed propagation delays and queue-
ing delays. Second, we send packets instead of bit-by-bit fluid. Therefore, to account for
the randomness introduced, the thresholding procedure has to be amended and a new re-
synchronization procedure is performed at the end of congestion epochs. Third, we develop
the scheme for multicast, i.e., divide functionality between the source and receivers such that
the reverse control traffic is minimized. Forward control traffic is multicast to all receivers.
Note that first release of assumption is the major reason of approximate accumulation mea-
surement. Again, as we describe in the introduction, our aim is to react to congestion as
early as possible so as to avoid unnecessary packet loss and increase bottleneck utilization
as much as possible.

Figure 5.3 illustrates the measurement of accumulation using in-band control packets.
%6 Assume that the first control packet (CPO0) sees no queue and hence arrives at receivers

after exact propagation delay. The second control packet (CP1) is multicast after the mea-

26By control packet, we actually mean a data packet with some one-bit flag turned on and with its sending
time in the optional field. If this bit is turned off and no sending time is carried, the data packet is then
simply a normal data packet.

107

surement interval 7. A receiver measures “out”, the number of bytes received since the
receipt of CPO for a period of 7. After CP1 arrives, the receiver knows how much the sender
has sent during the period of 7, i.e. “in”. in — out is then the accumulation. Observe that
this measure works correctly in a rate-based system where packets are sent uniformly and
the input burstiness is also control by a rate-shaper.

Figure 5.3 still assumed a fluid model. Packetization introduces randomness and bursti-
ness in the system. In particular, even for a perfectly smoothed packetized transmission,
when underloaded, bottlenecks can have a average steady state queue of half packet and
mazximal queue of one packet for each flow going through it. Therefore, the fluid flow for-
mula (5.6) which implies a zero-threshold on accumulation no longer holds. In our simulation,
we use the following hysteresis technique: declare congestion if accumulation becomes larger
than two packets, and subsequently declare end of congestion when accumulation falls below
1 packet. If there are other sources of noise which affect accumulation (eg: scheduling noise
at operating systems or at bottlenecks), the thresholds should be set higher. This tech-
nique is hence conservative in detecting congestion, i.e., a receiver may unilaterally detect
congestion even if there is no network congestion (eg: in multi-bottleneck cases). Higher
thresholds reduce the probability of such errors, at the price of larger worst-case queues. We
find through simulation that the settings above work very well.

Again because bottlenecks may have steady state queue even when underloaded, the
initial control packet (CPO in Figure 5.3) may not see zero queueing delay. In other words,
our assumption of synchronization at the first control packet may be erroneous. Also, as
a side effect of the hysteresis scheme described above, the receiver could end a congestion
epoch with non-zero accumulation. To counter these issues, we introduce the notion of “re-
synchronization” as illustrated in Figure 5.4. We begin with the default assumption that
we have synchronized correctly at CP0, and then measure accumulation during successive
intervals based upon this assumption. If a control packet arrives at the receiver before its
expected arrival time, we re-synchronize (not shown in the figure) and set accumulation to
zero. Also, if we detect the end of a congestion epoch, we re-synchronize.?” Figure 5.4 shows
a case when the re-synchronization happens perfectly, i.e., accumulation is zero, and the

re-synchronization point overlaps the expected arrival time of the control packet without

27Believing that the intervals between synchronizations won’t be long, we assume that clock skew can be
ignored.

108

CP: Control Packet ---=
DP: Data Packet —
CPO CP1 CP2 CP3 CP4 CP5 CP6
Source \ . : : ‘ .
Expected pattern |, CPinterval
of CPswithout queueing delay v T \ T T T T T
Receiver 4 g q g q q q

Cl
Source;

Actual CP behavior with
data packets between them

Synchronization

point 3
Receiver : ‘

= L

Propagation -
delay) Queueing delay) Synchronization point
Data packets arrive Data packets arrive
without queueing delay. with queueing delay.

Time

Figure 5.4: Congestion Epochs: Synchronization Points and Accumulation

queueing delay. In practice, any residual positive accumulation is carried over to the next

epoch.

5.2 MCA+: Scheme Description

First, for clarity, we list the acronyms in the following:
CI Congestion indication. A packet conveyed by receiver to inform the source of congestion.

CR Congestion representative. The slowest receiver based on whose Cls the source makes

rate adjustment decisions.

G-TRAC Good throughput rate at congestion, defined as the product of receiving rate
during congestion and one minus congestion rate. It is explained in more details at

Section 5.2.1.3.

Briefly speaking, in MCA+, the sender keeps multicasting data and control packets to
receivers, and the receivers detect congestion upon receipt of control packets by measuring

accumulation and checking packet loss. When there is not congestion, the sender does not

109

receive any CI, and keeps increasing sending rate periodically. If there is congestion, receivers
convey the information to the source by sending Cls if they pass the suppression filter. When
Cls arrive at the sender, another filter is applied to choose Cls from the CR. The sender
then reduces the transfer rate based on chosen ClIs.

Therefore, there are two operation parts in MCA+, one is at source side, the other at

receiver side. We present the details in the following.

5.2.1 Source Operations

The major task of the source is to adjust sending rate according to congestion infor-
mation from receivers. The key of source operations is to choose the slowest receiver as the
CR. If there are CIs from the CR, the sending rate is reduced, otherwise the rate is increased

per estimated RTT. Consequently, the source needs to consider the following problems:
(1) RTT estimation
(2) Rate adaptation
(3) CR switching
(4) CI filtering

The solutions to the first two problems are straight-forward, while the solutions to
the last two use a new metric called G-TRAC, which will be explained momentarily. Key

operations are also shown in the flow chart of Figure 5.5.

5.2.1.1 RTT estimation

RTT is important since the source needs it for the sake of rate adaptation and CR
switching. A sample of RTT is obtained whenever a CI arrives at the source, with the value
as the time difference between the CI arrival time and the sending time of the packet which
triggered the CI. Given a sample value s, the RTT is smoothed using EWMA (exponential
weighted moving average), i.e. SRTT =7/8 - SRTT + 1/8 - s. The deviation is calculated
aso=7/8-0+1/8-(|[SRTT — s| — o).

110

U: Average G-TRAC of CR () State

D: Standard deviation of G-TRAC of CR .

Cl(u,d): Congestion indication packet with .| Operation
average G-TRAC u, standard deviation d. <> Judgement

Send a packet

Transfer timeout

o

Set CR CR check timer ldle Rate increment| Increase rate
to none times out timeout fromVitoV’

Cl(u,d)

arrives from R No

n(

Set U,D,CR Yes o CR? Yes
to u,d,R N
0
i No H
Stop CR Yes
check timer @ 1Yes
Start CR check | |
No timer of 4 SRTT
YEeS_—Rate cut in Yes

recent SRTT/

lNO No

Decrease
rate

'

b

Figure 5.5: Source Operations

5.2.1.2 Rate adaptation

If no CI comes in, in every period of SRTT + 40, the source increases the transfer
rate and send one more packet per period, similar to what TCP does. If a CI passes all the
filters, i.e. it is from the CR, the source needs to check whether the rate has been reduced
during the most recent SRTT + 40. If not, the rate is then cut. This is to guarantee that
at most one rate reduction is performed per RTT.

In each CI, there is one bit indicating whether the CI is triggered by accumulation over
threshold or by packet loss. If it is the former, the rate is reduced by 10%; if the latter, the
rate is reduced by 25%, since packet loss means more severe congestion. The percentages of
cutting rate are subject to choice. However, generally, if they are set higher, congestion will

be cleared more quickly while bottleneck utilization may decrease; if set lower, there is more

111

risk of persistent congestion while bottleneck utilization may increase. In our simulations,

the two values mentioned above worked satisfactorily.

5.2.1.3 CR Switching

Since network condition keeps changing, the choice of CR must be updated accordingly
so that the sending rate can always be adjusted in favor of the most congested bottleneck.
There are mainly two reasons to change the CR: (1) The current CR is still active but
another receiver becomes the new slowest one, (2) The current CR is absent. We have two
different techniques to cope with these two situations respectively.

Before we describe those two techniques, we first present an important concept of G-
TRAC (Good Throughput Rate At Congestion), which is required by both CR switching
techniques (and feedback suppression conducted by receivers). TRAC itself is the receiving
rate a receiver measures during congestion. It is used by the congestion control work ORMCC
(Chapter 3). To avoid the random error due to burstiness, TRAC can be averaged over a
short period, for example, the most recent RTT. A receiver also measures congestion rate p
(not loss rate), which is the number of CIs divided by total number of packets sent by the
sender over a certain period. G-TRAC is then the TRAC weighted by (1 —p). Every receiver
in a multicast session measures its own G-TRAC and maintains the average and deviation,
which are sent along with Cls.

For CR initialization (when there is no CR yet), the source simply chooses the receiver
whose Cls arrive at the source first. It will then refine the choice using the following two
techniques.

As shown in Figure 5.5, when the source receives a CI, it checks the G-TRAC average
in the CL. If it is lower than U — D (where U and D are the G-TRAC average and deviation
of the current CR respectively), the receiver sending this CI will be chosen as the new CR,
and U and D are updated with the values in the CI. We use U — D as the lower bound
because we want to be conservative and bias toward the current CR to avoid unnecessary
oscillation. Generically, U — kD can be used as the lower bound, where k£ decides on how
quickly CR is updated and thus the level of oscillation. In our simulations, ¥ = 1 showed
good results.

While the source has a choice of CR, it needs to continuously check whether the CR

is still alive. The method is, at the moment when the sending rate becomes greater than or

112

equal to U 4 4D, the source starts to count. If there is no CI coming from the CR within
n(SRTT + 40) after that, the source deems the CR absent, thus resets the choice of CR,
and requests Cls from other receivers. We used a heuristic and conservative n = 4 for our
simulations. Setting n too large will result in delay of detecting CR absence, while setting

n too small can result in erroneous judgments of CR absence.

5.2.1.4 CI filtering

Although CIs have already been suppressed a lot by receivers themselves (to be dis-
cussed in Section 5.2.2.2), sometimes the source can still receive Cls from multiple receivers
simultaneously. Under this situation, the source checks whether CR should be updated, as
discussed above in Section 5.2.1.3. Then, it accepts a CI only if it is from the CR. Note
that a CI leading to CR switching is also accepted.

5.2.2 Receiver Operations
Receivers need to detect congestion and convey the information to the source. At the
same time they should suppress their feedback (CIs) whenever necessary, so that the source

won’t suffer from feedback implosion. Therefore, two major tasks are performed by receivers,
(1) Congestion detection
(2) Feedback suppression

The operations are explained by Figure 5.6 and the following specifications.

5.2.2.1 Congestion detection

Detecting congestion by means of accumulation have been well explained in Sec-
tion 5.1.2, so we skip it here. In addition to accumulation, packet loss is also considered
in case of some extraordinary situations. In fact, whenever packet loss is detected, CI is
also sent. There is an one-bit field in CI indicating whether the congestion is detected by
accumulation or by packet loss. The source adjusts the sending rate differently according to

this bit (Section 5.2.1.2).

U/u: Average G-TRAC of CR/this receiver

D/d: Standard deviation of G-TRAC of CR/this receiver
P(U,D,CR): Packet with U,D,and CR.

Cl(u,d): Congestion indication packet with u,d

P(U,D,CR) arrives

Packet Yes Update
lost ? u,d

No

No Pisas

D State
|| Operation
<> Judgement

Yes

ctrl pkt R is CR?

Yes

Measure
Accumulation

Send
Cl(u,d)

accu > Yes

e
threshold 2= =

No)
«——<accu <=min?

Yes

Measure_
Accumulation

Synchronize

Yes

Pisas

No

ctrl pkt

Figure 5.6: Receiver Operations

113

114

5.2.2.2 Feedback suppression

Even if a receiver detects congestion, it does not send CI if its average G-TRAC (u)
is less than U — D, where U and D (the G-TRAC average and deviation of the CR) are
multicast to receivers by source. If the CIs were sent, it would be discarded by the source

anyway (Section 5.2.1.4). By this simple mean, a very large proportion of CIs are suppressed.

As we can see, both source operations and receiver operations are simple, and require

only small constant number of states. That means MCA+ is easy to implement and deploy.

5.3 Simulations

We ran several ns-2 simulations to verify the performance of our scheme. The simula-

tions include,
(1) Section 5.3.1: To verify the basic behaviors of MCA+ under simple situations.

(2) Section 5.3.2: To test the fairness between different MCA+ sessions in a linear network

with multiple bottlenecks.

(3) Section 5.3.3: To verify that MCA+ is immune to Drop-to-Zero problem and effective
at feedback suppression, and test the fairness between MCA—+ sessions with multiple

receivers and those with single receivers.

(4) Section 5.3.4: To verify that the source of MCA+ always adapts the sending rate to

the most congestion bottleneck.

(5) Section 5.3.5: To test the performance of MCA+ in a heterogeneous and dynamic

network.

In these simulations, the data packet size is 1000 bytes, initial RTT is 0.1 second. We used
different bottleneck queue capacities to test MCA+ performance under situations with or
without packet loss. To show the results clearly, we average the sending rates, the utilization

rates and queue lengths over one-second periods.

115

Srcl 100Mbps 5ms 100Mbps 5ms
10Mbps,5ms

Src2 O

Src3 100Mbps 5ms 100Mbps 5ms

Figure 5.7: Single-Bottleneck Configuration with 16 Receiver Nodes

C:) 16 receivers

0O

5.3.1 Basic Test on Simple One-Bottleneck Configuration

We first verify MCA+ performance on the simple topology in Figure 5.7. During
different periods, there are 10 multicast flows from each source node to all 16 receiver nodes.
The flows originated at Src 1 start at the beginning and end at 500th second, those originated
at Src 2 start at 100th second and end at 400th second, those originated at Src 3 start at
200th second and end at 300th second. Therefore, in different periods, there may be 10, 20
or 30 flows sharing the 10Mbps bottleneck. The simulation time is 500 seconds.

The bottleneck queue capacity was set to 200 packets for lossless situation and 50
packets for lossy situation. As shown in Figure 5.8, under both situations, the transfer rates
adapts to the bottleneck situation, while maintaining high bandwidth utilization and short

queue.

5.3.2 Fairness Test with Multiple Bottlenecks (Linear Network)

To check how MCA+ flows compete with each other when they pass different number
of bottlenecks and what kind of fairness MCA+ can achieve, simulations were run on a
multiple bottleneck topology (Figure 5.9).

In this topology, there are 4 bottlenecks, each of 10Mbps bandwidth. Other links are
of 100Mbps bandwidth. To reduce the effect of RTT, we set the bottleneck delays to 10
milliseconds and other delays to 1 millisecond. There are three types of flows: one-hop flows
(i.e. flows going through one bottlenecks), two-hop flows and four-hop flows, as shown in
Figure 5.9. Among them, for i = (1,2, 3,4), 10 one-hop flows start at Src i and end at all the
16 receivers in Group i; for i = (1, 3), 10 two-hop flows start at Src 7 and end at Group i+ 1;
and there are 10 one-hop flows going from Src 1 to Group 4. Therefore, each bottleneck is
shared by 30 flows. Bottleneck buffer size is set to 200 and 40 packets for lossless and lossy

situation respectively. The simulation time is 400 seconds.

Sending Rates of One-Bottleneck Configuration (w/o Packet Loss)
14 T T T T T T T

12 1

Rate (Mbps)

I I I
0 50 100 150 200 250 300 350 400 450 500
Time (sec)

Rate (w/o packet loss)

Average Bottleneck Queue Length of One-Bottleneck Configuration (w/o Packet Loss)
50 T T T T T T T T T

45+ 1

Queue Length (packets)

0 I I I I I I I I I

0 50 100 150 200 250 300 350 400 450 500
Time (sec)

Average Queue Length (w/o packet loss)

Bottleneck Utilization of One-Bottleneck Configuration (w/o Packet Loss)

1r = —V" |

0.8 1

06 q

Queue Utilization

02 1

0 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Time (sec)

Bottleneck Utilization (w/o packet loss)

Rate (Mbps)

Queue Length (packets)

Queue Utilization

116

Sending Rates of One-Bottleneck Configuration (w/ Packet Loss)
12 T T T T T T T

0 I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
Time (sec)
Rate (w/ packet loss)
Average Bottleneck Queue Length of One-Bottleneck Configuration (w/ Packet Loss)
50 T T T T T T T T T
45 B
40 B
35 1
30 [1
0 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

Time (sec)

Average Queue Length (w/ packet loss)

Bottleneck Utilization of One-Bottleneck Configuration (w/ Packet Loss)

P e
0.8 4
0.6 4
04 4
02 4

0 L L L L L L L L L

0 50 100 150 200 250 300 350 400 450 500

Time (sec)

Bottleneck Utilization (w/ packet loss)

Figure 5.8: MCA+ Performance with Single Bottleneck and Dynamic Through Traffic
(MCA+ adapts to the bottleneck situation with high bandwidth utilization and low average queue
length whether there is or is not enough buffer on the bottleneck to avoid packet losses.)

117

Group 1 Group 2 Group 3 Group 4
(16 Receivers) (16 Receivers) (16 Receivers) (16 Receivers)
. . . N .
100Mbps 100Mbps
Ims \ \ Ims
Srcl
Src2 c3 Src4
100Mbps 100Mbps
1ms 10Mbps 10Mbps 10Mbps 10Mbps ims
10ms 10ms 10ms 10ms
Btnk 1 Btnk 2 Btnk 3 Btnk 4

Figure 5.9: Linear Network: Multiple Bottlenecks Configuration

The average rates 28 in Figure 5.10 2° show that the one-hop flows got approximately
2.5 times as much bandwidth as that by two-hop flows, while the two-hop flows got almost
twice as much bandwidth as that by four-hop flows, which is close to what proportional
fairness suggests theoretically. Again, the bottleneck queue length is low, and the utilization

is high.

5.3.3 Test of Drop-to-Zero Avoidance and Friendliness to Unicast Flow, and
Feedback Suppression

It is critical for a multicast congestion avoidance/control scheme to avoid reacting to
more feedback than necessary, otherwise the sending rate will be constantly very low or even
zero, which is known as the Drop-to-Zero problem. We designed a star topology in Figure 5.11
to generate asynchronous congestion on 64 different bottlenecks and checked the performance
of MCA+. Bottlenecks of 1Mbps bandwidth and 5 millisecond delay are the links between the
router and receivers. Between each pair of Source 7 and Receiver 4, 7 = 1...64, there are three
unicast MCA+ flows (i.e. MCA+ flow with only one receiver). Also, there is a multicast
MCA+ flow going from Source 65 to all 64 receivers. In consequence, each bottleneck is
shared by four flows, which congest the link in an asynchronous manner. Bottleneck buffer
size is set to 200 and 10 packets for lossless and lossy situation respectively. The simulation
time is 400 seconds.

The over-time average rates (the mean and confidence interval of unicast flow rate are

28 Average rate at time ¢ is defined at the amount of data sent during [0,] divided by t.
The results are of one randomly chosen bottlenecks. The situations of other bottlenecks are similar.

Queue Length (packets) Rate (Mbps)

Bottleneck Utilization

Over-time Average Rates of Multiple Bottleneck Configuration (w/o Packet Loss)

118

Over-time Average Rates of Multiple Bottleneck Configuration (w/ Packet Loss)

0.7 T T T T T T T 0.7 T T T T T T T
= - = 0.6]
T . 0.5 Hf
04l Two-hop flows One-hop flows 1 2 oal One-hop flows Two-hop flows i
l : '
0.3 b £ 0.3 b
;LE_E — - - — & &‘x—- = =S —
0.2 *L - 0.2 M -
01 Four—hop flows) | Four—hop flows)
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 40 0 50 100 150 200 250 300 350 40
Time (sec) Time (sec)
Rate (w/o packet loss) Rate (w/ packet loss)
Average Bottleneck Queue Length of Multiple Bottleneck Configuration (w/o Packet Los Average Bottleneck Queue Length of Multiple Bottleneck Configuration (w/ Packet Loss
40 T T T T T T T 40 T T T T T T T
35 - 35 -
30 4 _ 30f g
[2)
g
5 4 g B R
£
20 4 g 20 b
3
15 2 15
g
10 - O 10 - -
5- R 5- R
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 4C 0 50 100 150 200 250 300 350 4C
Time (sec) Time (sec)
Average Queue Length (w/o packet loss) Average Queue Length (w/ packet loss)
Bottleneck Utilization of Multiple Bottleneck Configuration (w/o Packet Loss) Bottleneck Utilization of Multiple Bottleneck Configuration (w/ Packet Loss)
T T T T T T T T T T T T T T
1 WVWWMWMWMW 1 WMWWWWMMMWMMM
08 - 5 08 -
&/
N
06 - N = 06 N
5
<
8
04+ 4 5 o4r e
°
o
02 - 02 -
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 A 0 50 100 150 200 250 300 350 A
Time (sec) Time (sec)

Bottleneck Utilization (w/o packet loss)

Bottleneck Utilization (w/ packet loss)

Figure 5.10: Fairness Results
(MCA+ achieves approximately proportional fairness.)

calculated with the samples of all 192 unicast flows) in Figure 5.12 show that the throughputs

of the multicast MCA+ flow and the unicast flows are almost the same, no matter there is

packet loss or not. The high bottleneck utilization and low average queue length shown in

the figures are of one of the bottlenecks. Results of other bottlenecks are very similar.

In this simulation, under the lossy situation, the total number of feedback packets

(CIs) sent by the multicast receivers is 5444, while the average number of CIs which would

119

Source1 O Receiver 1
source2 O O Receiver 2
10Mbps,5ms 1Mbps, 5ms
Source63 O O Receiver 63
Source 64 O O O Receiver 64
Source 65

Figure 5.11: 64-Receiver Star Topology

have been sent per receiver without feedback suppression is 4978, and the average number
of CIs sent by unicast flow receivers is 5057. We can see that the amount of Cls sent
in the multicast session is very close to that by a unicast receiver, which indicates that
the feedback suppression mechanism in MCA+ s highly efficient. For reference, under the
lossless situation, the three numbers are 5605, 5135 and 5147 respectively, again close to

each other.

5.3.4 Test of Tracking The Most Congested Bottleneck

In this simulation, we changed the most congested bottleneck with an expected pattern.
There is a multicast MCA+ flow from Source to all 32 receivers (Figure 5.13). During the
whole simulation, one unicast MCA+ flow exists between Source and Receiver. At 200th,
400th and 600th second, we introduce 2, 3, 4 unicast MCA flows to the links between Source
and Receiver 2, 3, 4 respectively. At 800th, 1000th and 1200th second, we stop the added
flows in the reverse order. As the result, the most congested bottlenecks during different
periods are as shown in Table 5.1. Bottleneck buffer size is set to 200 and 8 respectively for
lossless and lossy situations.

Rate changes as shown in Figure 5.14 indicate that the MCA+ flow always tracked the
most congested bottleneck. There are more oscillations between 400 and 1000 than other
time. It is because within that period the situations of the most congested bottleneck and
the not-so-congested bottlenecks are close, and there are some back and forth CR switching.
We focus on multicast behavior in this simulation, therefore we don’t show the bottleneck

utilization and queue length figures.

Over-time Average Rates of Drop-To-Zero and Friendliness Test w/o Packet Loss
0.3 T T T T

" Multicast MCA+ flow rate
Mean of unicast MCA+ flow rates w/ 95% conf. itvl. —+—

0.1 1

Over-time Average Rate (Mbps)
o
o
&
|

0.05 4
0 I I I I I I I
0 50 100 150 200 250 300 350 400
Time (sec)
Rate (w/o packet loss)
Average Bottleneck Queue Length of Drop-to-Zero and Friendliness Test (w/o Packet Loss)
10 T T T T T T T
sl]
o)
]
=
=
S
2
5
3
g 4
I
3
(o3
2L]
0 I I I I I I I
0 50 100 150 200 250 300 350 400

Time (sec)

Average Queue Length (w/o packet loss)

Bottleneck Utilization of Drop-to-Zero and Friendliness Test (w/o Packet Loss)

0.8 1

06 q

Queue Utilization

0 L L L L L L L
0 50 100 150 200 250 300 350 400

Time (sec)

Bottleneck Utilization (w/o packet loss)

Over-time Average Rate (Mbps)

Queue Length (packets)

Queue Utilization

120

Over-time Average Rates of Drop-To-Zero and Friendliness Test w/ Packet Loss
03 T T T T T

Multicast MCA flow rate
Mean of unicast MCA+ flow rates w/ 95% conf. itvl. —+—

0.15
0.1
0.05
0 I I I I I I I
0 50 100 150 200 250 300 350 400
Time (sec)
Rate (w/ packet loss)
Average Bottleneck Queue Length of Drop-to-Zero and Friendliness Test (w/ Packet Loss)
10 T T T T T T T
sl
6L
2L]
0 I I I I I I I
0 50 100 150 200 250 300 350 400

Time (sec)

Average Queue Length (w/ packet loss)

Bottleneck Utilization of Drop-to-Zero and Friendliness Test (w/ Packet Loss)

[V WISV NS YA YN SIS

0.6 q

0.4 q

02 1

0 L L L L L L L
0 50 100 150 200 250 300 350 400

Time (sec)

Bottleneck Utilization (w/ packet loss)

Figure 5.12: Drop-to-Zero Avoidance and Friendliness to Unicast Flows

(Multicast mca+ flow gets the same throughput as unicast flows do.

Therefore,

MCA+ is immune to drop-to-zero problem and is friendly to unicast flows.)

121

Source

10Mbps, 5ms

Router

1Mbps, 5ms \ 1Mbps, 5ms

Receiver 1 O O oo O O Receiver 32
Receiver 2 Receiver 31

Figure 5.13: 32-Receiver Tree Topology

Table 5.1: Dynamics of Most Congested Bottleneck

Periods Most Congested Link
[0, 200) and [1200, 1400] Link 1
[200, 400) and [1000, 1200) Link 2
[400, 600) and [800, 1000) Link 3
[600, 800) Link 4

(Link 7 is the link between Router and Receiver i.)

5.3.5 Test of Performance in Dynamic Network

It is also desirable to test the performance of MCA-+ with some unezpected traffic
patterns. We designed a network with heterogeneous delays, as shown in (Figure 5.15).
Each link has 2Mbps bandwidth. Among all the links, 2 links at the first level, 4 links at the
second level, and 8 links at the third level have 200ms delay, while all other links have 20ms
delay. We arrange the links so that on any path between the source and a receiver, there is at
most one link of 200ms delay. Furthermore, we generate dynamic traffic in this network. On
each link, three unicast MCA+ flows are randomly turned on and off according to Pareto
distribution with average period length of 60 and 30 seconds respectively. Moreover, all

receivers except one in the multicast session join and leave randomly, again according to

122

Sending Rates of Bottleneck Tracking Test (w/o Packet Loss) Sending Rates of Bottleneck Tracking Test (w/ Packet Loss)
12 T T T T T T 12

0.8

0.6 |

Rate (Mbps)
Rate (Mbps)

0.4 |

02| 4 02}

0 I I I I I I 0 I I I I I I
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Time (sec) Time (sec)

Rate (w/o packet loss) Rate (w/ packet loss)

Figure 5.14: Responsiveness in Dynamic Network
(The sending rate of MCA+ always adapts to the most congested bottleneck.)

Source

8 layer-1 routers

16 layer-2 routers

32 receivers

Figure 5.15: Heterogeneous Dynamic Network

Pareto distribution. The average in-session time is 60 seconds and average out-of-session
time is 30 seconds. We keep one receiver always in the session so that feedback always exists
and the sending rate won’t increase infinitely. Bottleneck buffer sizes are set to 50 packets.

We ran the simulation for ten times. The average throughput of the multicast MCA+
flow is 232 Kbps, with standard deviation of 10 Kbps, which shows that MCA+ works well
in a heterogeneous and dynamic environment. The average number of total feedback packets
received by the multicast source is 3009, with standard deviation of 777, again showing the
effectiveness of feedback suppression. The multicast behavior is still our major concern here,

and we omit other statistics.

123

5.4 Summary

We have proposed MCA+, an end-to-end rate-based multicast congestion avoidance
scheme. This scheme leverages the concept of accumulation developed in our prior work [110],
which is defined as the number of buffered bits of a flow inside the network. By accumulation
measurement extended to multicast, receivers detect congestion without necessarily inducing
packet loss and send congestion indications (ClIs) back to source for the purpose of rate
control. Suppression filter is applied to those CIs before sending. The source keeps a record
of the slowest receiver as congestion representative (CR), and only accepts its Cls for adapting
the transfer rate according to AIMD rate control policy. Both CR switching and feedback
suppression make use of a new metric, Good Throughput Rate At Congestion (G-TRAC),
defined as the product of packet survival rate (one minus packet loss rate) and receiving rate
during congestion. MCA+ does not require each receiver to continuously exchange packets
with the source.

In brief, the scheme (1) does not suffer from Drop-to-Zero problem, and, (2) is friendly
to unicast flows, (3) achieves high bottleneck utilization and low average queues, (4) is
approximately proportionally fair. We expect the deployment scenarios for such a scheme
to be at ISPs who can control their infrastructure (i.e. can manage buffers, isolate non-
congestion avoidance flows) and want to gain efficiencies due to multicast on an edge-to-edge

basis.

CHAPTER 6
Summary And Future Work

We summarize our contributions in this chapter and briefly discuss some directions of future

research.

6.1 Summary

We have considered the multicast congestion management problem for several situa-
tions with different restrictions, and have provided end-to-end solutions to them without
requiring coordination from within the network. These solutions show better performance
than previous work.

For the situation where no support particular for congestion control is provided by
receivers, we developed LE-SBCC (Chapter 2). In this scenario, receivers have facilities of
multicast transport protocols (without built-in congestion control functions) such as receiving
data and monitoring their quality, but they do not have any designs specific for congestion
control purpose such as measuring available bandwidth. Due to the lack of receiver support,
the congestion control facilities have to be deployed on source side, and the scheme has to be
single-rate, i.e. all receivers receive at the same speed. In LE-SBCC, the source leverages the
ACK or NAK common in many transport protocols to derive implicit congestion information,
and filter them properly before using them for rate adaptation. To do the filtering, we
design a unique filter cascade. This cascade can dynamically and effectively locate the
most congested path in a multicast tree, and pass just enough congestion signals for rate
adaption. We believe that it is the first purely source-based scheme to fully address all
components of single-rate source-based multicast congestion control, i.e. drop-to-zero issues,
TCP friendliness, RTT estimation and robustness issues.

For another situation where only one multicast group is allowed for a multicast session
but we can assume support from receivers, we have proposed ORMCC (Chapter 3). It uses
a novel metric called Throughput Rate At Congestion (TRAC) and distributes a portion
of the task of selecting the most congested path to receivers without adding considerable

control traffic. In fact, by using TRAC, the design eliminates the needs to measure RTT

124

125

between the source and all receivers (except the most congested one), therefore suppresses
this type of redundant control traffic required by other similar protocols. TRAC is also used
to suppress feedback from other receivers. When the network is stable, the total feedback
traffic volume of ORMCC remains approximately constant without regard to the multicast
session size. The computation complexity and state requirement of both source and receiver
side are small and constant, i.e. O(1). As shown by different simulations, ORMCC exhibits
superior performance compared to the best-known single-rate multicast congestion control
schemes, PGMCC [94] and TFMCC [114].

For the third situation where there is no limitation on receiver support and group
number, we have designed GMCC by extending ORMCC into a multi-rate framework. It
provides a dynamic set of sub-sessions to receivers within an overall multicast session. In
each of these sub-sessions, the sending rate is adjusted using ORMCC-like mechanism inde-
pendently from other sub-sessions according to network congestion status. A receiver can
join or leave these sub-sessions to get different sums of throughput rate according to the ca-
pacity of the path between the source and itself. By combining the fine-granularity control
(the former technique) and the coarse-granularity control (the latter technique), it reduces
the IGMP join and leave operations dramatically, and avoids redundant layer settings (e.g.
number of layers). Consequently, the control traffic and the burden of intermediate routers
are greatly reduced. We also proposed a novel technique called probabilistic inter-layer band-
width shifting to distinguish intra-layer congestion from inter-layer congestion and explore
hidden available bandwidth, which is a problem not addressed before. By qualitative discus-
sion, we showed that GMCC has advantages over a recently published similar scheme SMCC
[59].

For the situation where a single-rate congestion avoidance scheme is needed, we have
MCA+. It includes a novel and scalable end-to-end mechanism to detect incipient conges-
tion for multicast at receiver side based on a new concept called accumulation. It incurs
shorter average bottleneck queue and achieves higher throughput, and is the first end-to-end
multicast congestion avoidance scheme with good scalability to our knowledge.

To verify the performance of our schemes, we have run simulations in ns-2 [2]. To
test the scalability of those schemes expected to scale well (ORMCC and GMCC), we have
simulated them in ROSS [19] with thousands of receivers (MCA+ was not simulated with

large scale setting because it has similar structure with ORMCC). We have also implemented

126

LE-SBCC and ORMCC on real systems to show their practical values.

Finally, we would like to mention that in the schemes we have developed, the rate
adaptation module is independent of other parts. Therefore, different rate adaptation policies
such as TFRC [33], binomial [5] and MCFC [40] can easily fit in. Other parts are then

reusable.

6.2 Future Research

Due to its simplicity, single-rate multicast congestion control has been relatively well
developed. The future research will hence focus on multi-rate aspect.

In GMCC, as shown in Chapter 4 Section 4.2.2, the responsiveness of receivers to more
available bandwidth is not satisfactory. If we change the parameter settings, the responsive-
ness may be improved but more oscillations will come along. We would like to study the
trade-off among different parameter settings in terms of responsiveness and oscillation, and
find the optimal balance between them. Besides, it will be good for receivers to join a layer
smoothly without incurring sudden increase of traffic.

We also want to study the parameters of probabilistic inter-layer bandwidth shifting.
Different values may change the effectiveness of this technique (e.g. detect hidden bandwidth
more quickly), but will affect other parallel flows at the same time (e.g. be more unfriendly
to them). The balance point or range are desired.

Furthermore, TAF may not be the only choice that we can use in GMCC for the sake
of CR selection and triggering join/leave operations. There are possibilities of using other
metrics.

GMCC has been proposed for a situation where we can get unlimited groups for a
multicast session. Although it is not a problem for SSM (source specific multicast) [44], in
other scenarios it may not be feasible. Therefore, we need to extend GMCC to optimize its
performance with limited layers. One possible method is to let the source adjust receivers’
parameters and thus dictate their join and leave behavior. However, since there are not
absolute metrics (e.g. bottleneck bandwidth) to dictate the optimization procedure, this is
a challenging problem.

Studying GMCC in combination with specific types of applications is an interesting

direction. For example, in a video streaming application, receivers may retrieve data from

127

multiple different coding layers to improve the quality of received images. The coding layers
here coincide the layers (i.e. sub-sessions) within GMCC. However, to seamlessly com-
bine GMCC with video streaming applications, we must study how the video coding affects
GMCC’s sending rate regulation and vice versa. Moreover, currently GMCC receivers can
only subscribe to layers accumulatively, while video streaming applications may require re-
ceivers to join discrete layers, presenting another challenging problem to GMCC.

In wireless networks that are becoming more and more popular today, multicast is a
natural feature (at least true for now since we are using omni-directional antennas). There-
fore, multicast has more prosperous future in wireless networks. However, the bandwidth
resource is more scarce and precious in wireless networks, calling for more efficient conges-
tion control algorithms. Due to the special characteristics of wireless networks, such as high
packet error rate (and more packets are dropped for error but not for congestion) and node
mobility, the multicast congestion control problem is more challenging.

In sensor networks that is a special form of wireless networks, multicast may also
be utilized. Each node (sensor) is so simple and can only use so limited energy, that we
cannot implement complex algorithms on them. Also the traffic pattern may be different,
which requires congestion control algorithm to fit. After all, we believe there are much more
challenging problems to find out in sensor networks.

Back to wired networks, although the deployment of multicast is growing [121], due to
various reasons, [P multicast only cover a small portion of the Internet. People are exploring
to use multicast on overlay networks (e.g. [4]) or the mix of them. We may exploit the results
that we already have for IP multicast congestion control and provide solutions cheaper than

a set of simply bundled unicast congestion control algorithms.

LITERATURE CITED

[1] Clio Albuquerque, Brett J. Vickers, and Tatsuya Suda, “Credit-based source-adaptive
multilayered video multicast,” Performance Evaluation, Volume 40, Issues 1-3 , March
2000, Pages 135-159

[2] S. Bajaj, et al, “Improving Simulation for Network Research”, Technical Report
99-702b, University of Southern California, March 1999, revised September 1999

[3] A. Ballardie, “Core Based Trees (CBR) Multicast Routing Architecture,” IETF RFC
2201, Sep. 1997.

[4] Suman Banerjee, Bobby Bhattacharjee, Christopher Kommareddy, “Scalable
Application Layer Multicast”, SIGCOMM 2002, August 2002

[5] D. Bansal and H. Balakrishnan, “Binomial Congestion Control Algorithms,”
INFOCOM 2001, Apr 2001.

[6] Anindya Basu and S. Jamaloddin Golestani, “Architectural Issues for Multicast
Congestion Control,” NOSSDAV 1999.

[7] S. Bhattacharyya et al, “A Novel Loss Indication Filtering Approach for Multicast
Congestion Control,” J. of Comp. Commns, Feb '01.

[8] S. Bhattacharyya, D. Towsley and J. Kurose, “Efficient Multicast Flow Control using
Multiple Multicast Groups,” U.Mass, Amherst, CMPCSI Technical Report TR 97-15,
1997.

[9] S. Bhattacharya, D. Towsley and J. Kurose, “The Loss Path Multiplicity Problem in
Multicast Congestion Control,” INFOCOM 99, March ’99.

[10] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An Architecture for
Differentiated Services,” RFC 2475, IETF, December 1998

[11] Marjory S. Blumenthal, and David D. Clark, “Rethinking the design of the Internet:
The end to end arguments vs. the brave new world,” ACM Transactions on Internet
Technology, 1(1): 70-109, Aug. 2001

[12] J.C. Bolot, T. Turletti, I. Wakeman, “Scalable Feedback Control for Multicast Video
Distribution in the Internet,” SIGCOMM °94, Aug ’94.

[13] Ch. Bouras, A. Gkamas, “A Mechanism for Multicast Multimedia Data with Adaptive
QoS Characteristics,” Lecture Notes in Computer Science, Vol. 2213, pp. 74-88, 2001

[14] S. Bradner et al, “IETF criteria for evaluating reliable multicast transport and
application protocols,” RFC 2357, June ’98.

128

129

[15] L. Brakmo and L. Peterson, “T'CP Vegas: End to End Congestion Avoidance on a
Global Internet,” IEEE JSAC, Vol 13, No. 8, Oct 1995

[16] J.W. Byers, et al, “FLID-DL Congestion Control for Layered Multicast,” NGC, Nov
"00.

[17] J. Byers, G. Kwon, “STAIR: Practical AIMD Multirate Multicast Congestion
Control”, NGC 2001

[18] J. Byers, M. Luby, M. Mitzenmacher, “Fine-Grained Layered Multicast”, Infocom 2001

[19] Christopher D. Carothers, David Bauer, Shawn Pearc, “ROSS: A High-Performance,
Low Memory, Modular Time Warp System”, 14th Workshop on Parallel and
Distributed Simulation (PADS 2000), May 2000

[20] C. Casetti, M. Gerla, S. S. Lee, S. Mascolo and M. Sanadidi, “TCP with Faster
Recovery,” Proceedings of MILCOM 2000, Los Angeles, CA, October 2000

[21] S. Y. Cheung, M. Ammar, and X, Li, “On the Use of Destination Set Grouping to
Improve Fariness in Multicast Video Distribution,” Proc. of INFOCOM’96, March
1996

[22] Dah Ming Chiu, Miriam Kadansky, Joe Provino, “A Congestion Control Algorithm for
Tree-based Reliable Multicast Protocols,”, InfoCom 2002

[23] D. Chiu and R. Jain, “Analysis of the Increase/Decrease Algorithms for Congestion
Avoidance in Computer Networks,” Journal of Computer Networks and ISDN, Vol. 17,
No. 1, June 1989, pp. 1-14

[24] R. Cruz, “Quality of Service Guarantees in Virtual Circuit Switched Networks,” IEEE
Journal on Selected Areas in Communications, 13(6):1048-1056, Aug 1995.

[25] Dante DeLucia, Katia Obraczka, “A Multicast Congestion Control Mechanism Using
Representatives”, Proceedings of the IEEE ISCC 1998

[26] S. Deering, “Host Extensions for IP Multicasting”, RFC 1112, August 1989

[27] Christophe Diot, Brian Neil Levine, Brian Lyles, H. Kassan, Doug Balsiefien,
“Deployment Issues for the IP Multicast Service and Architecture,” IEEE Network,
special issue on Multicasting. January/February 2000.

[28] Sudhir Dixit, “IP over WDM: building the next-generation optical Internet,” by John
Wiley & Sons, Inc. ISBN 0-471-21248-2, 2003.

[29] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C.
Liu, P. Sharma, and L. Wei, “Protocol Independent Multicast - Sparse Model
(PIM-SM) : Protocol Specification,” IETF RFC 2362, June 1998.

[30] A. Fei, J. Cui, M. Gerla, M. Faloutsos, “Aggregated Multicast: an Approach to
Reduce Multicast State”, Globecom 2001

130

[31] William C. Fenner, “RFC 2236: Internet Group Management Protocol, Version 2”7,
IETF

[32] Fethi Filali, Walid Dabbous, “A Simple and Scalable Buffer Management Mechanism
for Multicast flows,” Proc. of ICNP 2002, October 2002, Paris.

[33] Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg Widmer, “Equation-Based
Congestion Control for Unicast Applications,” SIGCOMM 2000, August 2000.

[34] Sally Floyd, et al, “A Reliable Multicast Framework for Light-weight Sessions and
Application Level Framing,” IEFE/ACM Transactions on Networking, Volume 5,
Number 6, pp. 784-803, December 1997.

[35] Sally Floyd, Kevin Fall, “Promoting the Use of End-to-End Congestion Control in the
Internet”, IEEE/ACM Transactions on Networking, August 1999

[36] T. Friedman, D. Towsley, “Multicast Session Membership Size Estimation,” IEEE
Infocom, New York, Mar. 1999

[37] Thomas T. Fuhrmann, Jorg Widmer, “On the Scaling of Feedback Algorithms for Very
Large Multicast Groups”, Computer Communications, 24(5-6): 539-547, Mar. 2001.

[38] Yung-Sze Gan, Chen-Khong Tham, “Loss differentiated multicast congestion control,”
Computer Networks, Volume 41, Issue 2 , 5 February 2003, Pages 161-176

[39] J. Golestani, “Fundamental Observations on Multicast Congestion Control in the
Internet,” INFOCOM 1999, March ’99.

[40] S.J. Golestani and S. Bhattacharyya, “A Class of End-to-End Congestion Control
Algorithms for the Internet”, Proceedings of ICNP, 1998.

[41] R. Gopalakrishnan, James Griffioen, Gisli Hjalmtysson, Cormac J. Sreenan, and Su
Wen, “A Simple Loss Differentiation Approach to Layered Multicast,” Proc. of
INFOCOM’00, March 2000.

[42] S. Gorinsky, K. K. Ramakrishnan, H. Vin, “Addressing Heterogeneity and Scalability
in Layered Multicast Congestion Control,” Technical Report TR2000-31, Dept of
Computer Sciences, Univ of Texas at Austin, Nov 2000.

[43] S. Ha, K.-W. Lee and V. Bharghavan, “A Simple Mechanism for Improving the
Throughput of Reliable Multicast.” ICCCN’99, Boston, MA. October 1999.

[44] Hugh W. Holbrook, David R. Cheriton, “IP Multicast Channels: Express Support for
Large-scale Single-source Applications,” SIGCOMM 1999.

[45] V. Jacobson, “Congestion avoidance and control,” SIGCOMM, Aug ’88

[46] J. M. Jaffee, “Bottleneck flow control,” IEEE Trans. Commun., vol. COM-29, pp.
954-962, July 1980

131

[47] Srinivasan Jagannathan, Kevin Almeroth, and Anurag Acharya, “Topology Sensitive
Congestion Control for Real-Time Multicast,” NOSSDAV 2000

[48] T. Jiang, E.W. Zegura, and M.H. Ammar, “Inter-receiver fair multicast
communication over the Internet,” NOSSDAV 99

[49] Kevin Fall, Sally Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK
TCP,” Computer Communication Review, V. 26 N. 3, July 1996, pp. 5-21

[50] M. Kadansky, D. Chiu, J. Wesley, and J. Provino, “Tree-based Reliable Multicast
(TRAM)”, IEEE Internet Draft, draft-kadansky-tram-01.txt, September 1999.

[51] K. Kang, D. Lee, H. Y. Youn and K. Chon, “NLM: network-based layered multicast
for traffic control of heterogeneous network,” Computer Communications, Volume 24,
Issues 5-6 , 15 March 2001, Pages 525-538

[52] Koushik Kar, Saswati Sarkar, Leandros Tassiulas, “Optimization Based Rate Control
for Multirate Multicast Sessions,” Proceedings of INFOCOM 2001, Alaska,

[53] Koushik Kar, Saswati Sarkar, and Leandros Tassiulas, “A Scalable Low-Overhead
Rate Control Algorithm for Multirate Multicast Sessions,” IEEE Journal on Selected
Areas in Communications, Vol.20, No.8, October 2002.

[54] S. Kasera et al, “Scalable Fair Reliable Multicast Using Active Services,” IEEE
Network Magazine, January /February 2000.

[55] M. Kawada, H. Morikawa, and T. Aoyama, “”Cooperative Inter-stream Rate Control
Scheme for Layered Multicast,” Proceedings of Symposium on Applications and the
Internet (SAINT2001), pp. 147-154, San Diego, CA, USA., January 2001.

[56] F. P. Kelly, A.K. Maulloo and D.K.H. Tan, “Rate control in communication networks:
shadow prices, proportional fairness and stability”, Journal of the Operational
Research Society 49 (1998), 237-252.

[57] L. El Khayat and G. Leduc, “Congestion Control for Layered Multicast Transmission,”
Networking and Information Systems Journal, vol. 33-4, 2000, pp. 559-573

[58] Ibtissam El Khayat, Guy Leduc, “A stable and flexible TCP-friendly congestion
control protocol for layered multicast transmission,” Proc. of 8th International
Workshop IDMS’2001.

[59] Gu-In Kwon, John Byers, “Smooth Multirate Multicast Congestion Control”, IEEE
INFOCOM 03, April 2003

[60] A. Legout, E. W. Biersack, “Pathological Behaviors for RLM and RLC,” NOSSDAV
2000.

132

[61] Arnaud Legout, Jorg Nonnenmacher, and Ernst W. Biersack, “Bandwidth-Allocation
Policies for Unicast and Multicast Flows,” IEEE/ACM Transactions on Networking,
Vol.9, No.4, August 2001.

[62] A. Legout, E. Biersack, “PLM: Fast Convergence for Cumulative Layered Multicast
Transmission Schemes”, Proc. of ACM SIGMETRICS, 2000

[63] Jiang Li, Shivkumar Kalyanaraman, “Using Average Attenuation Factor to Locate the
Most Congested Path for Multicast Congestion Control”, Technical Report, CS, RPI,
2003, available at http://www.cs.rpi.edu/~1ij6/Research/papers.html

[64] V.O.K. Li, Zaichen Zhang, “Internet multicast routing and transport control
protocols,” Proceedings of the IEEE, Vol.: 90 Issue: 3 , March 2002 Page(s): 360 -391

[65] X. Li, S. Paul, P. Pancha, and M. Ammar, “Layered video multicast with
retransmission (LVMR): evaluation of error recovery schemes,” Proceedings of the

Sizth International Workshop on Network and Operating System Support for Digital
Audio and Video, St Louis, May 1997.

[66] Xue Li, Sanjoy Paul, Mostafa Ammar, “Multi-Session Rate Control for Layered Video
Multicast,” Proc. of Multimedia Computing and Networking, San Jose, California,
USA, January 1999.

[67] Sam Liang, David Cheriton, “TCP-SMO: Extending TCP to support Medium-Scale
Multicast Applications,” InfoCom 2002

[68] J. C. Lin, S. Paul, “RMTP: A Reliable Multicast Transport Protocol,” Proceedings of
IEEE INFOCOM °96, Pages 1414-1424

[69] C. Liu, J. Nonnenmacher, “Broadcast Audience Estimation,” IEEFE Infocom, Tel Aviv,
Israel, Mar. 2000

[70] Chao Liu, Xiuming Shan, “Self-suppressed nack-based multicast congestion control,”
Proceedings of 10th International Conference on Telecommunications, Volume: 1 , Feb.
23 - Mar. 1, 2003, Page(s): 456 -461

[71] Jiangchuan Liu, Bo Li, and Ya-Qin Zhang, “A Hybrid Adaptation Protocol for
TCP-Friendly Layered Multicast and Its Optimal Rate Allocation,” IEEE
INFOCOM’02, New York City, June 2002

[72] S.H. Low, “A Duality Model of TCP and Queue Management Algorithms,”
Proceedings of ITC Specialist Seminar on IP Traffic Measurement, Modeling and
Management, Sep 2000, Monterey, CA.

(73] S.H. Low, L.L. Peterson, and L. Wang, “Understanding Vegas: A Duality Model,”
Proceedings of ACM SIGMETRICS, Boston, MA, June 2001

[74] Michael Luby, Vivek K. Goyal, Simon Skaria, Gavin B. Horn, “Wave and Equation
Based Rate Control Using Multicast Round Trip Time,” SIGCOMM 2002.

133

[75] J. Macker, R. Adamson, “A TCP Friendly, Rate-Based Mechanism for Nack-Oriented
Reliable Multicast Congestion Control”, Globecom 2001

[76] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott, “The
Macroscopic Behavior of the TCP Congestion Avoidance Algorithm”, Computer
Communications Review, volume 27, number 3, Jul. 1997.

[77] S. McCanne, V. Jacobson, M. Vetterli, “Receiver-driven Layered Multicast,”
SIGCOMM 96, Aug ’96

[78] William Mendenhall, “Introduction to Probability and Statistics: Third Edition”,
Duzbury Press, 1997

[79] J. Mo, R. La, V. Anantharam and J. Walrand, “Analysis and Comparison of TCP
Reno and Vegas,” Proc. INFOCOM’99, Mar 19909.

[80] Robert Morris, “Bulk Multicast Transport Protocol,” Proc. of IEEE INFOCOM’97,
April 1997.

[81] mrouted 3.9 beta3-1: ftp://ftp.rge.com//pub/communications/
ipmulti/beta-test /mrouted-3.9-beta3.tar.gz, mrouted Linux patch:
ftp://ftp.debian.org/debian/dists/potato/non-free/source /net /
mrouted_3.9-beta3-1.diff.gz

[82] K. Nakauchi, H. Morikawa, and T. Aoyama, “”Network-supported Rate Control
Mechanism for Multicast Streaming Media,” Proceedings of Symposium on
Applications and the Internet (SAINT2001), pp. 131-139, San Diego, CA, USA,
January 2001.

[83] T. Nguyen, K. Nakauchi, M. Kawada, H. Morikawa, T. Aoyama, “Rendezvous Points
Based Layered Multicast”, IEICE Trans. Commun., Vol. E84-B, No. 12, Dec. 2001.

[84] Jorg Nonnenmacher, Ernst W. Biersack, “Scalable Feedback for Large Groups”,
IEEE/ACM Transactions on Networking, 7(3): 375-386, Jun. 1999.

[85] Jitendra Padhye, Victor Firoiu, Don Towsley, Jim Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation,” SIGCOMM, Aug. 1998.

[86] A. Parekh and R. Gallager, “A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Single-Node Case,” IEEE/ACM Trans.
on Networking, 1(3):344-357, Jun 1993.

[87] Jon Postel, “Internet Protocol”, RFC 791, Septermber 1981

[88] K. Ramakrishnan, S. Floyd, “A Proposal to add Explicit Congestion Notification
(ECN) to IP,” RFC 2481, Jan "99.

[89] S. Ramakrishnan, S. Kalyanaraman, J. Wen, H. Ozbay, “Effect of Time Delay in
Network Traffic Control,” Short Paper, Automatic Controls Conference (ACC), 2001.

134

[90] H. Ramamurthy, A. Karandikar, R. Verma, “A grouping screme for reliable multicast
congestion control,” The 8th International Conference on Communication Systems,
2002, Volume: 2 , 25-28 Nov, 2002 Page(s): 938 - 942

[91] Injong Rhee, Nallathambi Ballaguru, George N Rouskas, “MTCP: Scalable TCP-like
Congestion Control for Reliable Multicast,” INFOCOM’99.

[92] I. Rhee, V. Ozdemir, and Y. Yi, “TEAR: TCP Emulation at Receivers — Flow Control
for Multimedia Streaming”, NCSU Technical Report, Apr. 2000.

(93] I. Rimac, W. Liese, J. Schmitt, R. Steinmetz, “Equation-based approach to
TCP-compatible multicast congestion control for layered transmission in
low-multiplexing environments,” Proceedings of the 2003 IEEE International
Performance, Computing, and Communications Conference, 2003, Page(s): 469-473

[94] L. Rizzo, “PGMCC: A TCP-friendly Single-Rate Multicast Congestion Control
Scheme”, SIGCOMM ’00, Aug ’00.

[95] Fan Rui, Cheng Shi-duan, “A multicast congestion control scheme for heterogeneous
receivers,” Proceedings of International Conference on Communication Technology,
2008, Volume: 2 , April 9 - 11, 2003 Page(s): 1749 -1753

[96] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system design,”
ACM Transactions on Computer Systems, pages 277-288, 1984.

[97] Saswati Sarkar, Tianmin Ren, Leandros Tassiulas, “Achieving Fairness in Multicasting
with Almost Stateless Rate Control,” Invited Paper Proceedings of SPIE, (Scalability
and Traffic Control In IP Networks, IT) Vol. 4868, pp. 16-30, ITCOM 2002, Boston,

[98] Saswati Sarkar, Leandros Tassiulas, “Back pressure based multicast scheduling for fair
bandwidth allocation,” Proceedings of INFOCOM 2001, Alaska,

[99] Saswati Sarkar and Leandros Tassiulas, “Distributed Algorithms for Computation of
Fair Rates in Multirate Multicast Trees,” Proc. of IEEE INFOCOM’00, March 2000.

[100] K. Seada, A. Helmy, “Fairness Analysis of Multicast Congestion Control: A Case
Study on pgmcc,” Technical Report 01-743, University of Southern California, CS
Department, April 2001.

[101] M. Sedano, A. Azcorra, M. Caldern, “Performance of Active Multicast Congestion
Control,” Lecture Notes in Computer Science, International Workshop on Active
Networks 2000, Tokyo, Japan, October 2000. ISBN 3-540-41179-8

[102] N. Shacham, “Multipoint Communication by Hierarchically Encoded Data,” Proc. of
INFOCOM’92, 1992.

[103] Puneet Sharma, Deborah Estrin, Sally Floyd, Van Jacobson, “Scalable Timers for
Soft State Protocols”, Proceedings of IEEE INFOCOM, Apr. 1997.

135

[104] S. Shi and M. Waldvogel, “A Rate-based End-to-end Multicast Congestion Control
Protocol,”” Proc. of IEEE Workshop in Enterprise Security (WETICE), MIT, USA,
June 2001.

[105] Dorgham Sisalem, Adam Wolisz, “MLDA: A TCP-friendly Congestion Control
Framework for Heterogeneous Multicast Environments,” ITWQoS 2000, June 2000,
Pittsburgh.

[106] T. Speakman, et al. “PGM Reliable Transport Protocol Specification”, RFC 3208,
December 2001

[107] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, G.J. Minden, “A
Survey of Active Network Research,” IEEE Communications Magazine, pp. 80-86,
January 1997

[108] Hong-Yi Tzeng, Kai-Yeung Siu, “On max-min fair congestion control for multicast
ABR service in ATM,” IEEE Journal on Selected Areas in Communications, Volume:
15 Issue: 3, April 1997 Page(s): 545 -556

[109] L. Vicisano, L. Rizzo and J. Crowcroft, “TCP-like congestion control for layered
multicast data transfer,” INFOCOM, Apr ’98.

[110] Y. Xia, et. al, “Accumulation-based Congestion Control,”, submitted work, 2002.
Available at http://www.ecse.rpi.edu/Homepages/shivkuma/ research/papers-rpi.html

[111] Huayan Amy Wang, Mischa Schwartz, “Achieving Bounded Fairness for Multicast
and TCP Traffic in the Internet,” SigComm 1998

[112] B. Whetten and J. Conlan, “A Rate Based Congestion Control Scheme for Reliable
Multicast,” RMRG meeting, Jul ’98.

[113] Brian White et al, “An Integrated Experimental Environment for Distributed
Systems and Networks (full report)”, Technical Report of University of Utah, May
2002; Revised version to appear at OSDI 2002, December 2002

[114] Jorg Widmer, Mark Handley, “Extending Equation-based Congestion Control to
Multicast Applications”, SIGCOMM 2001, Aug. 2001.

[115] Linda Wu, Rosen Sharma. Brian Smith, “Thin Streams: An Architecture for
Multicasting Layered Video”, Proc. International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV), St. Louis,
Missouri, May 1997.

[116] Wei Wu, Yong Ren, Xiuming Shan, “Analysis on Adjustment-Based TCP-Friendly
Congestion Control: Fairness and Stability”, Proceedings of the 26th IEEE Conference
on Local Computer Networks (LCN’2001), Tampa, Florida, Nov. 2001.

[117] W. Wu, Y. Xu, J. Lu, “SRM-TFRC: A TCP-Friendly Multicast Congestion Control
Scheme Based on SRM,” ICCNMC’01, October, 2001

136

[118] Brett J. Vickers, Clio Albuquerque, Tatsuya Suda, “Source Adaptive Multi-Layered
Multicast Algorithms for Real-Time Video Distribution,” IEEE/ACM Transactions on
Networking (TON), December 2000, Volume 8 Issue 6

[119] K. Yano and S. McCanne, “A window-based congestion control for reliable multicast
based on TCP dynamics,” ACM Multimedia, 2000, pp. 249-258.

[120] http://www.cs.rpi.edu/~l1ij6/Research/ormcc/ormec.html

[121] http://www.multicasttech.com/status/

APPENDIX A
Pseduo Code of LE-SBCC

event: Send packet:
Record Tyenqlj] for seq j
event: LI[i|[j] received for from receiver i for seq j:
call estimateRTT()
call LI2LEfilter()
if passed
call maxLPRPFilter()
if passed
call ATFilter()
if passed
rate = rate/2
endif
endif
endif

estimateRTT() {
RTTeurrent = Teurrent — Tsendls]
§ = SRTT — RTToprrens
SRTT = RTT¢yrrent +0.125 % 6
o=0+(0.125% (|5| — 0)))

LI2LEfilter() {
if ((t — Tiastpass[i]) > SRTT + 20)
TiastPass[i] =
pass LI as LE
else

filter LI

137

endif
}
maxLPRFilter() {
update X;, max X;, XX;
P(accept) = %X)fl
Accept LE w/ probability P(accept)

ATFilter() {

if (CongestionFlag == TRUFE)
filter LE

else {
SilenceFlag = TRUFE
SilencePeriodTimer = RTT/2 + 20
CongestionFlag = TRUFE
CongestionEpochTimer = SilencePeriod + SRTT + 40
Accept LE

event: CongestionEpochTimer expires:

CongestionFlag = FALSE

event: SilencePeriodTvmer expires:

SilenceFlag = FALSE

event: Ratelncreaselimer expires:
if (CongestionFlag == FALSFE)

_ _ MSS
ratet = sprries
else {

if (SilenceFlag == TRUFE)

138

no data transfer
else
no increase in rate

}

RatelncreaseTimer = RTT + 20

139

APPENDIX B
ORMCC Algorithm

B.1 Source Operations
Variables :
A @ Transmission rate
i : Throughput rate at congestion (TRAC) in the
received CI(pu)
E(p) : Average TRAC of the CR
pg : Deviation of the CR TRAC
s : Packet size
RIT,,.; : Maximum RTT
RTT,, : RTT between the source and the CR
T< : CR response time when the bottleneck is fully
loaded
E(T*) : Average of T
T¢ @ Deviation of T
cr_valid : Indicates whether the CR is valid
R : The receiver sending the received CI(u)

Initialization:
cr_valid = false

RTT ez =0

Event every RTT,,:
if There is no rate reduction within the recent RTT,, then
A A+ s/RTT*
if A\ > E(p) +4ug and CR checking timer is not running then
Start CR checking timer with time length E(T°") + 81¢"
t < the current time
endif
endif

140

141

Event when the CR checking timer expires:

cr_valid < false

Send packet:
if cr_valid s true then
Send a packet with real E(u") and p<
else
Send a packet with invalid values for F(u") and pg
endif

Subroutine : CutRate ()
if A\ has not been cut within the most recent RTT,, then
A < min(A, 0.75u)
Stop CR checking timer
endif

Event upon receipt of CI(u):
if R is CR then

cr_valid < true

if CR checking time is running then
A < current time — ¢
Update E(T°") and T¢" with A

endif

Update E(p") and p& with u

Update RTT,,

if RTT .. < RTT,, then
RT T < RTT,,

endif

Stop CR checking timer

do CutRate ()

return

endif

/* The CI(p) is NOT from CR if reach here */
if cr_valid is false then
Choose R as the CR
Start CR grace period as 2RTT,,4,
else if In CR grace period then
if The RTT sample measured by this CI(u) is larger than RTT,, then
Choose R as the CR
endif
/* NOT in CR grace period */
else if y < E(u*") — g then

Choose R as the CR
endif

if CR has been changed at the receipt of this CI(u) then
cr_valid < true
Update E(p") and p< with u
Update RTT,,
if RTT, .. < RTT,, then
RTT, . = RTT,
endif
do CutRate ()
endif

B.2 Receiver Operations
Variables :
i : A throughput rate at congestion (TRAC) sample
E(p) : Average TRAC of this receiver
E(u) : Average TRAC of the CR
ug - Deviation of the CR TRAC

Event upon receipt of a packet:
if E(pu") and pu< has been changed then

142

143

Update the local copy of E(u®) and p&
endif
if This packet indicates packet losses then
Meaure p and update E(u)
if E(u") and pu< are invalid or E(u) < E(u) — p< then
Send CI(p)
endif
endif

APPENDIX C
Theoretical Analysis of ORMCC Properties

C.1 Capability of Tracking The Slowest Receiver

In this part, we are going to show that an ORMCC flow always track the slowest

receiver, i.e. the receiver behind the most congested path. For convenience, we are going to

refer the path between the source and the CR as Representative Path.

Let’s consider a multicast session using ORMCC. Suppose there are N (N > 1) different

paths on the multicast tree. Let R; be the receiver behind path . Without loss of generality,

assume R; is the current CR. The source will choose another receiver R; (j # 1) as the new

CR only if R; sees a lower throughput rate at congestion (TRAC) than that seen by R;. To

see when a R; will see a lower TRAC on average, first we are going to calculate the TRACs

on all paths from 1 to N, given the instantaneous ORMCC sending rate at which a burst of

packet losses begins.

For the analysis, we have the following definitions (all i are from 1 to N):

)‘i,t B

Mt -
[.
)\Z-,t :

Wii
Q :

Instantaneous sending rate of the ORMCC flow at time ¢ on path 1.
Instantaneous throughput rate of the ORMCC flow corresponding to ;.

The sum of instantaneous sending rates of all other flows sharing the bottleneck
on path ¢ at time ¢.

Bandwidth of the bottleneck on path %.

Buffer size of a bottleneck. Here we assume that all bottlenecks have the same
buffer size. If a queue is constantly non-zero, we will treat the part which is

emptied and (partly) filled as the whole queue.

: Packet size. We assume that all the packet sizes are equivalent.

: RTT of path 3.

: The sending rate increment of the ORMCC flow per unit time. A = s/RTT; > 0.
; © The sum of the sending rate increments per unit time of all but the ORMCC flows

sharing the bottleneck on path ¢, without packet losses occuring at the bottleneck,
assuming all do AIMD. In reality, most likely A; changes randomly, therefore we

consider its average value in an aggregate sense. A; > 0.

144

145

Moreover, we assume that data are sent bit-by-bit evenly, sending rates are increased
continuously, as well as that all packet losses are due to congestion. Also, drop-tail buffer

management is assumed for bottlenecks.?

Rate Buttleneck buffer is filled.

)\Ol,tl 7777777777777777777777777777777 .
Bottleneck buffer
begins to be filled.

Ao SWL = Ao |-

Aggregate of
allgo%he% flows

\ A=y, A
R e ‘

e ‘
ORMCC flow

t0 tl Time

Figure C.1: Evolution of ORMCC Sending Rate on The Representative Path

Let’s consider path 1 first (Figure C.1). Suppose at time ¢;, there is a burst of packet
losses. The bottleneck queue must be full at this moment. The sum of sending rates of
all the flows going through the bottleneck, A;; + A7, , must be larger than the bottleneck
bandwidth W;. Recall that A > 0 and A; > 0, meaning that without packet losses at the
bottleneck, the sum of sending rates keep increasing. Consequently, at an earlier moment

to, the sending rate sum must be equal to Wi, i.e.,
)‘1,t0 + Xl),to =W (Cl)
Since the sending rate of the ORMCC flow grows by A per unit time,

)\1’751 =)\1,,50 + (tl — to)A =)‘1,750 =)\1,,51 — (tl — to)A (02)

30 Although our analysis is based on drop-tail routers, ORMCC also works well with RED routers. It has
been confirmed by simulations, though for space reason, the results are not included.

146

A7, grows by A; = 7 A per unit time, therefore,
M =AMy + (B —t0) A1 = A7 + (1 — to)mA (C.3)
From (C.1), (C.2) and (C.3), we have,

Tt = Wi— (A — (B —t0)A) + (t1 —to)m A
= Wi—Xiy+{#—t)(d+m)A (C.4)

We also assume that at g, the bottleneck queue size is zero. Since at t1, the queue is
full, the queue is filled by sending rate increments during [ty,;]. Recalling that the total
sending rate grows by A + A; = (1 + 71)A per unit time, and the assumption of all flows’
doing AIMD, we have,

2Q

1 2
L4 — 1 A= Lty =
2(t1 to)“(14+71) Q=1 —1 1 +1)A

Together with (C.4),

Al = Wi — A +1/28Q(1 +m1) (C.5)

Assuming all flows going through the bottlenck have the same priority, since at time

t; the bottleneck is working at its full load, we know

M1ty

T~ ey (©6)
On any other path j (j = 2...N), since the ORMCC source ignores the congestion
indications on this path (Figure C.2), the sending rate of the ORMCC flow still grows by A
per unit time. With ¢; of the same meaning as before, according to a derivation similar to
that above, we have,
Ajits

Nj,h = 1 (C7)
L+ 721/2AQ(1 + ;)

Consider A;y, (¢ =1...N). Assume that the sending rate of the ORMCC flow varies

between A, and Ap,, (Figure C.2), then);; is a sample value of a random variable A,

147

A: Moment when there are packet losses on representative path

B: Moment when there are packet losses on non-representative path
ORMCC

Rate

|
|
|
|
|
|
i
|
|
|
|
|
|
|

B B AB A B B BA B B B A B B A A Time
Figure C.2: ORMCC Source Only Considers The Congestions on The Representative Path
for Rate Adaptation

with sample space as [Amin, Amaz]- Assuming A;’s are identically distributed, their expected
values are the same, i.e. E(A;) = E(Aj) (1 # 7).

Let receiver ¢ be the receiver behind path i. p;4, (¢ =1...N) is the TRAC measured
at receiver i. According to (C.7), p4, is a function of A;4, and thus is a random sample.
Denote the corresponding random variable as U;. Assuming that W;, @, s are constant, and

that v; and RT'T) in steady state have small deviations and thus can be treated as constant,

we have,
AA
U; = T :
1+ 7-v24Q(1 +)
E(U;) = ()

1+ 5-v2AQ01 +)

As designed in ORMCC, for j = 2... N, only upon detection of E(U;) < E(U;) (the
average TRAC of the current CR receiver 1) will receiver j send congestion indication (CI)
packets back to the source, which then update the congestion representative (CR) to receiver

j. From the expression of E(U;) above, we have,

E(U;) < E(th)

. B B(A)
1+WLj 2AQ(1 + ;) 1+ 53-v2AQ(1 +)
Wi Wi since B(A;) = E(Ay) (C.8)

<
VI+y VI+m

We can see that W;/\/T+; (i = 1...N) indicates the degree of congestion on the

148

bottleneck of path 7. In fact, if the bottleneck has less bandwidth, i.e. W; is smaller,
W;/+/1 + v; has a lower value; if more flows are sharing a bottleneck, the sum of their per-
unit-time rate increments A; is higher, 7; = A;/A is then larger, which in turn also makes
W;/+/T + ; lower. Therefore, (C.8) actually shows that as long as a non-representative path
(path j) experiences a more serious congestion than the representative path (path 1) does,
the receiver behind path j will see lower average TRAC E(U;), and will send CI(u)s back
to the source, making the source change CR. Namely, an ORMCC flow always tracks the

slowest receiver.

C.2 TCP-Friendliness on Representative Path

By representative path, we mean the path which the congestion representative (CR) is
behind. In the following, we are going to show that an ORMCC flow is friendly to a TCP
flow on the representative path, by showing that they get approximately equal share of the
bottleneck bandwidth, with the assumption that their RTT estimations and packet sizes are
the same. More strictly speaking, we want to show that, with proper choice of rate reduction
factor 8 for ORMCC, VMCC /V,TCP ogcillates around 1, where V,M¢C and V,'“" denote the
sending rates of the TCP flow and ORMCC flow at time ¢ respectively. Those two flows are
assumed to be the only flows on the representative path. A sample of the rate evolution is

given in Figure C.3.

Rate

t0 t1 t2 t3 Time

Figure C.3: Evolution of The Sending Rates of TCP and ORMCC Flows

149

Like other TCP throughput analysis papers [85] [76] have done, our analysis focuses
only on TCP’s congestion avoidance behavior. During congestion avoidance period, when
without packet losses, a TCP source increases its congestion window by 1/N packet upon
the receipt of per ACK, where N is the current congestion window size. A TCP source
transmit all the packets in its congestion window in one RTT, therefore, the window grows
by 1 packet per RT'T, 3! which corresponds to the fact that its sending rate is increased by
s/RTT per RTT, where s is the packet size. An ORMCC source increases its sending rate
at the same pace, as covered in scheme description. At packet loss, a TCP source will reduce
its congestion window by half, which is equivalent to cutting its sending rate by half.

Assume that congestion is the only reason for packet losses. Let W be the bottleneck
bandwidth. It is obvious that packet losses can occur only if VP + VMEC > 1. Suppose
some packets are lost and both flows reduce their transmission rates at ¢; (Figure 2.13).
Before the losses, since both VI°F and V,MC keep increasing, there must be a moment ¢,
when V,'CF 4+ VMCC = W For short, let V;MC = X then V;'” = W — X. For the first

step of analysis, we will show that with appropriate j,

X <W—X = X/(W - X) < yMCC yTcP
(C.9)
X >W-X= X/(W-X) > VMoc yTrcr

Let the moment just before the rate reduction at t¢; be ¢|. Because the TCP and
ORMCC flows share the same path, we assume that they detect packet losses and reduce
transmission rates approximately at the same time. For the TCP flow, suppose that at ¢,

its transmission rate has been increased by d since %, i.e.
Vil =W -X+d

After a reduction by half,

TCP
Vgcpz‘/}g _W-X+d

2 2

31'We assume that a TCP receiver sends an ACK per received packet.

150

Since the ORMCC flow increases its rate at the same pace, we have,

‘/tMCC':X_i_d

/
1

Assume that both flows have the same priority and are almost synchronous, i.e. their

packets are forwarded by the bottleneck with the same probability. In consequence, at ¢},
the ORMCC CR sees an approximate receiving rate of

proc X+

Vyl\/[CC’_i_VZ“CP = W +2d

According to the rate adaptation policy of ORMCC,

X +d
MCC __
Va _BW+2d

Therefore,
| _p X +d W/W—X+d
Vier w4 2d 2

Now let’s compare X/(W — X) and V;M¢¢/VTCF.

MCC
X Vi,

WX VEoP
2

T O W-_X+d
' [(% - Wﬁr;d) X+ (2(W7X) - W[T;d) d]
(C.10)

Since W > X and d > 0, 2/(W — X 4+ d) > 0, and the positivity of (C.10) is decided

by its second factor between square brackets. If we choose a value for § carefully so that,

1W +2d
b= w
The second factor of (C.10) becomes

i/ X i/ X
O-X+§(m—1)_§(m—l> (C.11)

It is easily seen that, if X > W —X, (C.11) > 0 so that (C.10) > 0; while if X < W—-X
(C.11) < 0 so that (C.10) < 0. That is exactly what we want for (C.9).

151

With (C.9) eastablished, we can go further. Assume that at ¢;, i = 1...00, both
the TCP flow and the ORMCC flow reduce their rates (Figure 2.13), and their rates after
reduction are V;"“" and V,MC respectively. Also assume that t; is the closest moment
before ; so that V' +V,M¢“ = W. Recall the meanings of X and W — X, (C.9) actually
indicates that,

MCC TCP MCC jyyTCP MCC jyyTCP
V;i,o < Vt-i,O = V;fi,o /Vti,o < Vtz /V;z

(C.12)
W%CC > ‘/tz:OCP = ‘/t%C’C/V;ZOC’P > VZWCC’/W?CP

Let’s consider the situation that V,M“¢ < V;T¢ first, which is shown in Figure 2.13.

Note that for any 1,

V;MCC — ‘/;?JCC—I-A, VTCP _ VETCP—FA A>0

i+1,0 tiv1,0 —

So,
MCC MCC MCC MCC
V;fi < ‘/;q, + A _ ‘/;i+1,0 (0'12) ‘/ti+1
TCP TCP - TCP TCP
‘/ti V;fz + A Vti+1,0 V;fi+1

Similarly, if V;M¢¢ > VTP,

MCC MCC
‘/ti > ‘/ti+1
VTCP VTC’P

t; tit1

As the result, if the ORMCC flow rate is less than that of the TCP flow, it will grow
until it exceeds the latter; likewise, if the ORMCC flow rate is more, it will get less and less
until it is below the TCP flow rate. Hence, V,Y¢C/VICF ogcillates around 1. In conclusion,
we say that ORMCC is approximately TCP friendly, given that the rate reduction factor 3
is properly chosen.

With regard to the value of rate reduction factor [, recall that above in the analysis,

we need to have that
1w +2d

ﬁ2W

Since d > 0, B needs to have a value greater than 0.5. Consider the fact that TCP
uses ACKs to measure RTTs. It can have lower RTT estimation than that of ORMCC
which uses NAKs for this purpose, as we discussed in Section 3.1.6. Thus, TCP can increase
sending rate faster than ORMCC. For compensation, ORMCC at packet losses can reduce

its transmission rate by less using larger value of 5. In our implementation, we use a value

152

of 0.75 and it works fine in simulations.

C.3 Immunity To Drop-to-zero Problem

The cause of drop-to-zero problem is the asynchronous packet losses on multiple paths.
If a multicast source reduces the transmission rate too much on the losses, the rate will
stay very low or even converge to zero. However, in nature, the source in ORMCC adapts
the transmission rate according to the congestion on one single path while ignoring that on
all others, there will be no drop-to-zero problem for ORMCC. In more details, if a receiver
other than the current congestion representative (CR) sees a packet loss rate lower or equal
to that by CR, it won’t send CI(u)s back to the source. The source won't see any CI(u)s
from it, thus of course won’t reduce the transmission rate. Even if the source gets CI(u)s
from different receivers because there is a change of the most congested bottleneck, once it
chooses a receiver as the new CR after a very short period of time (several RTTs), it will
ignore CI(u)s from all other receivers. Consequently, we can say that ORMCC is immune

to drop-to-zero.

C.4 Effectiveness of Feedback Suppression

Without support from internal nodes, which is the situation that we assume for reality,
most multicast feedback suppression schemes (e.g. [34], [103], [114], [37], [84]) use random
timers for delaying receivers’ feedback before sending them. However small it is, there is some
feedback latency which may bring performance penalty. Since our feedback suppression is
not based on timers, it does not suffer from this problem. Also, there is no need to know or
estimate the total number of receivers like [37]. Moreover, we are going to show below that
in ORMCC, the total number of feedbacks (i.e. CI(p)s) sent to the source by all receivers in
a multicast session, is independent of the total number of receivers. Instead, it depends on
the switching frequency of the most congested bottleneck, as well as the number of receivers
behind the new most congested bottleneck, plus the minimum RTT between them and the
source. For convenience, we use the acronym MCB for most congested bottleneck in the
following discussion.

We assume that there is only one MCB at any moment32. To begin the calculation,

32There can certainly be multiple bottlenecks which have similar degree of congestion and are all most
congested. However, the discussion still holds.

153

the following notations are needed?3.

N : Total number of receivers behind the new most congested bottleneck (MCB).
R; : Receiver i behind the new MCB. (i=1...N)
RTT; : RTT between the source and R;.
RTT/ : Forwarding (downstream) part of RTT;.
RTT,,;, : The minimum of all RT7T;’s.
p : Packet loss rate seen by receivers behind the new MCB.
v : Average transmission rate of the ORMCC flow.

First burst of packet losses The source gets Cls from the closest receiver,
after bottleneck change occurs. change CR and notify all receivers.

i :

Source
lt«e——— RTTn } RTTif —_—
Receiver i
~ RTTy, = sends Cls
during this
period
Receiver i f
- [RTT; —_—
T t%o Liz Time
First burst of packet losses Receiver i detects the first Receiver i getsthe
after bottleneck changeis burst of packet losses after notification of new CR
detected by the closest receiver bottleneck change and begins and stops sending ClI.

sending CI.

Figure C.4: Feedback Suppression Mechanism

Whenever there is a new MCB, according to the previous discussion of ORMCC’s
following the most congested path, only those receivers behind the new MCB will send
CI(p)s back to the source, and all of them except one will stop sending CI(u)s once one of
them is chosen as the new CR. More specifically, the source will first see the CI(u)s from
the receiver with RTT,,;,, then change CR and tell all receivers of the change. For any R;
except the new CR, the duration of sending CI(u)s is between the moment ¢;, when they
first detect packet loss after bottleneck change and the moment ¢;, when they know the new
CR. According to Figure C4, t;, — t;, = RTTif + RTT, ., — RTTZ-f = RTT,,;,. Therefore,
before a new CR is decided, the number of CI(u)s sent from this receiver i is thus pv RT T pn,

33Gince the receivers involved here are all behind MCB, we can assume that they see the same degree of
congestion and thus the same packet loss rates.

154

and the total number of CI(u)s sent by all receivers behind the new MCB is,

N
> pvRTTpin = vpN - RT Tpnin

=1

Once a new CR is decided, only one receiver, namely the new CR, will send CI(u)s.
Let’s call the period between two successive MCB switchings MCBSP (MCB switching pe-
riod). During a MCBSP of length ¢, the total number of CI(u)s sent to the source is,
assuming t > RT T in,

vpN - RTTpin, + vp(t — RTTynin) = vp(t + (N — 1) RT T i)

If a Poisson process with parameter ** is assumed for MCB switching, for a multicast

session of duration T', on average, the total number of CI(u)s transmitted is approximately,
1
AT - vp (X + (N - 1)RTTmm) (C.13)

We can see that, for a ceratin 7,

) 1
)1\1_1)1(1) AT - vp (X + (N - l)RTTmz-n)
= vpT +)l\il% MpT (N — 1)RTT i, = vpT (C.14)
—

That means, if during a multicast session, there is no MCB switching, the total number
of CI(u)s transmitted is approximately equal to the number of CI(u)s sent from a single
receiver behind the MCB. To make it clearer: if the MCB does not change during a multicast
session, the volume of feedback is on the same level of unicast feedback!

Also, from (C.13), we find that the total number of transmitted CI(u)s is independent
of the total number of receivers in a multicast session (Note that N is (C.13) is not the total
number of receivers but the number of receivers behind the MCB). It depends on how fast
MCB switches and the amount of receivers behind the new MCB, as well as the smallest
RTT between those receivers and the source. Usually, MCB switches only once in many
multiple RT7T,,;»’s, and the amount of receivers behind the new MCB is much less than

the overall number. Moreover, RTT,,;, is almost a negligible duration. Consequently, our

34Considering the reality, we can assume that MCB switching does not occur too frequently and 1/\ >
RT T, in-

155

feedback suppression mechanism is effective.
Finally, we must say that due to measurement errors in reality, the total number of
CI(p)s sent can be a little higher than what we have derived here. However, the difference

won’t be significant.

APPENDIX D
MCA

In this appendix, we present the work leading to MCA+ in Chapter 5. Since the theory

background is the same as MCA+, we omit it here.

Receiver

CI: Congestion Indication
ER: Egree Rate

CP: Control Packet

DP: Data Packet

| adaption | PEEEEEET S
!| congestion | <398 | Fittering | | < SER CI(ER) ;:
\ [— — detection |,
i L—Jblmk , cP&DP ' Receiver:
! Source N

Figure D.1: Multicast Congestion Avoidance Model

MCA consists of three key building blocks (Figure D.1): a congestion detection block
at receivers, a filtering block at the source to discriminate between competing feedback from
receivers, and a congestion response block which implements a rate-increase/decrease pol-
icy. Congestion detection is based upon the “accumulation” measure. Congestion detection
triggers feedback, which is sparse in the sense that at most one feedback is generated per
measurement period (unlike multiple loss indications generated during packet loss in “con-
gestion control” schemes). Congestion feedback to senders can be in the form of single-bit
congestion indication (CIs) or as a multi-bit output rate measure. The two different feed-
back models (bit-based or explicit rate-based) leads to two different schemes: bit-based and
explicit rate-based. These schemes essentially have different designs of the filtering and con-
gestion response policy blocks. The explicit rate feedback can be leveraged to reduce the
state requirements at the sender to O(1).

Simulation results show that both schemes avoid the drop-to-zero problem [114, 94, 9].
Drop-to-Zero is the problem of reacting to more feedback indications than necessary leading

to a beat-down of the multicast flow’s rate[114, 94, 9]. This occurs because the multicast

156

157

flow receives feedback indications from multiple paths and may not filter them sufficiently.
TCP-unfriendliness is the problem of reacting to less feedback than a hypothetical TCP
flow would on the worst loss path [14, 94, 114]. Though the congestion detection model is
incompatible with that of TCP (and we cannot directly demonstrate fairness with TCP) we

demonstrate fairness with similar unicast congestion avoidance flows.

D.1 Accumulation Measurement and CI Generating Algorithm

Suppose we begin at time t;. Let T be the value of control packet interval. The be-
havior of the source is simply to send out a control packet (CP) to the receivers at ty + iT
(1 = 0,1,2...). The receivers execute the following algorithm whenever a CP arrives, with

the variable accu recording the accumulation:

t : current time
1 : the sequence number of CP
T : control packet interval
ts : time of the most recent synchronization point (SP)
seqs : CP sequence number of the most recent SP
accu : accumulation in bytes
accug : global accumulation in bytes

H thresh : high threshold of accumulation.
L thresh : low threshold of accumulation.
(Synchronization point (SP) is the point at which we assume no packet backlog on the path

from the source to the receiver.)

1. If the CP is the very first one since %,
Set: accug =0, accu =0, t; = t, seqs = i. (SP)
Return.
Endif
2. Ift < ts+ (1 — seqs)T,
Set: accug =0, accu =0, t; =t, seqs =i. (SP)
Return.
Endif
3. Set accu = the bytes received within (ts + (i — seq,)T, t] + accu,.
4. If accu > H _thresh,

158

Send a CI back to the source.
Else if accu > L_thresh,
Do nothing.
Else if accu has ever exceeded H _thresh since t;,
Set: accuy = accu, accu =0, t, = t, seq; = i. (SP)
Else
Do nothing.
Endif
Return.
The algorithm above assumes zero packet loss. To make it robust, a receiver also send
CIs upon detection of packet losses. Although packet losses may decrease the accumulation
seen by the receiver and hide congestion, the congestion detection by packet losses compen-
sate for it. Besides, the error of accu measured at the arrival of i*» CP won’t be carried over
to next measurement if the receiver does not see any loss during (¢; + (i + 1 — seqs)7, ¢]. In
addition, at the arrival of i* CP, if the receiver has seen any losses during (¢, + (i — seq,)T, t],
it won’t do re-synchronization.
However, if the route between the source and the receiver changes to be longer (although
it does not happen too often), our scheme won’t be able to re-synchronize. That is an issue

for our future research.

D.2 Bin-CI Scheme

We now describe filtering and congestion response policies at the source. If the feedback
upon congestion detection is a single bit, i.e., a binary congestion indication (CI), the scheme
is called Bin-CI. We shall see that the tradeoff between explicit rate feedback and single bit
feedback is simplicity of feedback vs complexity of state at the source. For this Bin-CI
scheme, we largely leverage LE-SBCC (Chapter 2) for a similar case of binary feedback
carrying packet loss indications (LIs) instead of congestion indications (ClIs). There are a
cascade of three filters (CI2CE, MaxLPRF, ATF) into which Cls are fed, and two modules
of RTT estimation and rate adaption, as follow.

CI2CE FILTER Whenever a CI from receiver ¢ arrives, the source checks the current time

to. Let t; be the time when last CI from i was accepted. If to —t; < RTT + 2 x o %, the

355 is the mean deviation of RT'T samples.

159

CI is rejected. Otherwise, it is accepted as a new congestion event (CE) from receiver i and

passed to the next filter MaxLPRF.

MaxLLPRF FILTER Let the total number of CEs from receiver i be X;. Any CE is passed
with probability of (max X;)/ > Xj, i.e., the MaxLPRF passes on the average, max X; CEs
out of a total of 3~ X; CEs.

In addition Zto the above probabilistic behavior, MaxLPRF maintains two accounting
variables: P; and V. P; is set zero at initialization and each time the rate is reduced
in the rate adaptation module (see below). Whenever a CE arrives, P, is incremented by
(max X;)/ > X;. If P; was below 1 prior to incrementing and is at least 1 after incrementing,
we set Vj z;s the current data transfer rate. These accounting variables are used in the

rate-adaptation module (see below).

ATF FILTER When a CE arrives at ATF, the current time ¢, is checked against the time
t; when last CE (from any receiver) was passed by ATF. The new CE is passed if ty —t; <

RTT +4x 0. This guarantees that at most one rate deduction is performed in any one RTT.

RTT ESTIMATION At the arrival of a CI, (1) if it is triggered by a CP, the RTT sample

RTT; is the difference between the current time ¢ and the departure time of the CP triggering
the CI, (2) if it is triggered by a packet loss and not a retransmitted one, RT'Ty is the difference
between ¢ and the transmit time of the lost packet. With RTT;, the RTT is updated as
RTT =7/8-RTT +1/8- RTT.

RATE ADAPTATION During the periods of no congestion (i.e. no CE), the data transfer
rate V; is incremented by S/SRTT every SRTT 3¢ (where S is the data packet size). An

exponentially weighted moving average (EWMA) of the rate-increments, V, is maintained
as V. =aV,+ (1 — «)S/SRTT 3.
If a CE passes the filter cascade, the rate V; is adjusted in the following way:
1.UP; <1, Vy=p06Vs—V,).
2. I Py>1,Vi=B(Va—Ve) — (Vs — Vo).
In our simulations, 8 is 0.9. When P; < 1, V; is deducted by the amount of V, first,
and then multiplicatively reduced by . This ensures that, with a high probability, drain

capacity is provisioned for the accumulation incurred. When P, > 1, it means that the source

OSRTT =RIT+2x0
37 is 7/8 in our simulations.

160

responds late (since the ATF may have filtered a CE passed by MaxLPRF). Therefore, the
source goes back to the rate V; where it should have been, responds as described earlier, and

cancels excessive increment due to late response.

D.3 ER-CI Scheme

The ER-CI scheme leverages the multi-bit egress rate (ER) information in the feedback
message (also called as a CI for convenience) to reduce the state requirements at the source
to O(1). The filtering block in the ER-CI scheme calculates an EWMA of the ER fed
back by receivers. The EWMA estimate Vi, = vV}, + (1 — v)V; where V; is the egress
receiving rate in the feedback message. An ER error estimate o, is also calculated: o, =
Yo, + (1 —)| Ve — Vi| 3. Let R be the the receiver whose CI was accepted most recently.
An arriving CI is accepted if any of the following conditions is met:

(1) The CI is the very first one received by the source,
(2) The CI is from receiver R,

(3) V; satisfies Vy <V}, — 30y,

(4) to =t > RTT + 70, Vs > Vi + 30, + S/SRTT,

where V; is the data transfer rate, S is packet size,

to is the current time,

t1 is the time when last CI was accepted.

When a CI is accepted, the source data transfer rate V; is updated as V; = min(Vy, BV5),
(8 < 1). The decrease factor 3 is the same as that of the Bin-CI scheme. If there is no
congestion detected or the CI is filtered by the algorithm above, V; grows by S/SRTT every
SRTT.

The filter block is required because too many rate reductions (V; = min(V;, 8Vj))
would eliminate the chance of rate increment and hence beat-down a multicast flow having
many branches. The filter block attempts to keep track of only one of the receivers seeing
the smallest egress rate (ER). Condition (1) is for initialization. Condition (2) means that
if the receiver R whose Cls the source accepted most recently keeps sending Cls, the source
will always accept them. To avoid neglecting other receivers, condition (3) accepts feedback

from other receivers provided that the ER fed back Vy < V. — 30,, i.e., the ER fed back is

38~ is 7/8 in our simulations.

161

statistically significant. Condition (4) is a statistical safeguard against the case of the receiver
R disappearing, while the other feedback rates remain within the range [V;. — 30,,00).
Condition 4 implies that the source has not seen Cls from the receiver R for a long enough
period (RTT + 7o), as well as that the transfer rate has been increased significantly (V; >
Vie + 30, + S/SRTT) and congestion feedback is being received from some other receiver.

We choose RTT + 70 as a long enough period after we consider the following extreme case:

As usual[45], the round trip time estimate RTT is updated as RTT = ORTT +
(1 —0T), where T is a new sample. The error ¢ is maintained as ¢ = 0o + (1 —

0)|T — RTT| before RTT is updated by 7.

Let RTT = t, 0 = 0. Suppose the next sample is ¢t + 6, (6 > 0). Then RTT
becomes 0t+(1—6)(t+9) = t+(1—0)J, the error o = 00+(1—0)|t+06—t| = (1—-6)6.
To let [RTT — xzo, RTT + zo] include the sample of ¢ + §, solve the equation of
RTT +z0 > t+ 4, we have z > 0/(1 —). Since we use 6 = 0.875 in our scheme,
x > 0.875/0.125 = 7 and we pick the smallest value. If § < 0, the discussion is

similar.

D.4 Simulation Results

We ran several ns-2 simulations to verify the performance of our scheme. The simula-
tions include (1) Simple Multicast Configuration, (2) Multiple Bottlenecks (Linear Network),
(3) Drop-to-Zero Avoidance Testing. In these simulations, the data packet size is 1000 bytes.
The bottleneck buffer size is 1IMB which is sufficient to avoid any packet losses in all simu-
lations. Queue graphs show that the real queue is far smaller. When the bottleneck buffer
size is smaller, there can be packet losses while our scheme still performs well. However, we

omit those results here.

D.4.1 Simple Multicast Configuration

Consider the simple multicast topology in Figure D.2. At time=0, there is only one
multicast flow, with the source on Node 1, two receivers on Node2 and 3 respectively. At
t=30s, another multicast flow is added with the same source-receiver set. At t=60s, the

third multicast flow is added, again with the same source-receiver pattern.

162

Node 1

3Mbps, 10ms

Router
0.9Mbps, 10ms

1Mbps, 10ms

Node 2 Node 3

Figure D.2: Simple Multicast Configuration

Figures D.3(a) and (b) shows the performance of Bin-CI and ER-CI respectively. In
both cases, observe that for t in [0s,30s], the rate oscillates around 0.9 Mbps. For t in [30s,
60s] the rates are around 0.9/2 = 0.45 Mbps showing that the two multicast flows compete
fairly. For ¢ > 60s, the rates oscillate around 0.9/3 = 0.3 Mbps, again with the rates being
shared fairly.

Instantaneous Rate (Basic, ER-CI, 1MB buffer) Instantaneous Rate (Basic, ER-CI, 1MB buffer)

16

Multlcasl ﬂDV\‘/ 1 Multlcasl ﬂDV\‘/ 1
Multicast flow 2 —-— Multicast flow 2 ———
Multicast flow 3 -------- Multicast flow 3 --------

0.8

0.6

Instantaneous Rate (Mbps)
Instantaneous Rate (Mbps)

0.4

0.2

-
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time (s) Time (s)

(a) Bin-CI, 1MB bottleneck buffer (b) ER-CI, 1MB bottleneck buffer

Figure D.3: Simple Multicast Configuration Results (Rates)
(Both Bin-CI and ER-CI can follow bottleneck dynamics.)

The queue sizes of different simulations are shown in Figure D.4 and the utiliza-

tion/queue data is summarized in Table I. We can observe that the bandwidth utilization

163

is high (above 80%) while the average queue length is low (up to 20 packets). Also observe
that the utilization in the ER-CI scheme is in general higher than that in the Bin-CIscheme.

Queue Size (Basic. ER-CI| 1MB buifer) Queue Size Basic. ER-CL 1MB buifer)
120000 T T T T T T T 60000

100000 ~ 50000

80000 . | 40000

B0000 | 30000

Queue Size {byles)
Queue Size (bytes)

40000 | - 20000

20000 10000

!) I I) I I
0 50 100 150 200 250 300 350 400
Time (s)

Time (s)

(a) Bin-CI, 1MB bottleneck buffer (b) ER-CI, 1MB bottleneck buffer

Figure D.4: Simple Multicast Configuration Results (Queues)
(Both Bin-CI and ER-CI have relatively low average bottleneck queues, while Bin-CI is better than ER-CI.)

Table D.1: Average Queue Size and Utilization
(ER-CI is better at queue utilization while Bin-CI is better at queue length.)

Average Bottleneck Queue Size (bytes) | Bottleneck Utilization
Bin-CI, 1MB bottleneck buffer 5745.93 83.0221%
ER-CI, 1MB bottleneck buffer 20359.8 98.0692%

D.4.2 Multiple Bottlenecks: Linear Network

The linear network is a popular multi-bottleneck configuration. We extend this config-
uration for multicast as shown in Figure D.5. There are three flows running on the configura-
tion of Figure D.5. One multicast flow goes from Node 1 to Node 4 and 5, two single-receiver
multicast flows go from Node 2 to Router 2 and from Node 3 to Node 4 respectively. In this
configuration, if the flow that traverses multiple bottlenecks gets a larger share, it reduces
the overall network capacity. Different notions of fairness define how much the long flow can
get. Proportional fairness implies that the the long (multicast) flow should get one-third of

the bottleneck bandwidth whereas Max-min fairness suggests a share of one-half.

164

Node 1

3Mbps, 10ms

3Mbps, 20ms
Node 2 Op— D Router 1

Bottleneck 1 | 1Mbps, 10ms

3Mbps, 20ms

Node 3 Router 2

3Mbps, 10ms
Bottleneck 2

Node 4 Node 5

Figure D.5: Multiple Bottlenecks: Linear Network

The average rate 3 graph (Figure D.6) shows that the multicast flow gets more than

1/3 of the bottleneck bandwidth (the proportional fairness share), but less than 1/2 of the

bottleneck bandwidth (the max-min fairness share).

Average Rate (Mbps)

Average Rate (Multiple bottlenecks, Bin-Cl, 1M Buffer) Average Rate (Multiple bottlenecks, ER-CI, 1M Buffer)
0.6 T T T T T T 0.65 T T T T T T
Main Multicast Flow Main Multicast Flow
Cross traffic 1 -- Cross traffic 1 -------
... Cross. 0.6 F s . Cross traffic 2 - |
0.55 QSR = RS B -]
i 0.55 |- ;f q
st/ i H
{ 05t |
/ 2 i
oas| | g s [
- i S 045 4
g i
o4
®
0.4 2
]
s
<
035 |1:
03 [
0.25 ' 1 1 1 1 1 1 1 0.2 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time (s) Time (s)
(a) Bin-CI, 1MB bottleneck buffer (b) ER-CI, 1MB bottleneck buffer

Figure D.6: Linear Network Results (Average Rates)

(MCA achieves a fairness between proportional and max-min.)

39 Average rate = (amount of data sent between time 0 and t) / ¢, where ¢ is the sampling time.

165

Node 1 1Mbps, 10ms () NodeN+1
Rou/

« 3Mbps, 10ms .
Node N 0.9Mbps, 10ms ~O Node 2N
3Mbpg, 10ms
Node 0

Figure D.7: Star Topology Configuration

D.4.3 Star Topology: Drop-to-Zero Avoidance Testing

To test the immunity of the scheme to the drop-to-zero (DTZ) problem [94], we use the
star topology (Figure D.7). The DTZ problem occurs when multiple paths in a multicast
tree experience different congestion levels asynchronously, and the source reacts to more
congestion feedback than necessary leading to a beat-down of transmission rate.

In the star topology, node i sends data to Node i + N (i = 1..N), N = 16, thus
generating background traffic on each path. A multicast flow has as its source, Node 0, and
receivers, Node N + 1 to 2N. The links between Router and Node j (j = N + 1..3N/2)
have bandwidth of 1Mbps; and the links between Router and Node j (j = 3N/2 + 1..2N)
have bandwidth of 0.9Mbps. The multicast flow should compete fairly with those single-
receiver flows on 0.9Mbps bottlenecks. Indeed, figure D.8 shows that the multicast and
the unicast flows sharing the 0.9Mbps bottleneck achieve equal rates around [0.4,0.45]Mbps.

This demonstrates fairness and the drop-to-zero immunity of the schemes.

Average Rate (Mbps)

Average Rate (Multiplex, Bin-CI, 1M Buffer)
0.55 T T T

T T
Multi-receiver Flow

1Mbps bottleneck Uni-receiver Flow 2

1Mbps bottleneck Uni-receiver Flow 1 -------

02 L I I I I I I I

0.9Mbps bottleneck Uni-receiver Flow 1

0 50 100 150 200 250 300 350

Time (s)

(a) Bin-CI, 1MB bottleneck buffer

400

Average Rate (Mbps)

0.5

Average Rate (Multiplex, ER-CI, 1M Buffer)

166

T T T T T
Multi-receiver Flow

1Mbps bottleneck Uni-receiver Flow 1 ---
1Mbps bottleneck Uni-receiver Flow 2 --

0.9Mbps bottleneck Uni-receiver Flow 1

0.9Mbps bottleneck Uni-receiver Flow 2 -~

(b)

150 200

Time (s)

ER-CI, 1MB bottleneck buffer

50 100 250 300 350

Figure D.8: Average Rate of 16 Multiplexed Flows in Star Configuration
(MCA avoids drop-to-zero. Multicast MCA flows are fair with unicast MCA flows.)

400

