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Abstract— Several congestion pricing proposals have
beenmade in the last decade.Usually, however, thosepro-
posalsstudiedoptimal strategiesand did not focuson imple-
mentation issues.Our main contribution in this paper is to
addressimplementation issuesfor congestion-sensitivepric-
ing over a singlediffer entiated-services(diff-serv) domain.
We proposea new congestion-sensitive pricing framework
Distrib uted Dynamic Capacity Contracting (Distrib uted-
DCC), which is ableto providea rangeof fair ness(e.g. max-
min, proportional) in rate allocation by using pricing as a
tool. We develop a pricing schemewithin the Distrib uted-
DCC framework investigateseveral issuessuchasoptimal-
ity of prices,fair nessof rate allocation, sensitivity to param-
eter changes.

Wealsointr oducetwo pricing architecturesbasedon the
manner of using pricing to control congestion: Pricing for
CongestionControl (PFCC) and Pricing over Congestion
Control (POCC).PFCC usespricing dir ectly for controlling
congestion,whilst POCC usesan underlying edge-to-edge
congestioncontrol mechanismby overlaying pricing on top
of it. We, then, adapt Distrib uted-DCC framework to these
architectures,and evaluate the two architecturesby exten-
sive simulation.

Index Terms— Network Pricing, Congestion Pric-
ing, Quality-of-Service, Fairness, Congestion Control,
Differ entiated-Services

I . INTRODUCTION

Implementationof congestionpricing still remainsa
challenge,althoughseveral proposalshave beenmade,
e.g. [1], [2], [3]. Amongmany others,two major imple-
mentationobstaclescanbedefined:needfor timelyfeed-
back to usersabouttheprice,determinationof congestion
informationin anefficient, low-overheadmanner.

The first problem, timely feedback,is relatively very
hard to achieve in a wide areanetwork suchas the In-
ternet. In [4], the authorsshowed that usersdo want
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feedbackaboutcharging of the network service(suchas
currentpriceandpredictionof servicequality in nearfu-
ture).However, in our recentwork [5], we illustratedthat
congestioncontrolby pricing cannotbeachieved if price
changesareperformedata time-scalelargerthanroughly
40 round-trip-times(RTTs). This meansthat in orderto
achievecongestioncontrolby pricing,servicepricesmust
beupdatedvery frequently(i.e. 2-3 secondssinceRTT is
expressedin termsof millisecondsfor mostcasesin the
Internet).In orderto solve this time-scaleproblemfor dy-
namicpricing, we proposetwo solutions,which lead to
two differentpricing “architectures”:� By placing intelligent intermediaries(i.e. software

or hardware agents)betweenusers andtheprovider.
This way it is possiblefor the provider to update
pricesfrequentlyat low time-scales,sinceprice ne-
gotiationswill be madewith a software/hardware
agentratherthana human. Sincethe provider will
notemploy any congestioncontrolmechanismfor its
network andtry to control congestionby only pric-
ing, we call this pricing architectureas Pricing for
CongestionControl (PFCC).� By overlayingpricing on top of an underlyingcon-
gestioncontrol mechanism. This way it is possible
to enforcetight controlon congestionat small time-
scale,while performingpricing at time-scaleslarge
enoughfor humaninvolvement.Theprovider imple-
mentsa congestioncontrol mechanism1 in order to
managecongestionin its network. So,we call pric-
ing architectureasPricing over CongestionControl
(POCC).

Big-picture of the two pricing architecturesPFCC and
POCCare shown in Figure 1. We will describePFCC
andPOCClaterin SectionIII.�

Note that we do not meanthe well-known end-to-endcongestion
control algorithmssuchasTCP. We will give an exampleof sucha
congestioncontrolmechanismlaterin thepaper.
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(a)Pricingfor CongestionControl(PFCC) (b) PricingoverCongestionControl(POCC)

Fig. 1. Differentpricing architectureswith/without edge-to-edgecongestioncontrol.

Fig. 2. DCCframework ondiff-servarchitecture.

The secondproblem,congestioninformation, is also
very hardto solve in a way thatdoesnot requirea major
upgradeatnetwork routers.However, in diff-serv[6], it is
possibleto determinecongestioninformationvia a good
ingress-egresscoordination.So,this flexible environment
of diff-serv motivatedus to developa pricing framework
on it.

In our previous work [7], we presenteda simple
congestion-sensitive pricing “framework”, DynamicCa-
pacity Contracting (DCC), for a single diff-serv do-
main. DCC treatseach edgerouter as a station of a
serviceprovider or a stationof coordinatingset of ser-
vice providers. Users(i.e. individuals or other service
providers)makeshort-termcontractswith thestationsfor
network service.Duringthecontracts,thestationreceives
congestioninformationaboutthenetwork coreat a time-
scalesmallerthancontracts.The station,then,usesthat
congestioninformationto updatetheserviceprice at the
beginningof eachcontract.Severalpricing“schemes”can
beimplementedin thatframework.

DCC modelsa short-termcontractfor a given traffic
classas a function of price per unit traffic volume ��� ,

maximumvolume �	��

� (maximumnumberof bytesthat
canbesentduring thecontract)andthe termof thecon-
tract � (lengthof thecontract):����������������� ��! � �#" �$�%
&� " �(' (1)

Figure2 illustratesthebig pictureof DCC framework.
Customerscanonly accessnetwork coreby makingcon-
tractswith theproviderstationsplacedat theedgerouters.
The stationsoffer contracts(i.e. �	��
&� and � ) to fellow
users. Accessto theseavailable contractscan be done
in different ways, what we call edge strategy. Two ba-
sic edgestrategiesare“bidding” (many usersbids for an
available contract)or “contracting” (usersnegotiate � �
with theproviderfor anavailablecontract).So,edgestrat-
egy is thedecision-makingmechanismto identify which
customergetsanavailablecontractat theproviderstation.

Notice that, in DCC framework, provider stationscan
implementdynamicpricing schemes.Particularly, they
canimplementcongestion-basedpricing schemes,if they
haveactualinformationaboutcongestionin network core.
This congestioninformationcancomefrom the interior
routersor from theegressedgeroutersdependingon the
congestion-detection mechanismbeing used. DCC as-
sumesthat thecongestiondetectionmechanismis ableto
give congestioninformationin time scales(i.e. observa-
tion intervals)smallerthancontracts.

However, in DCC, we assumedthat all the provider
stationsadvertisethe sameprice value for the contracts,
which is very costly to implementover a wide areanet-
work. This is simply becausethe price valuecannotbe
communicatedto all stationsatthebeginningof eachcon-
tract. In thispaper, werelaxthisassumptionby letting the
stationsto calculatethe priceslocally andadvertisedif-
ferentpricesthantheotherstations.Wecall this new ver-
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(a)Low et al.’spricing framework.

(b) Distributed-DCCframework.

Fig. 3. Comparisonof Distributed-DCCwith Low et al.’s pricing
framework in termsof pricecalculation.

sion of DCC asDistributed-DCC. We introducewaysof
managingthe overall coordinationof the stationsfor the
commonpurposesof fairnessandstability.

As a fundamentaldifferencebetweenDistributed-DCC
andthewell-known dynamicpricingproposals(e.g.Kelly
et al.’s proposal[8],Low et al.’s proposal[9]) in the area
lies in themannerof pricecalculation.

In Distributed-DCC, the prices are calculatedon an
edge-to-edgebasis,while traditionally it has beenpro-
posedthatpricesarecalculatedat eachlocal link andfed
backto users.To make it moreconcrete,Figures3-aand
3-bshow thecaseof Distributed-DCCandthecaseof Low
et al.’s framework. Gray nodesarethe onesthat partici-
patesin pricecalculationfor a user. In Distributed-DCC,
basically, the links on a flow’s route are abstractedout
by edge-to-edgecapacityestimation(which is supposed
to be congestion-based) and the ingressnodecommuni-
cateswith thecorrespondingegressnodeto observe con-
gestionon the route of user’s traffic. Then, the ingress
nodeusestheestimatedcapacityandtheobservedconges-
tion informationin orderto calculateprice. However, in
Low et al.’s framework, eachlink calculatesits own price
andsendsit to the user, andthe userpaysthe aggregate

price. So, Distributed-DCCis betterin termsof imple-
mentationrequirements,while Low et al.’s framework is
betterin termsof optimality. Distributed-DCCtradesoff
someoptimality in orderto enableimplementationof dy-
namicpricing. Amountof lost optimality dependson the
closed-loopedge-to-edgecapacityestimation.

The paper is organizedas follows: In the next sec-
tion, we position our work and briefly survey relevant
work in the area. In Section III, we presentPFCC
and POCCpricing architecturesmotivatedby the time-
scale issuesmentionedabove. In Section VI we de-
scribepropertiesof Distributed-DCCframework accord-
ing to the PFCCarchitecture.Then, in SectionVII, we
revise Distributed-DCC’s definition in Section VI and
adaptit to the POCCarchitecture. In other words, we
mainly definetheDistributed-DCCframework in Section
VI, and then in SectionVII we add necessarycompo-
nentsto Distributed-DCCin order to adaptit to POCC.
Next in SectionV, we define a pricing schemeEdge-
to-EdgePricing (EEP)which canbe implementedin the
definedDistributed-DCCframework. We studyoptimal-
ity of EEP for different forms of user utility functions
andconsidereffect of differentparameterssuchasuser’s
budget, user’s elasticity. In SectionVIII, accordingto
thedescriptionsof Distributed-DCCframework andEEP
scheme,we simulateDistributed-DCCin the two archi-
tecturesPFCCand POCC.With the simulation results,
wecompareDistributed-DCC’sperformancein PFCCand
POCCarchitectures.We finalize with summaryanddis-
cussionsin SectionIX.

I I . RELATED WORK

Therehasbeenseveralpricingproposals,whichcanbe
classifiedin many ways: static vs. dynamic, per-packet
charging vs. per-contract charging, andcharging a-priori
to servicevs. a-posteriorito service.

Althoughthereareopponentsto dynamicpricing in the
area(e.g. [10], [11], [12]), most of the proposalshave
beenfor dynamicpricing(specificallycongestionpricing)
of networks. Examplesof dynamicpricing proposalsare
MacKie-MasonandVarian’s SmartMarket [1], Guptaet
al.’s Priority Pricing [13], Kelly et al.’s ProportionalFair
Pricing(PFP)[8], Semretetal.’sMarket Pricing[14], [3],
and Wang and Schulzrinne’s ResourceNegotiation and
Pricing (RNAP) [15], [2]. Odlyzko’s Paris Metro Pric-
ing (PMP) [16] is an exampleof staticpricing proposal.
Clark’s ExpectedCapacity[17], [18] andCocchiet al.’s
EdgePricing [19] allow bothstaticanddynamicpricing.
In termsof charging granularity, SmartMarket, Priority
Pricing,PFPandEdgePricingemploy per-packet charg-
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ing, whilst RNAP andExpectedCapacitydo not employ
per-packet charging.

Smart Market is basedprimarily on imposing per-
packet congestionprices. SinceSmartMarket performs
pricingonper-packet basis,it operatesonthefinestpossi-
blepricinggranularity. ThismakesSmartMarketcapable
of makingidealcongestionpricing. However, SmartMar-
ket is notdeployablebecauseof its per-packet granularity
(i.e. excessive overhead)andits many requirementsfrom
routers(e.g. requiresall routersto be updated).In [20],
westudiedSmartMarketanddifficultiesof its implemen-
tationin moredetail.

While Smart Market holds one extreme in terms of
granularity, ExpectedCapacityholds the other extreme.
ExpectedCapacityproposesto use long-termcontracts,
which cangive moreclearperformanceexpectation,for
statisticalcapacityallocationandpricing. Pricesareup-
datedat thebeginningof eachlong-termcontract,which
incorporateslittle dynamismto prices.

Our work, Distributed-DCC,is a middle-groundbe-
tweenSmartMarket andExpectedCapacityin termsof
granularity. Distributed-DCCperformscongestionpric-
ing atshort-termcontracts,whichallows moredynamism
in priceswhile keepingpricingoverheadsmall.

Anotherclosework to oursis RNAP, whichalsomainly
focusedon implementationissuesof congestionpricing
on diff-serv. Although RNAP provides a completepic-
turefor incorporationof admissioncontrolandcongestion
pricing, it hasexcessive implementationoverheadsinceit
requiresall network routersto participatein determina-
tion of congestionprices. This requiresupgradesto all
routerssimilar to the caseof SmartMarket. We believe
thatpricing proposalsthat requireupgradesto all routers
will eventuallyfail in implementationphase.This is be-
causeof the fact that the Internetroutersare owned by
differententitieswho mayor maynot bewilling to coop-
eratein theprocessof routerupgrades.Our work solves
this problemby requiringupgradesonly at edgerouters
ratherthanatall routers.

I I I . PRICING ARCHITECTURES: PFCC VS. POCC

In this section,we introducetwo new pricing architec-
tures that are mainly motivatedby time-scaleproblems
regardingcontrolof congestionby pricing(detailsin Sec-
tion I).

A. Pricing for CongestionControl (PFCC)

In this pricing architecture,provider attemptsto solve
congestionproblemof its network justby congestionpric-
ing. In other words, the provider tries to control con-
gestionof its network by changingserviceprices. The

problemhereis that theprovider will have to changethe
price very frequentlysuchthat humaninvolvementinto
thepricenegotiationswill not bepossible.This problem
canbesolvedby runningintermediatesoftware(or hard-
ware)agentsbetweenend-usersandtheprovider. Thein-
termediateagentreceivesinputsfrom theend-useratlarge
time-scales,and keepsnegotiating with the provider at
smalltime-scales.So,intermediateagentsin PFCCarchi-
tectureareverycrucial in termsof acceptabilityby users.

If PFCCarchitectureis notemployed(i.e. providersdo
notbotherto employ congestionpricing), thencongestion
control will be left to the end-useras it is in the current
Internet. Currently in the Internet,congestioncontrol is
totally left to end-users,andcommonway of controlling
congestionis TCP and its variants. However, this situ-
ation leave opendoorsto non-cooperative userswho do
not employ congestioncontrolalgorithmsor at leastem-
ploy congestioncontrol algorithmsthat violatesfairness
objectives. For example,by simple tricks, it is possible
to make TCPconnectionto capturemoreof theavailable
capacitythantheotherTCPconnections.

Themajor problemwith PFCCis thatdevelopmentof
user-friendly intermediateagentsis heavily dependenton
useropinion,andhencerequiressignificantamountof re-
search.A studyof determininguseropinionsis available
in [4]. In this paper, we do not focusdevelopmentof in-
termediateagents.

B. Pricing over CongestionControl (POCC)

Another way of approachingthe congestioncontrol
problemby pricing is to overlaypricingon topof conges-
tion control. This meanstheprovider undertakesthecon-
gestioncontrolproblemby itself, andemploys anunder-
lying congestioncontrolmechanismfor its network. This
way it is possibleto enforcetight controloncongestionat
small time-scales,while maintaininghumaninvolvement
into the price negotiationsat large time-scales.Figure1
illustratesthedifferencebetweenPOCC(with congestion
control)andPFCC(without congestioncontrol)architec-
tures.

So, assumingthat there is an underlying congestion
controlscheme,theprovidercansettheparametersof that
underlyingschemesuchthat it leadsto fairnessandbet-
ter controlof congestion.Thepricing schemeon top can
determineuser incentives and set the parametersof the
underlyingcongestioncontrol schemeaccordingly. This
way, it will be possibleto favor sometraffic flows with
higher willingness-to-pay(i.e. budget) than the others.
Furthermore,the pricing schemewill alsobring benefits
suchasanindirectcontrolonuserdemandby price,which
will in turnhelptheunderlyingcongestioncontrolscheme
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to operatemore smoothly. However the overall system
performance(e.g. fairness,utilization, throughput)will
bedependenton theflexibility of theunderlyingconges-
tion controlmechanism.

Sinceour main focusis to implementpricing in “dif f-
servenvironment”,we assumethat theprovider employs
“edge-to-edge”congestioncontrolmechanismsunderthe
pricing protocol on top. So, in diff-serv environment,
overlayingpricingontopof edge-to-edgecongestioncon-
trol raisestwo majorproblems:

1) Parameter mapping: Since the pricing protocol
wantsto allocatenetwork capacityaccordingto the
userincentives (i.e. the userswith greaterbudget
shouldgetmorecapacity)thatchangesdynamically
over time, it is a requiredability set correspond-
ing parametersof theunderlyingedge-to-edgecon-
gestioncontrolmechanismsuchthatit allocatesthe
capacityto theuserflows accordingto their incen-
tives. So,this raisesneedfor a methodof mapping
parametersof thepricing schemeto theparameters
of the underlying congestioncontrol mechanism.
Noticethat this typeof mappingrequirestheedge-
to-edgecongestioncontrolmechanismto beableto
provide parametersthat tunesthe ratebeinggiven
to edge-to-edgeflows.

2) Edgequeues:Theunderlyingedge-to-edgeconges-
tion control schemewill not always allow all the
traffic admittedby thepricing protocol,which will
causequeuestobuild upatnetwork edges.So,man-
agementof theseedgequeuesis necessaryin POCC
architecture.Figures1-a and1-b comparethe sit-
uation of the edgequeuesin the two caseswhen
thereis anunderlyingedge-to-edgecongestioncon-
trol schemeandwhenthereis not.

Anotherproblemis that theoverall performanceof the
systemwill be dependenton not only the pricing proto-
col’s performance,but also the performanceof the un-
derlying congestioncontrol scheme.For instance,if the
underlyingcongestioncontrolschemedoesnot allow the
network to be utilized more than80% for someinternal
reason,thentheutilizationprovidedby theoverall system
will belimited by 80%.

IV. DISTRIBUTED-DCC FRAMEWORK

Distributed-DCC framework is specifically designed
for diff-serv environment,becausethe edgerouterscan
performcomplex operationswhich is essentialto several
requirementsfor implementationof congestionpricing.
Eachedgerouter is treatedas a stationof the provider.
Eachstationadvertiseslocally computedpriceswith in-
formationreceived from otherstations.Themain frame-

Fig. 4. Componentsof Distributed-DCCframework: Solid lined ar-
rowsrepresentflow of controlinformationnecessaryfor pricecalcula-
tion. In PFCCarchitecture,communicationwith LPSmustbeat very
shorttime-scales(i.e. eachshort-termcontract).However, in POCC,
LPS is accessedat longer time-scales(i.e. parameterremappingin-
stants).

Fig. 5. Major functionsof Ingress) .
work basically describeshow to preserve coordination
amongthe stationssuchthat stability andfairnessof the
overall network is preserved. We cansummarizeessence
of Distributed-DCCin two items:� Sinceupgradeto all routersis not possibleto imple-

ment,pricing shouldhappenon anedge-to-edge ba-
siswhichonly requiresupgradesto edgerouters.� Providershouldemploy short-termcontractsin order
to have ability to changepricesfrequentlyenough
suchthatcongestion-pricingcanbeenabled.

Distributed-DCCframework has threemajor compo-
nentsasshown in Figure4: Logical Pricing Server(LPS),
IngressStations, andEgressStations. Solid lined arrows
in thefigurerepresentcontrolinformationbeingtransmit-
ted amongthe components. Basically, Ingressstations
negotiatewith customers,observe customer’s traffic, and
make estimationsaboutcustomer’s demand.Ingresssta-
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Fig. 6. Major functionsof Egress* .

Fig. 7. Major functionsof LPS.

tions inform correspondingEgressstationsabouttheob-
servationsandestimationsabouteachedge-to-edgeflow.

Egressstationsdetectcongestionby monitoringedge-
to-edgetraffic flows. Basedon congestiondetections,
Egressstationsestimateavailablecapacityfor eachedge-
to-edgeflow, andinform LPSabouttheseestimations.

LPSreceivescapacityestimationsfrom Egressstations,
and allocatesthe network available capacityto edge-to-
edgeflowsaccordingto differentcriteria(suchasfairness,
priceoptimality).

Below, we describefunctionsandsub-componentsof
thesethreecomponentsin detail. Also, to easeunder-
standingof the framework, we show importantparame-
ters,their symbolsandtheirdescriptionsin TableI.

A. IngressStation+
Figure5 illustratessub-componentsof Ingressstation+

in theframework. Ingress+ includestwo sub-components:

Pricing SchemeandBudget Estimator.
Ingressstation + keepsa ”current” price vector ,.- ,

where,/-10 is thepricefor theflow from ingress+ to egress2
. So, the traffic using flow + to

2
is charged the price, -30 . PricingSchemeis thesub-componentthatcalculates

price ,.-30 for eachedge-to-edgeflow startingat Ingress+ .
It usesallowed flow capacities

� -30 andother local infor-
mation(suchas 45 -10 ), in orderto calculateprice ,.-30 . The
station,then,uses,.-30 in negotiationswith customers.We
will describeasimplepricingschemeEdge-to-EdgePric-
ing (EEP)laterin SectionV. However, it is possibleto im-
plementseveralotherpricing schemesby usingtheinfor-
mationavailableat Ingress+ . OtherthanEEP, we imple-
mentedanotherpricingscheme,PriceDiscovery, whichis
availablein [21].

Also, theingress+ usesthetotal estimatednetwork ca-
pacity

�
in calculatingthe �	��

� contractparameterde-

fined in (1). Admissioncontrol techniquescanbe used
to identify the best value for �$�%
&� . We use a simple
methodwhich doesnot put any restrictionon �	��

� , i.e.�$�%
&� �6�87 � where� is thecontractlength.

BudgetEstimatoris the sub-componentthat observes
demandfor eachedge-to-edgeflow. We implicitly as-
sumethat user’s “budget” representsuser’s demand(i.e.
willingness-to-pay).So,BudgetEstimatorestimatesbud-
get 45 -30 of eachedge-to-edgetraffic flow2. Wewill describe
a simplealgorithmthatcalculates45 -30 later in SectionIV-
D.1.

B. EgressStation
2

Figure6 illustratessub-componentsof EgressStation2
in the framework: Congestion Detector, Congestion-

BasedCapacityEstimator, Flow CostAnalyzer, andFair-
nessTuner.

CongestionDetectorimplementsanalgorithmto detect
congestionin network coreby observingtraffic arriving
at Egress

2
. Congestiondetectioncanbedonein several

ways. We assumethat interior routersmark(i.e. setsthe
ECN bit) the datapackets if their local queueexceedsa
threshold. CongestionDetectorgeneratesa “congestion
indication” if it observesa marked packet in thearriving
traffic.

Congestion-BasedCapacityEstimatorestimatesavail-
able capacity 4� -30 for eachedge-to-edgeflow exiting at
Egress

2
. In order to calculate 4� -30 , it usescongestion

indicationsfrom CongestionDetectorand actualoutput
rates9�-30 of theflows. Thecrucialpropertyof Congestion-
BasedCapacityEstimatoris that,it estimatescapacityin a:

Note that edge-to-edgeflow doesnot meanan individual user’s
flow. Ratherit is the traffic flow that is composedof aggregationof
all traffic goingfrom oneedgenodeto anotheredgenode.
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TABLE I
L IST OF PARAMETERS IN DISTRIBUTED-DCC FRAMEWORK .

PARAMETER SYMBOL DESCRIPTION

ContractLength(sec) � Lengthof contracts
ObservationInterval(sec) ; Time-scaleof observationsat Egressaboutcongestion

LPSInterval (sec) < Time-scaleof communicationbetweenLPSandprovider stations
Edge-to-EdgePrice($/Mb) ,.-30 Unit pricefor traffic flow from + to 2

BudgetEstimation($) 45 -30 Estimationfor budgetof flow from + to 2
UpdatedBudgetEstimation($)

5 -30 BudgetEstimationfor flow from + to 2 adjustedby FairnessTuner
EstimatedNetwork Capacity(Mb/s)

�
Estimationfor totalnetwork capacity

EstimatedCapacity(Mb/s) 4� -10 Estimationof availablecapacityfor flow + to 2
AllowedCapacity(Mb/s)

� -10 Capacitygivenby CapacityAllocator to flow + to 2
Flow InputRateat Ingress(Mb/s) = -30 Arrival rateof flow + to 2 at Ingress+
Flow OutputRateatEgress(Mb/s) 9�-30 Departingrateof flow + to 2 atEgress

2
EstimatedFlow Cost 4� -30 Estimationfor amountof costincurredby flow + to 2

- 4> Holding timeof “congested”statein ETICA algorithm
FairnessCoefficient ? Tunerfor fairnesstypeof FairnessTuner

congestion-basedmanner, i.e. it decreasesthecapacityes-
timationwhenthereis congestionindicationandincreases
when there is no congestionindication. This makes
the pricescongestion-sensitive, sincePricing Schemeat
Ingresscalculatespricesbasedon theestimatedcapacity.
An examplealgorithmfor Congestion-BasedCapacityEs-
timatorwill bedescribedlaterin SectionIV-D.2.

Flow CostAnalyzerdeterminescostof eachtraffic flow
(e.g. numberof links traversedby the flow, numberof
bottleneckstraversedby theflow, amountof queuingde-
lay causedby theflow) exiting at Egress

2
. Costincurred

by eachflow canbe several things: numberof traversed
links, numberof traversedbottlenecks,amountof queu-
ing delaycaused.We assumethatnumberof bottlenecks
is a goodrepresentationof thecostincurredby a flow. In
AppendixA, we definean algorithmARBE, which esti-
matesnumberof bottlenecktraversedby a flow. ARBE
outputsestimatednumberof bottlenecks4� -10 traversedby
theflow from ingress+ to egress

2
.

LPS,aswill bedescribedin thenext section,allocates
capacity to edge-to-edgeflows basedon their budgets.
The flows with higher budgetsare given more capacity
thantheothers.So,Egress

2
canpenalize/favor a flow by

increasing/decreasing its budget 45 -30 . FairnessTuneris the
componentthatupdates45 -30 . So,FairnessTunerpenalizes
or favorstheflow from ingress+ by updatingits estimated
budgetvalue, i.e.

5 -30 �@��! 45 -30 " 4� -30 "BA , �����#CEDB�FDB��GIH '
where A , �����#CEDB�FDB��G8H are other optional parameters
thatmaybeusedfor decidinghow muchto penalizeor fa-
vor theflow. For example,if theflow ingress+ is passing
throughmorecongestedareasthanthe otherflows, Fair-

nessTunercanpenalizethis flow by reducingits budget
estimation45 -30 . Wewill describeanalgorithmfor Fairness
Tunerlaterin SectionIV-D.4.

Egress
2

sends 4� -30 s (calculatedby Congestion-Based
Capacity Estimator) and

5 -30 s (calculated by Fairness
Tuner)to LPS.

C. Logical Pricing Server(LPS)

Figure7 illustratesbasicfunctionsof LPSin theframe-
work. LPSreceivesinformationfrom egressesandcalcu-
latesallowedcapacity

� -10 for eachedge-to-edgeflow. The
communicationbetweenLPS andthe stationstake place
at every LPS interval < . Thereis only one major sub-
componentin LPS:CapacityAllocator.

CapacityAllocator receives 4� -30 s,
5 + 2 s and congestion

indicationsfrom EgressStations.It calculatesallowedca-
pacity

� -30 for eachflow. Calculationof
� -30 valuesis a

complicatedtaskwhich dependson internaltopology. In
general,theflows shouldsharecapacityof thesamebot-
tleneckin proportionto theirbudgets.Wewill laterdefine
agenericalgorithmETICA for CapacityAllocator in Sec-
tion IV-D.3.

Other than functionsof CapacityAllocator, LPS also
calculatestotal available network capacity

�
, which is

necessaryfor determiningthecontractparameter�$�%
&� at
Ingresses.LPSsimply sums 4� -30 to calculate

�
.

LPScanbeimplementedin a centralizedor distributed
manner(seeSectionVI-A).
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D. Sub-Components

1) Budget Estimator: At Ingress+ , BudgetEstimator
performsa very trivial operationto estimatebudgets 45 -10
of eachflow startingat Ingress+ . The ingress+ basically
knows its currentprice for eachflow, , -30 . When it re-
ceives a packet it just needsto determinewhich egress
stationthepacket is goingto. GiventhatIngress+ hasthe
addressesof all the egressstationsof the samediff-serv
domain,it canfind out which egressthe packet is going
to. So, by monitoring the packets transmittedfor each
flow, theingresscanestimatethebudgetof eachflow. Let=/-10 bethetotalnumberof packetstransmittedfor flow + to2

in unit time, thenthebudgetestimatefor theflow + to 2
is 45 -10 � =.-30J,.-30 . Noticethatthis operationmustbedoneat
the ingressratherthanegress,becausesomeof thepack-
etsmight be droppedbeforearriving at the egress.This
causes= -30 to bemeasuredless,andhencecauses45 -30 to be
lessthanit is supposedto be.

2) Congestion-Based Capacity Estimator: The
essenceof Congestion-BasedCapacity Estimator is to
decreasethecapacityestimationwhenthereis congestion
indication(s)andto increaseit whenthereis no conges-
tion indication. In this sense,several capacityestimation
algorithmscanbe used,e.g. Additive IncreaseAdditive
Decrease (AIAD), Additive Increase Multiplicative
Decrease(AIMD). We now provide a full descriptionof
suchanalgorithm.

At Egress
2
, given congestionindicationsfrom Con-

gestionDetectorandoutputrate 9�-10 of flows,Congestion-
BasedCapacityEstimatorimplementsthe following al-
gorithm for eachflow from Ingress + : Let ; be obser-
vationintervalsatwhich theestimatormakesanobserva-
tion aboutcongestionstatusof thenetwork. Theestimator
identifieseachobservation interval ascongestedor non-
congested. Basically, anobservation interval is congested
if a congestionindicationwasreceived from Congestion
Detectorduring that observation interval. At the endof
eachobservationinterval

�
, theestimatorupdatestheesti-

matedcapacity 4� -30 asfollows:

4� -30 !K� ' �ML N 7 9�-30 !K� ' " ���O�QPRD�GB�JDBS4� -30 !K�UTWV 'YX[Z 4� " �Y��� - �\�O�QPRD�GB�JDBS
where N is in (0,1), 9�-30 !K� ' is themeasuredoutputrateof
flow + to 2 duringobservation interval

�
, and Z 4� is a pre-

definedincreaseparameter. This algorithmis a variantof
well-known AIMD.

3) ETICA: Edge-to-edge, Topology-IndependentCa-
pacityAllocation: Firstly, notethatLPS is going to im-
plementETICA algorithm as a CapacityAllocator (see
Figure 7). So, we will refer to LPS throughoutthe de-
scriptionof ETICA below.

Fig.8. Statesof anedge-to-edgeflow in ETICA algorithm:Thestates)	]_^ are“congested”statesandthestate)R`a^ is the“non-congested”
state,representedwith grayandwhitecolorsrespectively.

At LPS, we introducea new information abouteach
edge-to-edgeflow

� -30 . A flow
� -30 is congested, if egress

2
hasbeenreceiving congestionindicationsfrom that flow
recently(wewill laterdefinewhat“recent” is).

Again at LPS, let bc-30 determinethe stateof
� -30 . Ifbc-30 Hed , LPSdetermines

� -30 ascongested.If not, it de-
termines

� -30 asnon-congested.At every LPS interval
�
,

LPScalculatesbc-30 asfollows:

bc-30 !K� ' �ML 4> " congestionin
�UTWVbf-30 !K�UTWV ' TWV " nocongestionin
�UTWV

(2)

where 4> is a positive integer. Noticethat 4> parameterde-
fineshow long a flow will stayin “congested”stateafter
the last congestionindication. So, in otherwords, 4> de-
finesthetime-lineto determineif a congestionindication
is “recent” or not. According to theseconsiderationsin
ETICA algorithm,Figure8 illustratesstatesof an edge-
to-edgeflow giventhatprobabilityof receiving a conges-
tion indication in the last LPS interval is , . Gray states
are the statesin which the flow is “congested”,and the
singlewhite stateis the “non-congested”state. Observe
thatnumberof congestedstates(i.e. graystates)is equal
to 4> which definesto whatextenta congestionindication
is “recent”. 3

Giventheabovemethodto determinewhetheraflow is
congestedor not, we now describethealgorithmto allo-
catecapacityto the flows. Let g be the setof all edge-
to-edgeflows in the diff-serv domain,and gih be the set
of congestededge-to-edgeflows. Let

� h be theaccumu-
lation of 4� -30 s where

� -10kj[gih . Further, let l(h be the ac-
cumulationof

5 -30 s where
� -30mjng�h . Then,LPScalculates

theallowedcapacityfor
� -30 asfollows:� -30 �ML@oqp rs	t � h " bc-30 HWd4� -30 " ���Ju.DB�wv + GOD

Theintuition is thatif aflow is congested,thenit mustbe
competingwith other congestedflows. So, a congestedx

Notethatinsteadof settingy p r to z{ ateverycongestionindication,
severaldifferentmethodscanbeusedfor thispurpose,but weproceed
with themethodin (2).
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flow is alloweda capacityin proportionto its budgetrel-
ative to budgetsof all congestedflows. Since we as-
sumeno knowledgeaboutthe interior topology, we can
approximatethesituationby consideringthesecongested
flows as if they arepassingthrougha singlebottleneck.
If knowledgeabouttheinterior topologyis provided,one
caneasilydevelopbetteralgorithmsby sub-groupingthe
congestedflows thatarepassingthroughthesamebottle-
neck.

In short,theETICA algorithmbasicallysaysthataflow
in oneof its “congested”statesgetsa share4 of the total
capacityof thecongestedflows (i.e.

� h ). If theflow is in
its in “non-congested”state,thenit usesits own capacity.

If a flow is not congested,thenit is allowed to useits
own estimatedcapacity, which will give enoughfreedom
to utilize capacityavailable to that particularflow. Dy-
namicsof the algorithmwill be understoodmoreclearly
afterthesimulationexperimentsin SectionVIII.

4) FairnessTuner: We examinethe issuesregarding
fairnessin two maincases.We first determinethesetwo
casesandthenprovide solutionswithin Distributed-DCC
framework.� Single-bottleneck case:Thepricing protocolshould

charge the sameprice to the users of the samebot-
tleneck. In this way, amongthecustomersusingthe
samebottleneck,theoneswhohavemorebudgetwill
begivenmoreratethantheothers.Theintuition be-
hind this reasoningis that the costof providing ca-
pacityto eachcustomeris thesame.� Multi-bottleneck case: The pricing protocol should
charge more to the customers whosetraffic passes
through more bottlenecks and causemore coststo
the provider. So, other thanproportionalityto cus-
tomerbudgets,we alsowant to allocatelessrateto
thecustomerswhoseflowsarepassingthroughmore
bottlenecksthantheothercustomers.
For multi-bottlenecknetworks, two main types of
fairnesshave beendefined: max-min fairness[22],
proportionalfairness[8]. In max-minfair rateallo-
cation,all flows get equalshareof the bottlenecks,
while in proportionalfair rateallocationflowsgetpe-
nalizedaccordingto thenumberof traversedbottle-
necks. Dependingon the cost structureand user’s
utilities, for somecasesthe provider may want to
choosemax-minor proportionalrateallocation.So,|

Note that in this definition of ETICA, we definedthis “share” as
the ratio of } p r
~�� t which is basedon � p r ’s monetaryvaluewith re-
spectto monetaryvalue of all congestedflows � t . This is because
our main goal is to “price” effectively. However, onecandefinethis
shareaccordingto othercriteria(suchasequalto all congestedflows(,
which makesit possibleto useETICA for completelyrateallocation
purposes.

we would like to have ability of tuning the pricing
protocolsuchthat fairnessof its rateallocationis in
theway theprovider wants.

For a betterunderstandingof proportionalfairnessand
max-minfairness,we studythemin termsof socialwel-
faremaximizationwith a canonicalexamplein Appendix
B.

To achieve the fairnessobjectivesdefinedin theabove
itemizedlist, we introducenew parametersfor tuningrate
allocationto flows. In order to penalizeflow + to

2
, the

egress
2

canreduce45 -10 whileupdatingtheflow’sestimated
budget.It usesthefollowing formulato doso:5 -10 � ��! 45 -30 " �	!K� ' " ? " � ��-�� ' � 45 -30� ��-���X !K� -30 !K� ' Tn� ��-��	' 7 ?
where

� -30 !K� ' is the congestioncostcausedby the flow +
to
2
,
� ��-�� is theminimumpossiblecongestioncostfor the

flow, and ? is fairnesscoefficient. Insteadof 45 -30 , theegress2
now sends

5 -30 to LPS.When ? is 0, FairnessTuneris
employing max-minfairness.As it getslarger, the flow
getspenalizedmoreandrateallocationgetscloserto pro-
portionalfairness.However, if it is too large,thentherate
allocationwill moveawayfrom proportionalfairness.Let?�� bethe ? valuewheretherateallocationis proportion-
ally fair. If theestimation

� -10 !K� ' is absolutelycorrect,then?�� �eV . Otherwise,it dependson how accurate
� -10 !K� ' is.

Assumingthateachbottleneckhasthesameamountof
congestionandcapacity. Then,in orderto calculate

� -30 !K� '
and
� ��-�� , we candirectly usethenumberof bottlenecks

theflow + to 2 is passingthrough.In suchacase,
� ��-�� will

be1 and
� -30 !K� ' shouldbenumberof bottleneckstheflow

is passingthrough.ARBE, in AppendixA, calculatesan
estimationfor

� -30 .
V. EDGE-TO-EDGE PRICING SCHEME (EEP)

For flow
� -30 , Distributed-DCCframework providesan

allowedcapacity
� -30 andanestimationof totaluserbudget45 -30 at ingress+ . So, the provider stationat ingress+ can

usethesetwo informationto calculateprice. We propose
asimplepriceformulato balancesupplyanddemand:

4,.-30 � 45 -30� -30 (3)

Here, 45 -30 representsuserdemandand
� -10 is the available

supply.
In Appendix C, we provided a detailedoptimization

analysisof this EEPpricing schemein Distributed-DCC
framework. Weshowedthatthepricecalculationformula
in (3) is optimalfor thewell-known totaluserutility max-
imizationproblem.Weconsideredeffect of differentutil-
ity functionsandelasticitiesof userson optimalprices.



10

VI. DISTRIBUTED-DCC: PFCC ARCHITECTURE

In order to adaptDistributed-DCCto PFCCarchitec-
ture,LPSmustoperateon very low time-scales.In other
words, LPS interval must be small enoughto maintain
controlovercongestion,sincePFCCassumesnounderly-
ing congestioncontrolmechanism.This raisestwo issues
to beaddressed:� In order to maintain human involvement into the

system,intermediateagentsbetweencustomersand
Ingressstationsmustbeimplemented.� SinceLPS must operateat very small time-scales,
scalabilityissuesregardingLPSmustbesolved.

As we previously saidearlierin SectionIII-A, we do not
focus on the first problemsince it cannotbe addressed
within this paperbecauseof its large sizeandcomplex-
ity. So,weassumethatcustomersarewilling to undertake
highpricevariations,andleave developmentof necessary
intermediateagentsfor future research.We addressthe
secondproblemin thefollowing sub-section.

A. Scalability

Distributed-DCCoperatesonperedge-to-edgeflow ba-
sis. Thereare mainly two issuesregardingscalability:
LPS, the numberof flows. First of all, the flows arenot
per-connectionbasis,i.e. all the traffic going from edge
router + to

2
is countedasonly oneflow. This actually

relieves the scalability problemfor operationsthat hap-
penon per-flow basis.Thenumberof flows in thesystem
will be

��!K�_T�V ' where
�

is thenumberof edgeroutersin
thediff-serv domain. So, indeed,scalabilityof theflows
is not a problemfor thecurrentInternetsincenumberof
edgeroutersfor asinglediff-servdomainis verysmall. If
it becomessolargein future,thenaggregationtechniques
canbeusedto overcomethis scalabilityissue,of course,
by sacrificingsomeoptimality.

Scalabilityof LPScanbedonein two ways.First idea
is to implementLPS in a fully distributed manner. The
edgestationsexchangeinformationwith eachother(sim-
ilar to link-staterouting).Basically, eachstationwill send
total of

��T�V
messages,eachof which headedto other

stations. So, this will increasethe overheadon the net-
work becauseof the extra messages,i.e. the complexity
will increasefrom ; !K� ' to ; !K�Y� ' in termsof numberof
messages.

Alternatively, LPS can be divided into multiple local
LPSswhich synchronizeamongthemselves to maintain
consistency. This way thecomplexity of numberof mes-
sageswill reduce.However, this will beat acostof some
optimalityagain.

Sincetheseabove-definedscalingtechniquesarevery
well-known, we do not focus on detaileddescriptionof
them.

VII . DISTRIBUTED-DCC: POCC ARCHITECTURE

In thissection,wedevelopnecessarycomponentsin or-
derto adaptDistributed-DCCframework to POCCarchi-
tecture. First, we will briefly describean edge-to-edge
congestioncontrol mechanismRiviera [23], [24]. Then,
we will addressproblemsdefinedin SectionIII-B for the
caseof overlaying Distributed-DCCover Riviera. This
will fit Distributed-DCCto thePOCCarchitecture.

Also, to summarizethepreviousandthissection,Table
II shows differencesbetweenDistributed-DCC’s PFCC
andPOCCversions.

A. Edge-to-Edge CongestionControl: Riviera

We now describeoverall propertiesof anedge-to-edge
congestioncontrol scheme,Riviera [23], [24], which we
will alsousein ourexperimentslaterin thepaper.

Rivieratakesadvantageof two-waycommunicationbe-
tweeningressandegressedgeroutersin a diff-serv net-
work. Ingresssendsa forward feedbackto egressin re-
sponseto feedbackfrom egress,andegresssendsback-
ward feedbackto ingressin responseto feedbackfrom
ingress. So, ingressand egressof a traffic flow keep
bouncingfeedbackto eachother. Ignoring loss of data
packets,theegressof a traffic flow measurestheaccumu-
lation,

�
, causedby the flow by usingthe bouncedfeed-

backsandRTT estimations.
Theegressnodekeepstwo thresholdparametersto de-

tectcongestion:
C�� = �Fu	��D�GOu and

C + � �Ju$��D�GOu . For each
flow, the egresskeepsa variable that sayswhetherthe
flow is congestedor not. When

�
for aparticularflow ex-

ceeds
C�� = �Ju$��D�GOu , theegressupdatesthevariabletocon-

gested. Similarly, when
�

is lessthan
C + � �Ju$��D�GOu , it up-

datesthevariableto not-congested. It doesnotupdatethe
variableif

�
is in between

C�� = �Fu	��D�GOu and
C + � �Ju$��D�GOu .

The ingressnodegetsinformedaboutthecongestionde-
tection by backward feedbacksand employs AIMD-ER
(AIMD-Explicit Rate,i.e. a variantof regularAIMD) to
adjustthesendingrate.

In a single-bottlenecknetwork, Riviera can be tuned
suchthateachflow getsweightedshareof thebottleneck
capacity. Every ingressnode + maintainsan additive in-
creaseparameter, ?�- , andamultiplicativedecreaseparam-
eter, N , for eachedge-to-edgeflow. Theseparametersare
usedin AIMD-ER. Amongtheedge-to-edgeflows,by set-
ting the increaseparameters( ?�- ) at the ingressesandthe
thresholdparameters(

C�� = �Fu	��D�GOu and
C + � �Ju$��D�G�u ) at
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TABLE II
DIFFERENCES BETWEEN DISTRIBUTED-DCC’ S PFCC AND POCC VERSIONS.

DISTRIBUTED-DCC:PFCC DISTRIBUTED-DCC:POCC

LPSmustoperateatsmalltime-scales LPSmayoperateat largetime-scales
LPSmustbescaledbecauseof its operationaltime-scale It is notnecessaryto scaleLPS
Framework canachieve a rangeof fairnessin Fairnessof rateallocationis limited anddependson the
rateallocation underlyingcongestioncontrolmechanism
Bottleneckqueuesatnetwork corearelarge Bottleneckqueuesat network corearesmall
Doesnotneedto managequeuesatnetwork edges Needto managequeuesat network edges

theegressesin ratio of desiredrateallocation,it is possi-
ble to make surethat the flows get the desiredrateallo-
cation. For example,assumetherearetwo flows 1 and2
competingfor a bottleneck(similar to Figure9-a). If we
wantflow 1 to getacapacityof

v
timesmorethanflow 2,

thenthefollowing conditionsmustbehold:

1) ? � ��v ?��
2)
C�� = �Ju$��D�GOu � ��v8C�� = �Ju$��D�GOu �

3)
C + � �Ju$��D�GOu � ��v[C + � �Ju$��D�G�u �

B. Distributed-DCCover Riviera

We now provide solutionsdefinedin SectionIII-B, for
thecaseof overlayingDistributed-DCCover Riviera:

1) Parametermapping: For eachedge-to-edgeflow,
LPScancalculatethecapacityshareof thatflow out
of the total network capacity. Let �R-10 ��� -30�� � be
thefractionof network capacitythatmustbegiven
to theflow + to 2 . LPScanconvey �R-30 sto theingress
stations,andthey canmultiply theincreaseparame-
ter ?Y-30 with �R-30 . Also, LPScancommunicate��-30 sto
the egresses,andthey canmultiply

C�� = �Ju$��D�GOu -30
and
C + � �Ju$��D�GOu -30 with � -30 .

2) Edge queues:In Distributed-DCC,ingressstations
are informed by LPS aboutallocatedcapacity

� -30
for eachedge-to-edgeflow. So,oneintuitivewayof
makingsurethattheuserwill not contractfor more
than
� -30 is to subtractnecessarycapacityto drainthe

alreadybuilt edgequeuefrom
� -30 , and thenmake

contractsaccordingly. In otherwords, the ingress
stationupdatestheallocatedcapacity

� -30 for flow +
to
2

by the following formula
���-30 ��� -30 T�� -30���� ,

anduses
� �-30 for pricecalculation.Note that

� -30 is
the edgequeuelengthfor flow + to

2
, and � is the

lengthof thecontract.
An alternative optionaltechniqueis asfollows: Re-
memberfrom SectionIV-D.2 that theegressnodes
are making capacity estimationdependingon if
marked packets have arrived or not. Specifically,
they reducethe capacityestimationfor a flow to a

fraction of its currentoutput rate, when a marked
packet wasreceivedin thelastobservation interval.
So,theprovider stationat the ingresscanmark the
packetsif sizeof theedgequeueexceedsa thresh-
old. This will indirectly reducethe capacityesti-
mation, and hencedrain the edgequeue. Notice
that it is possibleto employ this methodsimulta-
neouslywith the methoddescribedin the previous
paragraph.Laterin simulationexperiments,wewill
employ bothof themsimultaneously.

VII I . SIMULATION EXPERIMENTS AND RESULTS

Wenow presentns [25] simulationexperimentsfor the
two architectures,PFCCandPOCC,on single-bottleneck
andmulti-bottlenecktopology. Our goalsareto illustrate
fairnessand stability propertiesof the two architectures
with possiblecomparisonsof two.

For PFCCandPOCC,we simulateDistributed-DCC’s
PFCCand POCCversionswhich weredescribein Sec-
tions VI and VII respectively. We will simulateEEP
pricing schemeat Ingressstations.We will alsopresent
simulationsto investigatesensitivity of Distributed-DCC
framework to variousparameters.List of itemswe will
presentin thesimulationexperiments:� Steady-statepropertiesof PFCCandPOCCarchitec-

tures:queues,rateallocation� PFCC’sfairnessproperties:Provisionof variousfair-
nessin rateallocationby changingthefairnesscoef-
ficient ?� Performanceof Distributed-DCC’s capacityalloca-
tion algorithmETICA in termsof adaptiveness� Distributed-DCC’s sensitivity to variousparameters:
contractlength � , observation interval ; , LPSinter-
val < , budgetratio � of flows,parameter4> of ETICA

A. ExperimentalConfiguration

The single-bottlenecktopology hasa bottlenecklink,
which is connectedto

�
edgenodesat eachside where
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(a) (b)
Fig. 9. (a)Single-bottleneck(b) Multi-bottlenecknetwork for Distributed-DCCexperiments.�

is the numberof users. The multi-bottlenecktopol-
ogyhas

��T�V
bottlenecklinks, thatareconnectedto each

otherserially. Thereareagain
�

ingressand
�

egressedge
nodes.Eachingressedgenodeis mutually connectedto
the beginning of a bottlenecklink, andeachegressnode
is mutuallyconnectedto theendof a bottlenecklink. All
bottlenecklinks have a capacityof 10Mb/sandall other
links have 15Mb/s. Propagationdelay on eachlink is
5ms,anduserssendUDP traffic with an averagepacket
size of 1000B. To easeunderstandingthe experiments,
eachusersendsits traffic to a separateegress. For the
multi-bottlenecktopology, oneusersendsthroughall the
bottlenecks(i.e. long flow) while the otherscrossthat
user’s long flow. The queuesat the interior nodes(i.e.
nodesthat standat the tips of bottlenecklinks) mark the
packets whentheir local queuesizeexceeds30 packets.
In themulti-bottlenecktopologythey incrementa header
field insteadof just marking. Figure9-ashows a single-
bottlenecktopologywith

�n���
. Figure9-b shows multi-

bottlenecktopology with
��� �

. The white nodesare
edgenodesandthegraynodesareinterior nodes.These
figuresalsoshow thetraffic flow of userson thetopology.
Theuserflow triestomaximizeits totalutility bycontract-
ing for

5 �
, amountof capacity, where
5

is its budgetand, is price. Theflows’s budgetsarerandomizedaccording
to truncated-Normal[26] distribution with a given mean
value.This meanvalueis whatwe will referto asflows’s
budgetin oursimulationexperiments.

Contractingtakesplaceatevery4s,observationinterval
is 0.8s,andLPS interval is 0.16s. Ingressessendbudget
estimationsto correspondingegressesat every observa-
tion interval. LPSsendsinformationto ingressesat every
LPSinterval. Theparameter4> is setto 25, which means
a flow is determinedto be non-congestedat least after
(pleaseseeSectionIV-D.3) 25 LPS intervals equivalent
to onecontractinginterval.

The parameter¡ is set to 1 packet (i.e. 1000B), the
initial valueof 4� -30 for eachflow

� -30 is setto 0.1Mb/s,N is
setto 0.95,and Z � is setto 0.0005.Also notethat,in the
experiments,packet dropsarenotallowedin any network

node. This is becausewe would like to seeperformance
of theschemesin termsof assuredservice.

B. ExperimentsonSingle-bottleneck Topology

We run simulationexperimentsfor PFCCand POCC
onthesingle-bottlenecktopology, which is representedin
Figure9-a. In thisexperiment,thereare3 userswith bud-
getsof 30, 20, 10 respectively for users1, 2, 3. Total
simulationtime is 15000s,andat the beginning only the
user1 is active in thesystem.After 5000s,theuser2 gets
active. Again after 5000sat simulationtime 10000,the
user3 getsactive.

For POCC,thereis anadditionalcomponentin thesim-
ulation: edgequeues.The edgequeuesmark the pack-
ets when queuesize exceeds200 packets. So, in order
to managetheedgequeuesin this simulationexperiment,
we simultaneouslyemploy the two techniquesdefinedin
SectionVII-B.

In termsof results,the volume given to eachflow is
very important.Figures10-aand11-ashow thevolumes
given to eachflow in PFCCandPOCCrespectively. We
seethe flows aresharingthe bottleneckcapacityin pro-
portion to their budgets.In comparisonto POCC,PFCC
allocatesvolumemoresmoothlybut with the samepro-
portionality to theflows. Thenoisyvolumeallocationin
POCCis causedby coordinationissues(i.e. parameter
mapping,edgequeues)investigatedin SectionVII.

Figures10-band11-bshow thepricebeingadvertised
to flows in PFCCand POCCrespectively. As the new
usersjoin in, thepricingschemeincreasesthepricein or-
derto balancesupplyanddemand.

Figures10-cand11-cshows thebottleneckqueuesize
in PFCCandPOCCrespectively. Noticethatqueuesizes
make peakstransientlyat the timeswhennew usersgets
active. Otherwise,the queuesize is controlledreason-
ably and the systemis stable. In comparisonto PFCC,
POCCmanagesthebottleneckqueuemuchbetterbecause
of the tight control enforcedby the underlyingedge-to-
edgecongestioncontrolalgorithmRiviera.

Figuresfrom 12-ato 12-cshow thesizesof edgequeues
in POCC.Wecanobserve thatusersgetactiveat5000sof
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Fig. 10. Resultsof single-bottleneckexperimentfor PFCC.

intervals.Weobservestablebehavior but with oscillations
larger thanthebottleneckqueueillustratedin Figure11-
c. This is becauseof the tight edge-to-edgecongestion
control,which pushesbacklogto theedges.This suitsto
thebig-pictureof thetwo architecturesshown in Figure1.

Also, observe that theedgequeuesaregenerallymuch
lower thanthethresholdof 200packets. This meansthat
the packetsweremarked at the edgequeuesvery rarely.
So,thetechniqueof markingthepacketsat theedgesand
reducingtheestimatedcapacityindirectly wasnot domi-
nantin this simulation.Rather, thetechniqueof reducing
the estimatedcapacitydirectly at the ingresswasdomi-
nantin termsof handlingof edgequeues(pleaseseeSec-
tion VII-B for full understandingof thesetwo techniques).

C. Experimentson Multi-bottleneck Topology

Onamulti-bottlenecknetwork, wewould like illustrate
two propertiesfor PFCC:

� Property1: provision of variousfairnessin rateal-
location by changingthe fairnesscoefficient ? of
Distributed-DCCframework (seeSectionIV-D.4)� Property 2: performanceof Distributed-DCC’s ca-
pacityallocationalgorithmETICA in termsof adap-
tiveness(seeSectionIV-D.3)

SinceRivieradoesnot currently5 provide a setof param-
etersfor weightedallocationon multi-bottlenecktopol-
ogy, we will not run any experimentfor POCCon multi-
bottlenecktopology.

In orderto illustrateProperty1, we run a seriesof ex-
perimentsfor PFCC with different ? values. Remem-
ber that ? is the fairnesscoefficient of Distributed-DCC.
Higher ? values imply more penalty to the flows that
causemore congestioncosts. We use a larger version
of the topologyrepresentedin Figure9-b. In the multi-
bottlenecktopology thereare10 usersand 9 bottleneckª

It is still beingstudiedby its developers.
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Fig. 13. Resultsof PFCCexperimentsonmulti-bottlenecktopology.

links. Total simulation time is 10,000s. At the begin-
ning, the userwith the long flow is active. All the other
usershave traffic flows crossingthelong flow. After each
1000s,oneof theseotherusersgetsactive. So,asthetime
passesthenumberof bottlenecksin thesystemincreases
sincenew userswith crossingflows join in. Notice that
the numberof bottlenecksin the systemis onelessthan
thenumberof active userflows. We areinterestedin the
volumegivento thelongflow, sinceit is theonethatcause
morecongestioncoststhantheotheruserflows.

Figure13-ashowstheaveragevolumegivento thelong
flow versusthe numberof bottlenecksin the systemfor
different valuesof ? . As expectedthe long flow gets
lessand lesscapacityas ? increases.When ? is zero,
the schemeachieves max-min fairness. As it increases
theschemegetscloserto proportionalfairness.Also note
that,theotheruserflows gettherestof thebottleneckca-
pacity, andhenceutilize thebottlenecks.

This variation in fairnessis basicallyachieved by ad-
vertisementof differentpricesto theuserflowsaccording
to thecostsincurredby them.Figure13-bshowstheaver-
agepricethatis advertisedto thelongflow asthenumber
of bottlenecksin thesystemincreases.Wecanseethatthe
priceadvertisedto the long flow increasesasthenumber
of bottlenecksincreases.

Finally, to illustrateProperty2, we ran an experiment
on thetopologyin Figure9-b with smallchanges.We in-
creasedcapacityof thebottleneckatnodeD from 10Mb/s
to 15Mb/s. Therearefour flows andthreebottlenecksin
thenetwork asrepresentedin Figure9-b. Initially, all the
flows have an equalbudgetof 10. Total simulationtime
is 30000s. Betweentimes 10000and 20000,budgetof
flow 1 is temporarilyincreasedto 20. Thefairnesscoeffi-
cient ? is setto 0. All theotherparameters(e.g.marking
thresholds,initial values)areexactly the sameas in the
single-bottleneckexperimentsof theprevioussection.
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Figure13-cshows thevolumesgivento eachflow, and
Figure13-d shows the given volumesaveragedover 200
contractingperiods.Until time 10000s,flows 0, 1, and2
sharethebottleneckcapacitiesequallypresentinga max-
min fair allocationbecause? wassetto 0. However, flow
3 is gettingmorethantheothersbecauseof theextra ca-
pacityatbottlenecknodeD. Thisflexibility is achievedby
thefreedomgivenindividualflowsby thecapacityalloca-
tion algorithm(seeSectionIV-D.3).

Betweentimes10000and20000,flow 2 getsa stepin-
creasein its allocatedvolumebecauseof thestepincrease
in its budget.In resultof this, flow 0 getsa stepdecrease
in its volume.Also, flows2 and3 adaptthemselvesto the
new situationby attemptingto utilize the extra capacity
leftover from the reductionin flow 0’s volume. So, flow
2 and3 getsa stepdecreasein their volumes.After time
20000,flows restoreto their original volumeallocations,
illustratingtheadaptivenessof thescheme.

D. ParameterSensitivity

In Distributed-DCC,thereareseveral parametersthat
effect systemperformance.For example,in theprevious
section,we showed that the fairnesscoefficient ? affects
the rateallocationsignificantly. In this section,we will
investigatefour parameters:contractlength � , observa-
tion interval ; , LPS interval < , andthe parameter4> . In
fact, the lastone 4> is a parameterof theETICA capacity
allocationalgorithm,but wewill investigateit sinceit has
crucial role in performanceof the whole system. Also,
we only investigatethe PFCCarchitecture,sinceperfor-
manceof POCCarchitecturedependson the underlying
edge-to-edgecongestioncontrolscheme.

To seesensitivity of systemperformanceto thefour pa-
rameters,we run several simulationexperimentson the
samesingle-bottlenecktopologythatwe experimentedin
SectionVIII-B, exceptthatthereareonly two flows in the
network. Experimentparametersareagainthesame,ex-
ceptthatwevaryeachparameter� , ; , < , 4> oneata time.
So, the initial experimentalset-upis that � ��V®d�d �¯�°� ,; � ±wd �¯�°� , and < ��� �¯�°� where �¯�°� �Id³²3dw�#GODB� .

We look at threemetricsin systemperformance:aver-
agebottleneckqueuelength,averageutilization, andser-
vicedifferentiation.Tomeasuretheservicedifferentiation
ability of the system,we set ratio of budgetsof the two
flows andobserve if the systemreally allocatescapacity
in proportionto flows’ budgets.Let � betheratio of the
two flows’ budgetssetbeforethesimulation.We vary �
from 1 to 100.Also, to seetheeffectof 4> , wevary 4> from
5 to 175.

So, for each
! 4> " �´' pair, we vary eachof the threepa-

rameters(i.e. � , ; and < ) one at a time startingfrom

the initial set-up � � V®d�d �¯�°� , ; � ±wd �¯�µ� , and< �¶� �¯�°� . The following sub-sectionspresentthe re-
sults of thesesimulation experimentsand observations
madefrom them.

1) Effectof ContractLength: For each
! 4> " �´' , wevary

thecontractlength � from
±�· �¯�°� to

·wd�d �¯�°� . Figures
14-a to 14-d show behavior of averagequeuelength for
differentvaluesof 4> . Figure14-a,for instance,plotsaver-
agequeuelengthas � and � vary when 4> �¸VB· .

In all the graphsfrom Figure14-ato Figure14-d, we
observe thataveragequeuelengthincreasessteadilyas �
increases.This is simply becausethepricing framework
loosescontrolaspricing interval increases.Also, observe
that � effectsaveragequeuelengthnegatively. This is be-
causeof theunpredictabilitycausedby ETICA’s frequent
statechanges(seeSectionIV-D.3 for details). Note that
statechangeshappenwhen 4> is small, i.e. theflow goes
backto “non-congested”stateafterstayingat“congested”
statefor shortamountof time. But, when 4> is large, the
flow staysin the“congested”statelonger. Wecanobserve
this by following the graphsfrom Figure14-a to Figure
14-das 4> increases.Observe thateffect of � getssmaller
as 4> increasesandvanishesat 4> �eVB·wd .

Figures15-aand15-bplot theutilization of bottleneck
link during thesimulationsfor differentvaluesof 4> . We
observe thatneitherchangesin � nor changesin � effect
thebottleneckutilization.

Finally, Figures16-ato 16-f show servicedifferentia-
tion ability of thesystemfor differentvaluesof thebudget
ratio � . Figure16-b,for example,plotsobservedratiosof
the two flows’ ratesfor differentvaluesof 4> asthe con-
tract length � increases.It alsoplotstheinitially setratio
of flow budgets,shown as“optimal”.

We canobserve thatas 4> getslarger theobserved ratio
getscloserto theoptimalratio. This is mainly becauseof
the topologyanddynamicsof theETICA algorithm. As
wediscussedearlier, for single-bottlenecktopologylarger4> valuesarebetter, whichwill allow lessfreedomto indi-
vidual flows in sharingthebottleneckcapacity. A “free”
(which correspondsto “non-congested”statein ETICA)
flow tendsto get an equalshareof thebottleneckcapac-
ity. In “congested”state,however, Distributed-DCCallo-
catescapacityproportionalto flows’ budgets.So,aflow’s
rategoesbackan forth betweenthe equalshare andthe
proportionalshare.

As � getslargerwe seeimportanceof 4> on theservice
differentiationability. Actually, when � � V all 4> val-
uesperformequally, sincetheequalshareandthepropor-
tional shareareequivalent. However, when � getslarger
thedifferencebetween4> curvesgetslargertoo.

Another observation from the Figures16-a to 16-f is
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Fig. 14. Effectof contractlength À on bottleneckqueuelength:IncreasingÀ or increasingbudgetratio Á of flowscauseslargerqueues.

0 50 100 150 200 250 300 350 400 450 500
Contract Length T 

 (in RTTs)
0

20
40

60
80

100

Budget Ratio R

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Avg. Utilization

0 50 100 150 200 250 300 350 400 450 500
Contract Length T 

 (in RTTs)
0

20
40

60
80

100

Budget Ratio R

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Avg. Utilization

(a) ¦¹�º¼»�½ (b) ¦¹�º¼»�½B¿
Fig. 15. Effectof contractlength À on bottleneckutilization: Neither À nor Á haseffect on bottleneckutilization.
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Fig. 16. Effectof contractlength À on servicedifferentiation:IncreasingÀ improvesservicedifferentiationvery slightly.

thatservicedifferentiationgetsslightly betterwhen � in-
creases.This is becauseof theaveragingeffectsof larger
contractingperiods.However, this costslargerqueuesas
we observedin Figure14.

2) Effect of LPS Interval: For each
! 4> " �´' , we vary

the LPS interval < from
· �¯�°� to

V®d�d �¯�°� . Note that
we vary < only up to acontractingperiod � �ÆV®d�d �¯�°� .
Apparently, increasing< to valueslarger thana contract-
ing periodis goingto reducesystemperformance.So,we
do not investigatethecase< H � .

Figures17-a to 17-d show behavior of averagequeue
lengthfor differentvaluesof 4> . Figure14-a,for instance,
plotsaveragequeuelengthas < and � varywhen 4> �eVB· .
For small valuesof 4> , we observe that averagequeue
lengthincreasesas � increases,which is againbecauseof
the frequentstatechangesof flows in ETICA algorithm.
However, as 4> increases,the effect of changesin � be-
comeslessimportantanddo not effect theaveragequeue
length.

Another interestingobservation is that averagequeue
length is high for larger � valuesregardlessof 4> , when< is lessthan the observation interval, i.e. < A ; �±wd �¯�°� . This is becauseof two things:First,LPScannot
getobservationsfrom all stations.This causestemporary
inaccuraciesin its calculations,suchascalculationof es-
timatedcapacity. Second,smaller < meansthat flows’s
statetransitionswill occurmorefrequentlysincethe pa-
rameter 4> is definedin termsof < s, i.e. if 4> �ÇV®d , then
the flow will go back to “non-congested”stateafter 10
LPSintervals. So, this revealsa non-intuitive fact about
dynamicsof Distributed-DCC,i.e. LPSinterval < should
besetto a valuein betweentheobservationinterval and
the contracting period. In otherwords,the LPS interval
shouldsatisfythecondition ; A < A � to obtainbetter
performancein Distributed-DCC.

Overall, we observe that changesin < doesnot affect
averagequeuelengthaslongasnumberof statetransitions
of flows in ETICA is small.
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Fig. 17. Effect of LPSinterval È on bottleneckqueuelength:When È is lessthanobservation interval ( ÉÊ`ÌË
^�Á�ÀYÀ ) budgetratio Á effects
queuelengthnegatively.
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Fig. 18. Effectof LPSinterval È onbottleneckutilization: Neither È nor thebudgetratio Á of flows haseffect on utilization.
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Fig. 19. Effect of LPSinterval È on servicedifferentiation: È valueslargerthantheobservation interval Én`ÍË�^�Á�ÀYÀ performssignificantly
betterin servicedifferentiation.

Figures18-aand18-bplot theutilization of bottleneck
link during thesimulationsfor differentvaluesof 4> . We
observe thatneitherchangesin < nor changesin � effect
thebottleneckutilization.

Finally, Figures19-a to 19-f show servicedifferentia-
tion ability of thesystemfor differentvaluesof thebudget
ratio � . Figure19-b,for example,plotsobservedratiosof
the two flows’ ratesfor differentvaluesof 4> asthe con-
tract length < varies.It alsoplots theinitially setratio of
flow budgets,shown as“optimal”.

We observe a similar behavior in servicedifferentia-
tion graphsaswe did in theaveragequeuelengthgraphs
in Figure 17. Servicedifferentiationup to the observa-
tion interval ; �Î±wd �¯�µ� significantly worsethan the
servicedifferentiationin betweentheobservation interval±wd �¯�°� andthe contractlength

V®d�d �¯�°� . So again,we
observe that < shouldbelargerthantheobservationinter-
val, andlessthanthecontractlength.

Also, aswe did in SectionVIII-D.1, we againseethat
effect of 4> on servicedifferentiationbecomesmore im-
portantastheratio � increases.

3) Effectof ObservationInterval: For each
! 4> " �´' , we

vary theobservation interval ; from
� �¯�°� to

V®d�d �¯�°� .
Notethatwe vary ; only up to a contractingperiod � �V®d�d �¯�°� . Apparently, increasing; to valueslargerthana
contractingperiodis goingto reducesystemperformance.
So,we do not investigatethecase; H � .

Figures20-a to 20-d show behavior of averagequeue
lengthfor differentvaluesof 4> . Figure20-a,for instance,
plotsaveragequeuelengthas ; and � varywhen 4> �eVB· .
Observe that for small 4> values,averagequeuelengthin-
creasesas � increases.Again, this is becauseof thelarge
numberof statetransitionsin ETICA algorithm.However,
for largevaluesof 4> we do not seeany effect of � at all.
This is becauseETICA causessmallnumberof statetran-
sitionsfor large 4> valuesin single-bottlenecktopologies.
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Fig. 20. Effect of observation interval É on bottleneckqueuelength: Larger É valuesperformbetterfor small z{ , medium É valuesperform
betterfor large z{ .
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Fig. 21. Effectof observationinterval É onbottleneckutilization: Neither É nor thebudgetration Á of flows haseffect on utilization.
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Fig.22. Effectof observationinterval É onservicedifferentiation:Changesin É valuedonotseemto effectservicedifferentiationsignificantly.

Also, for large 4> values,weobserve thataveragequeue
lengthincreasessharplyasobservationinterval getscloser
to the contractlength

V®d�d �¯�°� . This is simply because
accuracy of capacityestimation(which is dependenton
numberof observationsmadeduring a contract)deterio-
rates.We do not seethis effect in thegraphsfor small 4>
values,becausetheeffectof statechangesis dominantfor
thosecases.

Figures21-aand21-bplot theutilization of bottleneck
link during thesimulationsfor differentvaluesof 4> . We
observe thatneitherchangesin ; norchangesin � effect
thebottleneckutilization.

Finally, Figures22-a to 22-f show servicedifferentia-
tion ability of thesystemfor differentvaluesof thebudget
ratio � . Figure22-b,for example,plotsobservedratiosof
thetwoflows’ ratesfor differentvaluesof 4> asthecontract
length ; varieswhen � �ÒV®d . It alsoplots the initially
setratioof flow budgets,shown as“optimal”.

Otherthansmalldeteriorationwhen ; getscloserto the

contractlength
V®d�d �¯�°� , wedonot reallyseeany signifi-

canteffectof theobservation interval ; on servicediffer-
entiation.This is mainlybecauseservicedifferentiationof
Distributed-DCCis heavily dependenton accuracy of ca-
pacityestimation,for which oneobservation percontract
is enoughfor oursimulatedsystem.In oursimulatedsys-
tem, capacityestimationusesonly the latestobservation
(seeSectionIV-D.2). If we hadusedall theobservations
(e.g.averagethem),theneffectof theobservationinterval
onservicedifferentiationwouldbemoresignificant.

Also, aswe did in SectionsVIII-D.1 andVIII-D.2, we
againseethat effect of 4> on servicedifferentiationbe-
comesmoreimportantastheratio � increases.

IX. SUMMARY AND DISCUSSIONS

In this paper, we presented a new framework,
Distributed-DCC,for congestionpricing in a singlediff-
serv domain. Distributed-DCCcan provide a contract-
ing framework basedon short-term contractsbetween
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user applicationand the serviceprovider. Since con-
tractsareshort-term,it becomespossibleto updateprices
frequentlyand henceto advertisedynamicprices. Par-
ticularly, on a totally edge-to-edgebasis,we described
ways of calculatingcongestion-basedprices,which en-
ablescongestionpricingin theproposedDistributed-DCC
framework.

Main contribution of the paperis to develop an easy-
to-implementcongestionpricing framework which pro-
videsflexibility in rateallocation. We investigatedfair-
nessissueswithin Distributed-DCCandillustratedways
of achieving a range of fairnesstypes(i.e. from max-min
to proportional)throughcongestionpricing undercertain
conditions. The fact that it is possibleto achieve vari-
ousfairnesstypeswithin a single framework is very en-
couraging.Wealsodevelopedapricingscheme,Edge-to-
EdgePricing (EEP),within the Distributed-DCCframe-
work, andpresentedseveralsimulationexperimentsof it.

By extensive simulations, we also investigatedef-
fectsof differentparametersonDistributed-DCC’sperfor-
mance. We demonstratedthat Distributed-DCC’s edge-
to-edgecapacityallocationalgorithm,ETICA, hasdomi-
nanteffectsof Distributed-DCC’s performanceespecially
whenratio of flows’ budgets� is large. We also inves-
tigatedDistributed-DCC’s time-scaleparameterscontract
length � , observation interval ; , and LPS interval < .
Wedemonstratedeffectof thesetime-scaleparameterson
threeperformancemetrics:averagequeue,utilization,and
servicedifferentiationability. We foundthat thebestset-
ting for thethreetime-scaleparametersis: ; A < A � .

Also, we introducedtwo pricingarchitecturesbasedon
themannerof attackingtheproblemof congestioncontrol
by pricing: Pricing for CongestionControl (PFCC)and
PricingoverCongestionControl(POCC).Weadaptedthe
Distributed-DCCframework to thesearchitectures,and
comparedthe architecturesby simulation. We demon-
stratedthatPOCCis betterin termsof managingconges-
tion in network core,while PFCCachieveswider rangeof
fairnesstypesin rateallocation.

Futurework shouldincludeinvestigationof issuesre-
latedto extendingDistributed-DCCon multiple diff-serv
domains.Anotherfuturework item is to implementsoft
admissioncontrol techniquesin theframework by tuning
the contractparameter�$�%
&� . Currently, �	��
&� is set to
total network capacity, which allows eachindividual user
to contractup to thewholenetwork capacity. This some-
times(especiallywhennew usersjoin in) causesusersto
contractfor significantlylargerthanthenetwork canhan-
dle.

Severalotherimprovementsarepossibleto the frame-
work suchas bettercapacityestimationtechniques(see

SectionIV-D.2), betterbudgetestimationtechniques(see
SectionIV-D.1).
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APPENDIX A: ALGORITHM FOR

ROUTING-SENSITIVE BOTTLENECK-COUNT

ESTIMATION (ARBE)

Given a diff-serv network, we would like to estimate
numberof bottleneckseachedge-to-edgeflow is passing
through.ThealgorithmARBE presentedin thisappendix
providesasolutionto thisproblem.

Assuming that interior routers incrementbottleneck-
countheaderfield of packetswhencongested,ARBE cal-
culatesthenumberof bottlenecksanedge-to-edgeflow is
passingthrough.ARBE operatesattheegressedgerouter.

Assumingthateachbottleneckhasthesameamountof
congestionandalsoassumethat they have the sameca-
pacity. Let

� -10 !K� ' be the numberof bottlenecksthe flow
from ingress+ to egress

2
,
� -10 , is passingthroughat time

�
. ARBE operatesondeterministictimeintervals,andcal-

culates
� -30 !K� ' asfollows:� -30 !K� ' �ML 4� -30 !K� ' " � -30 !K��TWV 'ÔÓ 4� -30 !K� '� -30 !K�UTWV ' T Z � " �O�Fu/D®�wv + G�D (4)

where 4� -30 !K� ' is thehighestnumberof bottlenecksthatflow
passedthrough in time interval

�
, Z � is a pre-defined

value. 4� -30 !K� ' is updatedat eachpacket arrival by simply
equatingit to the maximumof its actualvalue and the
bottleneck-countheaderfield of thenewly arrivedpacket.
Algorithm 1 shows thepseudo-codefor thealgorithm.

Algorithm 1 Algorithm for Routing-Sensitive
Bottleneck-CountEstimation

ARBE( l �f!K� ' , Z � )Õ Z � is decayingstep-size.ÖÕ l �c!K� ' is the maximumbottleneck-countreceived in
thelastinterval

�
. ÖÕ l � is theactualestimationfor bottleneck-count.Ö

if l �f!K� ' H l � thenl �6× l �c!K� '
elsel �6× l �IT Z �
end if

Realizethat the bottleneck-countheaderfield of the
packets are being incrementedonly if they are passing
throughacongestedbottleneck.It is possiblethatsomeof
thebottlenecksarenotcongestedwhenaparticularpacket
is passingthrough them. For example, the bottleneck-
countheaderfield of thepacket maybeincrementedonly
threetimes,althoughit actuallypassedthroughsix bot-
tlenecks.So, it is necessaryto biastheestimationto the
largestnumberof bottlenecksthepacketsof thatflow have
passedrecently.

Also as anotherissue,IP routing causesroute of the
flows to changedynamically. To considerthe dynamic
behavior of theroutes,it is alsonecessaryto decrease

� -30
when

� -30 !K��T8V ' H 4� -30 !K� ' . So,if therouteof theflow has
changed,thenafter sometime (dependingon how large
the Z � is) thevalueof

� -30 will decreaseto theactualnum-
berof bottleneckstheflow is passingthrough.

APPENDIX B: MAX-M IN FAIRNESS, PROPORTIONAL

FAIRNESS, AND SOCIAL WELFARE MAXIMIZATION

Consideramulti-bottlenecknetwork in whichthereis a
long flow thatis crossedby

�
parallelflows. An example

of sucha network is shown in Figure 9-b. Supposeall
thebottlenecksareequivalent in capacity,

�
. Intuitively,

whatever thelong flow gets,all theparallelflows will get
the restof the capacity. Let =/Ø be the capacitygiven to
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the long flow and =�� be the capacitygiven to oneof the
parallelflows. Supposethat theutility of thelong flow isÙ Ø ! =ÚØ�' �Ûv Ø®Ü ��PÚ! =ÚØ�' andtheutility of oneof theparallel
flows is Ù � ! =Y��' �Ûv �
Ü ��PÚ! =Y��' . Noticethat

v Ø and
v � are

thesensitivity of theflows to capacity(alsointerpretedas
flow’s budget). Sincethe long flow is passingthrough

�
bottlenecks,cost of providing capacityto the long flow
is
�

timesmorethancostof providing capacityto oneof
the parallelflows. So, let costof providing =�� to oneof
the parallelflows be ba� ! =Y��' � > =Y� , and let the costof
providing = Ø to thelongflow be b Ø ! = Ø ' �I� > = Ø . Within
thiscontext, thesocialwelfare, Ý , anditsLagrangianwill
be: Ý ��v Ø Ü ��PÚ! = Ø 'YX ��v �JÜ ��PÚ! =���' Tn� > = Ø Tn� > =��Þ ��v Ø Ü ��PÚ! = Ø 'JX ��v �JÜ ��PÚ! =���' Tß� > ! = Ø X¯=���'JX�à ! = Ø X¯=Y� Tá� '
After solvingtheabove Lagrangian,we getthefollowing
solutionsfor =ÚØ and = � to maximize Ý := Ø � v Ø �v Ø�X ��v �=Y� � ��v � �v Ø�X ��v �

Fromtheabove result,we make two observations:� First, if both the long flow anda parallelflow have
equal bandwidthsensitivity, i.e.

v Ø � v � , then
theoptimal allocationwill be =ÚØ �¶� � !K� X V ' and=�� �6�(� � !K� X V ' . This is theproportionalfair case.
So,proportionalfairnessis optimalonly whenall the
flows have equalbandwidthsensitivity. As another
interpretation,it is optimalonly if all theflows have
equalbudget.� Second,if the long flow is sensitive to bandwidth

�
timesmorethana parallelflow, i.e.

v Ø �6��v � , then
theoptimalallocationwill be = Ø � =�� �e� � ± . This
is themax-minfair case.So,max-minfairnessis op-
timal only when the long flow’s utility is sensitive
to bandwidthin proportionto the costof providing
capacityto it. In otherwords,by interpretingband-
width sensitivity astheflow’s budget,max-minfair-
nessis optimal only whenthe long flow hasbudget
in proportionto thecostof providing capacityto it.

Observationssimilar to above have beenmadein the
area,e.g.[8], [27].

APPENDIX C: OPTIMIZATION ANALYSIS OF

EDGE-TO-EDGE PRICING (EEP)

In Section V, we describeda pricing schemeEEP,
whichsuitsto theDistributed-DCCframework. Themain

ideaof theEEPis to balancesupplyanddemandby equat-
ing priceto theratio of users’budget(i.e. demand)l by
availablecapacity

�
. Basedon that,we usedthepricing

formula: , � 4l 4� (5)

where 4l is the users’ estimatedbudget and 4� is the
estimatedavailable network capacity. The capacityes-
timation is performedbasedon congestionlevel in the
network, and this makes the EEP schemea congestion-
sensitive pricingscheme(seeSectionIV-D.2).

In this appendix,we will provide theoreticalproof that
(5) is optimalin thecaseof logarithmicuserutilities. Fur-
therwe will alsoshow how to calculateoptimalpricesin
thecaseof non-logarithmic6 concave utilities.

We will also investigateusers’elasticity to price and
bandwidth. Specifically, we will first define different
typesof userelasticities,andthenlook at effect of these
elasticitieson optimalprices.

Also, note that optimizationproblembeing solved is
basedon theassumptionthateachlink in thenetwork has
anassociatedlocal price,just like in Low et al.’s [9] pric-
ing framework. Notice that this violatesthe fundamen-
tal designprinciplesof Distributed-DCCframework. This
meansouroptimizationstudyof EEPhereis theoretically
correctwhileDistributed-DCCframework tradesoff some
optimality for implementationpurposes.

A. ProblemFormulation

Wenow formulatetheproblemof total userutility max-
imizationfor amulti-usermulti-bottlenecknetwork.

Let g � Õ V " ²â²â² " gãÖ be the set of flows and < �Õ V " ²â²â² " <ßÖ bethesetof links in thenetwork. Also, let < !q� '
bethesetof links theflow

�
passesthroughand g ! Üq' be

the setof flows passingthroughthe link Ü . Let
�\ä

be the
capacityof link Ü . Let à be the vectorof flow ratesandà.å betherateof flow

�
. We canformulatethe total user

utility maximizationproblemasfollows:æUçmæ �áèêé ë ìcíOîïñð å�ò å ! à.å�'
subjecttoðåwóOôiõ ä�ö à/å÷Ó �\ä " Ü �eV " ²â²â² " < (6)

This problemcanbe divided into two separateproblems
by employing monetaryexchangebetweenuserflowsandø

Note thatnon-logarithmicdoesnot meanconvex utility functions.
Our proofsarevalid only for concave utility functions.
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the network provider. Following Kelly’s [28] methodol-
ogywe split thesystemprobleminto two:

Thefirst problemis solved at theuserside. Givenac-
cumulationof link priceson theflow

�
’s route, , å , what

is theoptimalsendingratein orderto maximizesurplus.g´<%;´ÝÊå ! , å '%ëìcíOîï�ù úû ü ò å ! à.å�' T ðä ówý	õâå ö , ä à.åQþ ÿ�
overà.å�� d (7)

The secondproblemis solved at the provider’s side.
Givensendingrateof userflows (whicharedependenton
the link prices),what is the optimal price to advertisein
orderto maximizerevenue.� è���Ý�;���b ! à ! , å 'J'ÔëìcíOî

� ð å ðä óOý.õ�å ö , ä à/å
subjecttoðåOówôiõ ä�ö à/åñÓ �\ä " Ü �eV " ²â²â² " <

over,�� d (8)

Let the total pricepaidby flow
�

be , å ��� ä óOý.õ�å ö , ä .
Then,solutionto g´<%;´ÝÊå ! , å ' will be:

ò �å ! à/å#' � , åà.å ! , å ' � ò �	� �å ! , å ' (9)

Whenit comesto the
� è��(Ýe;���b ! à ! , å 'J' problem,

thesolutionwill bedependenton userflows utility func-
tionssincetheirsendingrateis basedontheirutility func-
tions as shown in the solution of g´<%;´ÝÊå ! , å ' . So, in
thenext sectionswewill solve the

� è��(Ýe;���b ! à ! , å 'J'
problemfor thecasesof logarithmicandnon-logarithmic
utility functions.

B. OptimalPrices: LogarithmicUtility Functions

We model customer + ’s utility with the well-known
function7 [8], [22], [29], [9]Ù - ! =�' ��v - Ü ��PÚ! =Q' (10)

where= is theallocatedbandwidthto thecustomerand
v -

is customer+ ’s budget(or bandwidthsensitivity).

WangandSchulzrinneintroduceda morecomplex versionin [15].

Now, we set up a vectorizednotation, then solve the
revenue maximization problem

� è��(Ýe;���b ! à ! , å 'J'
describedin the previous section. Assumethe network
includes

�
flows and

C
links. Let à berow vectorof the

flow rates( à/å for
� j�g ), � becolumnvectorof theprice

at eachlink (, ä for Ü´jW< ). Definethe
���Í�

matrix � �
in which the diagonalelement�´�0�0 is theaggregateprice
beingadvertisedto flow

2
(i.e. , 0 � � ä ówý	õ 0 ö , ä ) andall

theotherelementsare0. Also, let 
 bethe
���mC

routing
matrix in which theelement
 -30 is 1 if + th flow is passing
though

2
th link andtheelement
µ-30 is 0, if not,

�
bethe

columnvectorof link capacities(
�\ä

for Ü´j < ). Finally,
definethe

���Ì�
matrix 4à in which thediagonalelement4à#0�0 is the rateof flow
2

(i.e. 4à�0 0 � à�0 ) andall theother
elementsare0.

Giventheabovenotation,relationshipbetweenthelink
pricevector � andtheflow aggregatepricematrix � � can
bewritten as: 
¯� � � � D (11)à �¸! 4à D '�� � D �á4à
where

D
is thecolumnunit vector.

We usetheutility functionof (10) in our analysis.By
plugging(10) in (9) we obtainflow’s demandfunctionin
vectorizednotation:à ! � � ' � ÝÛ� � � � (12)

where Ý is row vectorof theweights
v - in flow’s utility

function (10). Similarly, we canwrite derivative of (12)
as: à � ! � � ' �eT Ý ! � � � ' � � (13)

Also, we can write the utility function (10) and its
derivative in vectorizednotationasfollows:

ò ! à/' � Ý�Ü ��PÚ! 4àQ' (14)ò � ! à/' � Ý 4à � � (15)

The revenuemaximizationof (8) canbe re-writtenas
follows:

ìcíOî
� � � à�
á�

subjectto à�
 Ó � � ² (16)

So,we write theLagrangianasfollows:< � à�
¯�8X ! � � T à�
�' � (17)

where � is columnvectorof theLagrangemultipliers for
thelink capacityconstrain.
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By plugging (12) and (13) in appropriateplaces,the
optimalityconditionsfor (17)canbewritten as:<��cë � � T Ý�� � � � 
 �Id (18)< ��� ë T Ý ! � � � ' � � � � D XaÝÛ� � � � DYT Ý ! � � � ' � � 
µ� � d

(19)
By solving19 for �´� , we obtain:T � � � � � � D X�� D°T � � � � 
°� �Id (20)� � �Id (21)

Now, solve (18) for �ê� :� � T ÝÛ� � � � 
 �Id (22)� � � 
 ! � �i' � � Ý (23)

Apparently, theoptimizationproblemhastwo solutions
asshown in (21) and(23). Since(21) violatesthecondi-
tion � HWd , we acceptthesolutionin (23).

Wefinally derive � by using(11):


¯� � � � D(� 
 ! � � ' � � Ý D (24)� �¸! � � ' � � Ý D (25)

Since�´� �¸! �ê�B' � , we canderive anothersolution:


á� � � � D(� Ý � � � � 
 � D (26)� � 
 � � Ý�� � � � 
�� D (27)

Notice that the result in (25) holds for a single-
bottleneck(i.e. single-link) network. In non-vectorized
notation,this resultstranslatesto:, � � åOóOô v å�

Theresultin (27)holdsfor amulti-bottlenecknetwork.
This resultmeansthateachlink’s optimalpriceis depen-
denton theroutesof eachflow passingthroughthat link.
More specifically, the optimal price for link Ü is accu-
mulationof budgetsof flows passingthroughlink Ü (i.e.Ý � 
 � in the formula) divided by total capacityof the
links that aretraversedby the flows traversingthe link Ü
(i.e. 
 � � ��� � in theformula). In non-vectorizednotation,
priceof link Ü canbewrittenas:, ä/� � åOóOôiõ ä ö v å� åOóOôiõ ä ö ��� óOý.õ�å ö � �
C. Elasticity

The term elastic was first introducedto the network-
ing researchcommunityby Shenker [30]. Shenker called
applicationsthat adjust their sendingratesaccordingto

theavailablebandwidthas“elasticapplications”,andthe
traffic generatedby suchapplicationsas“elastic traffic”.
An exampleof suchtraffic is the well-known TCP traf-
fic, which is adjustedaccordingto the congestionindi-
cationsrepresentingdecreasein theavailablebandwidth.
Shenker, further, called applicationsthat do not change
their sendingratesaccordingto the availablebandwidth
as “inelastic”. So, this interpretationof elasticity is the
sameas adaptiveness, i.e. an applicationis elastic if it
adaptsits rateaccordingto the network conditions,it is
inelasticif it doesnot.

Theconceptof elasticityoriginatesfrom the theoryof
economics. In economics,demandelasticity according
to price8 is definedas percent change in demandin re-
sponseto a percentchange in price [31]. In otherwords,
demandelasticityis the responsivenessof thedemandto
price changes.A formal definition of demandelasticity
canbewrittenas[31]:� � Z! ! ,�'J�" ! ,Q'Z ,Q�
, (28)

where , is price, Zê, is the changein the price,  ! ,Q'
is user’s demandfunction, and Z! ! ,Q' is the changein
user’s demand.(28)canbere-writtenas:� � , ! ,Q' S  ! ,Q'S , (29)

Given � , thecharacteristic<$# of userdemandis made
accordingto thefollowing functionaldefinition[31]:

< # � ú%û %ü elastic, & � & H6V
unit elastic, & � & �eV

inelastic, & � & A V
So,Shenker’s interpretationof elasticityfor userutility

is actuallydifferentfrom therealmeaningof elasticityin
economics.Note that Shenker definedelasticityof user
utility (or applicationutility) accordingto bandwidth,let’s
call it ' . Let Ù ! =Q' beuser’s utility if heis given = amount
of bandwidth.Then,following theargumentin (29), we
canwrite ' as: ' � =Ù ! =�' S Ù ! =Q'S = (30)

According to Shenker’s interpretation,the functional
definition for <)( (i.e. characteristicof user’s utility ac-
cordingto bandwidth)will beasfollows:

<)( � ú%û %ü inelastic, ' �Id
elastic, '+*�Id & userutility is concave

notdefined, '+*�Id & userutility is convex,
Demandelasticitycanbedefinedaccordingto several thingsother

thanprice (e.g. time of service,delayof service). In the restof the
text, we will refer to demandelasticityto pricewhenwe saydemand
elasticity.
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Obviously, <)( is a lot different than <$# . Basically, <$#
interpretselasticityasresponsivenesswhile <-( doesit as
adaptiveness.

We can constructthe relationshipbetween ' and � ,
given that the usersolves the well-known maximization
problem:

ìcíOî
� Õ Ù ! =Q' T =�,YÖ

The solution to the above problemis Ù � ! =Q' � , . So,
givena price , , theuserselectshis demandsuchthathis
marginal utility equalsto , . Basedon that relationship
betweenthe utility function Ù ! =Q' and the demandfunc-
tion  ! ,Q' , we canconstructtherelationshipbetweenthe
demand-priceelasticity � andtheutility-bandwidth ' elas-
ticity. In thenext sub-sectionswe will formulatetherela-
tionshipbetweentheseelasticities.

1) Utility-Bandwidth Elasticity ' : Let  ! ,Q' � 
�, #
where� *�Id and � *�eT�V . Then,, � Ù � ! =�' � 
 � �/.0# = �/.0#Ù ! =Q' � 
 � �/.0#21 V� X V43 = �/.0#65��

So, ' � V� X V " � *�Id87 � *�¸T�V
Figure23-aplots ' with respectto � .

2) Demand-PriceElasticity � : Let Ù ! =Q' � lê= ( where'+*�eV . Then, Ù � ! =Q' � , � 
9'J= ( � �
 ! ,Q' � 1 ,
9' 3 �:<; �

So, � � V
' T¼V " '=*�eV

Figure23-bplots � with respectto ' .
D. OptimalPrices: Non-LogarithmicUtility Functions

In SectionIX-B, we derivedoptimalpricesfor therev-
enuemaximizationproblem

� è��(Ýe;���b ! à ! , å 'J' . In
thatderivationusersdemand-priceelasticity � was-1 (see
(12)),which meansusershadunit elasticdemands.Now,
we re-performthederivationby assumingthatusershave
a utility-bandwidthelasticityof ' , whereusers’demand-
priceelasticityis � �ÆV � ! ' T8V ' basedon thestudyin the
previoussection.Also, notethat

d A ' A V mustbesatis-
fiedin order to makesureconcavityof theutility function.

First, let l berow vectorof theweightsthatarediffer-
ent for eachflow’s utility function,and 4l bean

!K�>�Ì� '
matrix in which the element 4lß0 0 is the weight of flow

2
andall theotherelementsarezero.

We usea genericutility function. Thefunctionandits
derivative is asfollows:

ò ! àÚ' � lÌ4à ( (31)ò � ! à/' � l�'�4à ( � � (32)

Accordingto therelationshipbetween' and� described
in SectionIX-C.1, we canwrite thedemandfunctionand
its derivative asfollows:à ! � � ' � ' � # D �n4l � # � � # (33)

Similarly, wecanwrite derivative of (33) as:à � ! � � ' � ' � # � D � 4l � # � � # � � (34)

For therevenuemaximizationproblem,we againsolve
theLagrangianin (17)but for thenew demandfunctionof
(33). By plugging(33)and(34) in appropriateplaces,the
optimalityconditionsfor (17)canbewrittenas:< � ë � � T ' � # D �n4l � # � � # 
 �Id (35)

< � � ë?' � # � D � 4l � # � � # � � ! � � DµT 
µ��'YX�' � # D � 4l � # � � # D(��d (36)

By solving(36) for � � , weobtain:� D � 4l � # � � # � � ! � � DáT 
°�Y'YX D � 4l � # � � # D(�Id (37)� � � � � ! � � D°T 
µ��'YX�� D(�Id (38)� � � V' 
µ� D � � (39)

Now, apply(39) into (35)andsolve for � :� � � ' � # D � 4l � #@1 V' 
µ� D � � 3 # 
 (40)

' # 4l # !qD �U' � � � �A
 � � � 1 V ' 
µ� D � � 3 # (41)V
' 
µ� D � � � 'B
 � �/.0# ! � �i' �/.0# !qD �i' � �/.0# 4l (42)

Substitute(42) into (39) andweobtain �´� :� � � 'B
 � �/.0# ! � � ' �/.0# !qD � ' � �/.0# 4l (43)

From(43) weobtain � :


¯� � � � D(� 'C
 � �/.0# ! � � ' �/.0# !qD � ' � �/.0# 4l D (44)� � 'C
 � � 
ED �/.0# DGF ! � � 'HD �/.0# D I � � !qD � 'HD �/.0# D 4l D (45)� � 'B
 � � 
 D �/.0# D F ! � �i' D �/.0# D I � � !qD �i' D �/.0# D F 4l D # D I D �/.0# D D (46)

Theresultin (45) impliesthesamething asin thecase
of logarithmicutility functionsexceptthatthelink capac-
ities mustbetakenmoreconservatively dependingon the
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(a)Utility-bandwidthelasticity L . (b) Demand-priceelasticity M .
Fig. 23. Utility-bandwidthelasticity N anddemand-priceelasticity O with respectto eachother.

elasticity( ' or � by choice)of flows. Observethatasflows
demand-priceelasticity � getshigher, thecapacitymustbe
takenmoreconservatively basedontheformula

! � � ' D �/.0# D .
Also observe that as flows utility-bandwidth elasticity '
getshigher, the capacitymust be taken more conserva-
tively basedon theformula

! � � ' D �/.0# D �¸! � � ' D ( � � D .
Basedon (46) we canwrite theoptimalpriceformulas

for single-bottleneckand multi-bottleneckcasesrespec-
tively asfollows in non-vectorizedform:

, � 'QPR � åOóOô v D # Då� ST D �/.0# D
, äÚ� '+PR � åOóOôiõ ä ö v D # Då� åOówôiõ ä�ö ��� ówý	õâå ö � � ST D �/.0# D


