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Abstract— Several congestion pricing proposals have
beenmadein the last decade.Usually, however, thosepro-
posalsstudied optimal strategiesand did not focusonimple-
mentation issues.Our main contribution in this paper is to
addressmplementationissuesfor congestion-sensitie pric-
ing over a single differ entiated-sewices(diff-serv) domain.
We proposea hew congestion-sensitie pricing framework
Distributed Dynamic Capacity Contracting (Distrib uted-
DCC), which is ableto provide arange of fair nesge.g max-
min, proportional) in rate allocation by using pricing asa
tool. We develop a pricing schemewithin the Distrib uted-
DCC framework investigateseveral issuessuchasoptimal-
ity of prices, fair nessof rate allocation, sensitivity to param-
eter changes.

We alsointr oducetwo pricing architecturesbasedon the
manner of using pricing to control congestion: Pricing for
Congestion Control (PFCC) and Pricing over Congestion
Control (POCC). PFCC usespricing dir ectly for controlling
congestion,whilst POCC usesan underlying edge-to-edge
congestioncontrol mechanismby overlaying pricing on top
of it. We, then, adapt Distrib uted-DCC framework to these
architectures,and evaluate the two architectureshy exten-
sive simulation.

Index Terms— Network Pricing, Congestion Pric-
ing, Quality-of-Service, Fairness, Congestion Control,
Differ entiated-Sewices

I. INTRODUCTION

Implementationof congestionpricing still remainsa
challenge,although several proposalshave beenmade,
e.g. [1], [2], [3]. Amongmary others,two majorimple-
mentationobstaclesanbe defined:needfor timely feed-
bad to usersaboutthe price,determinatiorof congestion
informationin anefficient, low-overheadnanner

The first problem, timely feedback,is relatvely very
hardto achieve in a wide areanetwork suchas the In-
ternet. In [4], the authorsshaved that usersdo want
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feedbackaboutchaging of the network service(suchas
currentprice andpredictionof servicequality in nearfu-
ture). However, in our recentwork [5], we illustratedthat
congestiorcontrol by pricing cannotbe achieved if price
changesreperformedat a time-scaldargerthanroughly
40 round-trip-times(RTTs). This meansthatin orderto
achieve congestiorcontrolby pricing, servicepricesmust
beupdatedvery frequently(i.e. 2-3 secondsinceRTT is
expressedn termsof millisecondsfor mostcasesn the
Internet).In orderto solve thistime-scalegproblemfor dy-
namic pricing, we proposetwo solutions,which leadto
two differentpricing “architectures”:

« By placing intelligent intermediaries(i.e. softwae
or hardware agents)betweeruses andthe provider
This way it is possiblefor the provider to update
pricesfrequentlyat low time-scalessinceprice ne-
gotiationswill be madewith a software/hardware
agentratherthana human. Sincethe provider will
notemploy ary congestiorcontrolmechanisnfor its
network andtry to control congestiorby only pric-
ing, we call this pricing architectureas Pricing for
CongestionContol (PFCC).

» By overlaying pricing on top of an underlyingcon-
gestioncontol medanism. This way it is possible
to enforcetight controlon congestiorat smalltime-
scale,while performingpricing at time-scaledarge
enoughfor humaninvolvement.The providerimple-
mentsa congestioncontrol mechanisrh in orderto
managecongestionn its network. So,we call pric-
ing architectureasPricing over CongestionContiol
(POCC)

Big-picture of the two pricing architecturesPFCC and
POCCare shavn in Figure1l. We will describePFCC
andPOCClIaterin Sectionlll.

! Note that we do not meanthe well-known end-to-endcongestion
control algorithmssuchas TCR. We will give an exampleof sucha
congestiorcontrol mechanisnaterin the paper
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Fig. 1. Differentpricing architecturesvith/without edge-to-edgeongestiorcontrol.
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Fig.2. DCCframework ondiff-servarchitecture.

The secondproblem, congestioninformation, is also
very hardto solve in a way thatdoesnot requirea major
upgradeat network routers.However, in diff-serv[6], it is
possibleto determinecongestiorinformationvia a good
ingress-gresscoordination.So, this flexible ervironment
of diff-serv motivatedusto develop a pricing framewvork
onit.

In our previous work [7], we presenteda simple
congestion-sensite pricing “framework”, DynamicCa-
pacity Contracting (DCC), for a single diff-serv do-
main. DCC treatseachedgerouter as a station of a
serviceprovider or a stationof coordinatingset of ser
vice providers. Users(i.e. individuals or other service
providers)malke short-termcontractswith the stationsfor
network service.Duringthecontractsthestationreceves
congestiorinformationaboutthe network coreat a time-
scalesmallerthan contracts. The station, then, usesthat
congestiorinformationto updatethe serviceprice at the
beginningof eachcontract.Severalpricing“schemes’tan
beimplementedn thatframeawvork.

DCC modelsa short-termcontractfor a given traffic
classas a function of price per unit traffic volume P,,

maximumvolumeV,,,,, (maximumnumberof bytesthat
canbe sentduring the contract)andthe term of the con-
tractT (lengthof the contract):

Contract = f(Py, Vinaz, T) 1)

Figure2 illustratesthe big pictureof DCC framework.
Customersanonly accessietwork coreby makingcon-
tractswith theprovider stationglacedattheedgerouters.
The stationsoffer contracts(i.e. V. andT) to fellow
users. Accessto theseavailable contractscan be done
in differentways, what we call edge strategy. Two ba-
sic edgestratgiesare“bidding” (mary usersbidsfor an
available contract) or “contracting” (usersnegotiate P,
with theproviderfor anavailablecontract).So,edgestrat-
egy is the decision-makingnechanismto identify which
customegetsanavailablecontractatthe provider station.

Notice that,in DCC framework, provider stationscan
implementdynamic pricing schemes. Particularly they
canimplementcongestion-basegricing schemesif they
have actualinformationaboutcongestionn network core.
This congestioninformation can comefrom the interior
routersor from the egressedgeroutersdependingon the
congestion-detectio mechanismbeing used. DCC as-
sumeghatthe congestiordetectionmechanisnis ableto
give congestiorinformationin time scales(i.e. obsera-
tion intervals) smallerthancontracts.

However, in DCC, we assumedhat all the provider
stationsadwertisethe sameprice value for the contracts,
which is very costly to implementover a wide areanet-
work. This is simply becausehe price value cannotbe
communicatedo all stationsatthebeginningof eachcon-
tract. In this paperwe relaxthisassumptiorby letting the
stationsto calculatethe priceslocally and adwertise dif-
ferentpricesthanthe otherstations.We call this new ver-
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Fig. 3. Comparisonof Distributed-DCCwith Low et al’s pricing
frameawork in termsof price calculation.

sion of DCC asDistributed-DCC We introduceways of
managingthe overall coordinationof the stationsfor the
commonpurpose®f fairnessandstability.

As afundamentadifferencebetweerDistributed-DCC
andthewell-knowvn dynamicpricingproposalge.g.Kelly
etal!s proposal[8],Low etal’s proposal[9]) in the area
liesin themannerof price calculation.

In Distributed-DCC, the prices are calculatedon an
edge-to-edgdasis, while traditionally it has beenpro-
posedthatpricesarecalculatedat eachlocal link andfed
backto users.To make it moreconcreteFigures3-aand
3-bshaw thecaseof Distributed-DCCandthecaseof Low
etal’s framework. Gray nodesarethe onesthat partici-
patesin price calculationfor a user In Distributed-DCC,
basically the links on a flow’s route are abstractecbut
by edge-to-edgeapacityestimation(which is supposed
to be congestion-bas¢dnd the ingressnode communi-
cateswith the correspondinggressnodeto obsere con-
gestionon the route of users traffic. Then, the ingress
nodeusegheestimatectapacityandtheobsenedconges-
tion informationin orderto calculateprice. However, in
Low etal.s framework, eachlink calculatests own price
andsendsit to the user andthe userpaysthe aggr@ate

price. So, Distributed-DCCis betterin termsof imple-
mentationrequirementswhile Low et als framawork is
betterin termsof optimality Distributed-DCCtradesoff
someoptimality in orderto enableémplementatiorof dy-
namicpricing. Amountof lost optimality dependn the
closed-loopedge-to-edgeapacityestimation.

The paperis organizedas follows: In the next sec-
tion, we position our work and briefly surney relevant
work in the area. In Sectionlll, we presentPFCC
and POCC pricing architecturegnotivated by the time-
scaleissuesmentionedabore. In SectionVI we de-
scribepropertiesof Distributed-DCCframework accord-
ing to the PFCCarchitecture. Then,in SectionVIl, we
revise Distributed-DCCS$ definition in Section VI and
adaptit to the POCCarchitecture. In otherwords, we
mainly definethe Distributed-DCCframework in Section
VI, andthenin SectionVIl we add necessarycompo-
nentsto Distributed-DCCin orderto adaptit to POCC.
Next in SectionV, we define a pricing schemeEdge-
to-EdgePricing (EEP)which canbeimplementedn the
definedDistributed-DCCframewnork. We study optimal-
ity of EEP for different forms of user utility functions
andconsidereffect of differentparametersuchasusers
budget, users elasticity In SectionVIll, accordingto
the descriptionsof Distributed-DCCframenvork andEEP
schemewe simulateDistributed-DCCin the two archi-
tecturesPFCC and POCC. With the simulationresults,
we compareDistributed-DCCs performancén PFCCand
POCCarchitectures We finalize with summaryanddis-
cussionsn SectionlX.

Il. RELATED WORK

Therehasbeenseveral pricing proposalsyhich canbe
classifiedin mary ways: static vs. dynami¢ perpadet
chaging vs. percontract chaging, andchaging a-priori
to servicevs. a-posteriorito service.

Althoughthereareopponent$o dynamicpricingin the
area(e.g. [10], [11], [12]), mostof the proposalshave
beenfor dynamicpricing (specificallycongestiorpricing)
of networks. Examplesof dynamicpricing proposalsare
MacKie-Masonand Varians SmartMarket [1], Guptaet
al’s Priority Pricing [13], Kelly et al’s ProportionalFair
Pricing (PFP)[8], Semretetal’s Market Pricing[14], [3],
and Wang and Schulzrinnes ResourceNegotiation and
Pricing (RNAP) [15], [2]. Odlyzko’s Paris Metro Pric-
ing (PMP) [16] is an exampleof static pricing proposal.
Clark’s ExpectedCapacity[17], [18] andCocchiet al’s
EdgePricing [19] allow both staticanddynamicpricing.
In termsof chaging granularity SmartMarket, Priority
Pricing, PFPand EdgePricingemplo perpaclet chag-



ing, whilst RNAP and ExpectedCapacitydo not employ
perpaclet chaging.

Smart Market is basedprimarily on imposing per
paclet congestiorprices. Since SmartMarket performs
pricing on perpaclet basis,it operate®nthefinestpossi-
ble pricing granularity This makesSmartMarket capable
of makingidealcongestiorpricing. However, SmartMar-
ketis notdeplo/ablebecausef its perpaclet granularity
(i.e. excessve overhead)andits mary requirementgrom
routers(e.g. requiresall routersto be updated).In [20],
we studiedSmartMarket anddifficulties of its implemen-
tationin moredetail.

While Smart Market holds one extreme in terms of
granularity ExpectedCapacityholds the other extreme.
ExpectedCapacityproposedo uselong-termcontracts,
which can give more clear performancesxpectation,for
statisticalcapacityallocationand pricing. Pricesareup-
datedat the begginning of eachlong-termcontract,which
incorporatedittle dynamisnto prices.

Our work, Distributed-DCC,is a middle-groundbe-
tweenSmartMarket and ExpectedCapacityin termsof
granularity Distributed-DCCperformscongestionpric-
ing atshort-termcontractsyhich allows moredynamism
in priceswhile keepingpricing overheadsmall.

Anotherclosework to oursis RNAP, whichalsomainly
focusedon implementationissuesof congestionpricing
on diff-serv  Although RNAP provides a completepic-
turefor incorporatiorof admissiorcontrolandcongestion
pricing, it hasexcessie implementatioroverheadsinceit
requiresall network routersto participatein determina-
tion of congestionprices. This requiresupgradego all
routerssimilar to the caseof SmartMarket. We believe
that pricing proposalghatrequireupgradego all routers
will eventuallyfail in implementatiorphase. This is be-
causeof the fact that the Internetroutersare owned by
differententitieswho may or may not bewilling to coop-
eratein the processf routerupgrades.Our work solves
this problemby requiring upgradesonly at edgerouters
ratherthanatall routers.

I1l. PRICING ARCHITECTURES: PFCC vs. POCC

In this section,we introducetwo new pricing architec-
turesthat are mainly motivated by time-scaleproblems
regardingcontrolof congestiorby pricing (detailsin Sec-
tionl).

A. Pricing for CongestionContmol (PFCC)

In this pricing architecture provider attemptsto solve
congestiorproblemof its network justby congestiorpric-
ing. In otherwords, the provider tries to control con-
gestionof its network by changingserviceprices. The

problemhereis thatthe provider will have to changethe
price very frequently suchthat humaninvolvementinto
the price negotiationswill not be possible.This problem
canbe solved by runningintermediatesoftware (or hard-
ware)agentdetweerend-userandthe provider. Thein-
termediateagentrecevesinputsfrom theend-useatlarge
time-scales,and keepsnegotiating with the provider at
smalltime-scalesSo,intermediateagentsn PFCCarchi-
tecturearevery crucialin termsof acceptabilityby users.

If PFCCarchitecturds notemplo/ed(i.e. providersdo
notbotherto employ congestiorpricing), thencongestion
control will beleft to the end-userasit is in the current
Internet. Currentlyin the Internet,congestioncontrol is
totally left to end-usersandcommonway of controlling
congestionis TCP andits variants. However, this situ-
ation leave opendoorsto non-cooperatie userswho do
notemplgy congestiorcontrolalgorithmsor atleastem-
ploy congestioncontrol algorithmsthat violatesfairness
objectives. For example,by simpletricks, it is possible
to make TCP connectiorto capturemoreof the available
capacitythanthe otherTCP connections.

The major problemwith PFCCis that developmentof
userfriendly intermediateagentss heavily dependenbn
useropinion,andhencerequiressignificantamountof re-
search.A studyof determininguseropinionsis available
in [4]. In this paper we do not focusdevelopmentof in-
termediateagents.

B. Pricing over CongestionControl (POCC)

Another way of approachingthe congestioncontrol
problemby pricingis to overlay pricing on top of conges-
tion control. This meanghe provider undertaksthe con-
gestioncontrol problemby itself, andemplo/s anunder
lying congestiorcontrolmechanisnmior its network. This
way it is possibleto enforcetight controlon congestiorat
smalltime-scalesyhile maintaininghumaninvolvement
into the price negotiationsat large time-scales.Figure 1
illustratesthe differencebetweenPOCC(with congestion
control)andPFCC(without congestiorcontrol) architec-
tures.

So, assumingthat there is an underlying congestion
controlschemetheprovider cansetthe parametersf that
underlyingschemesuchthatit leadsto fairnessandbet-
ter controlof congestion.The pricing schemeon top can
determineuserincentves and setthe parameterf the
underlyingcongestioncontrol schemeaccordingly This
way, it will be possibleto favor sometraffic flows with
higher willingness-to-pay(i.e. budget) thanthe others.
Furthermorethe pricing schemewill alsobring benefits
suchasanindirectcontrolonuserdemandy price,which
will in turnhelptheunderlyingcongestiorcontrolscheme



to operatemore smoothly However the overall system
performancege.g. fairness,utilization, throughput)will
be dependenon theflexibility of the underlyingconges-
tion controlmechanism.

Sinceour main focusis to implementpricing in “diff-
servervironment”, we assumehatthe provider emplgs
“edge-to-edgetongestiorcontrolmechanismsinderthe
pricing protocol on top. So, in diff-serv ervironment,
overlayingpricing ontop of edge-to-edgeongestiorcon-
trol raisestwo major problems:

1) Parameter mapping: Since the pricing protocol
wantsto allocatenetwork capacityaccordingto the
userincentves (i.e. the userswith greaterbudget
shouldgetmorecapacity)thatchangeslynamically
over time, it is a requiredability set correspond-
ing parametersf the underlyingedge-to-edgeon-
gestioncontrolmechanisnsuchthatit allocateghe
capacityto the userflows accordingto their incen-
tives. So, this raisesneedfor a methodof mapping
parametersf the pricing schemeo the parameters
of the underlying congestioncontrol mechanism.
Notice thatthis type of mappingrequiresthe edge-
to-edgecongestiorcontrolmechanisno be ableto
provide parametershat tunesthe rate being given
to edge-to-edgéows.

Edge queuesTheunderlyingedge-to-edgeonges-
tion control schemewill not always allow all the
traffic admittedby the pricing protocol,which will
causejueuedo build upatnetwork edges So,man-
agemenbf theseedgequeuess necessarin POCC
architecture.Figuresl-a and 1-b comparethe sit-
uation of the edgequeuesin the two caseswhen
thereis anunderlyingedge-to-edgeongestiorcon-
trol schemeaandwhenthereis not.

Anotherproblemis thatthe overall performancef the
systemwill be dependenbn not only the pricing proto-
col's performance put also the performanceof the un-
derlying congestiorcontrol scheme.For instance;if the
underlyingcongestiorcontrol schemedoesnot allow the
network to be utilized more than 80% for someinternal
reasonthentheutilization provided by the overall system
will belimited by 80%.

2)

IV. DISTRIBUTED-DCC FRAMEWORK

Distributed-DCC framework is specifically designed
for diff-serv ervironment, becausethe edgerouterscan
performcomplex operationswhich is essentiato several
requirementdor implementationof congestionpricing.
Eachedgerouteris treatedas a stationof the provider.
Eachstationadvertiseslocally computedpriceswith in-
formationreceved from otherstations. The mainframe-

Ingress

Fig. 4. Component®f Distributed-DCCframevork: Solid lined ar-
rows representlow of controlinformationnecessarjor pricecalcula-
tion. In PFCCarchitecturecommunicatiorwith LPS mustbe at very
shorttime-scaleqi.e. eachshort-termcontract). However, in POCC,
LPS s accessedt longertime-scaleqi.e. parameteremappingin-
stants).
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work basically describeshow to presere coordination
amongthe stationssuchthat stability andfairnessof the
overall network is presered. We cansummarize2ssence
of Distributed-DCCin two items:

« Sinceupgradeto all routersis not possibleto imple-
ment,pricing shouldhapperon an edge-to-edg ba-
siswhich only requiresupgradego edgerouters.

» Providershouldemploy short-termcontractsn order
to have ability to changepricesfrequently enough
suchthatcongestion-pricinganbe enabled.

Distributed-DCC framework hasthree major compo-

nentsasshavn in Figure4: Logical Pricing Server(LPS),
IngressStations and EgressStations Solid lined arrows
in thefigurerepresentontrolinformationbeingtransmit-
ted amongthe components. Basically Ingressstations
negotiatewith customerspbsere customess traffic, and
malke estimationsaboutcustomers demand.Ingresssta-
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tionsinform correspondind=gressstationsaboutthe ob-
senationsandestimationsabouteachedge-to-edgéow.

Egressstationsdetectcongestiorby monitoringedge-
to-edgetraffic flows. Basedon congestiondetections,
Egressstationsestimateavailablecapacityfor eachedge-
to-edgeflow, andinform LPS abouttheseestimations.

LPSrecevescapacityestimationgrom Egressstations,
and allocatesthe network available capacityto edge-to-
edgeflows accordingo differentcriteria(suchasfairness,
price optimality).

Below, we describefunctionsand sub-componentsf
thesethree componentsn detail. Also, to easeunder
standingof the framawvork, we shav importantparame-
ters,their symbolsandtheir descriptiongn Tablel.

A. IngressStationi
Figure5 illustratessub-componentsf Ingressstation:

in theframework. Ingress includestwo sub-components:

Pricing SthhemeandBudget Estimator

Ingressstation i keepsa "current” price vector p;,
wherep;; is thepricefor theflow from ingressi to egress
j. So, the traffic usingflow i to j is chaged the price
pi;. Pricing Schemas the sub-componenthatcalculates
pricep;; for eachedge-to-edgdlow startingat Ingress:.
It usesallowed flow capacitiesc;; andotherlocal infor-
mation(suchasf)i]-), in orderto calculateprice p;;. The
station,then,usesp;; in negotiationswith customersWe
will describea simplepricing schemeEdge-to-Edgéric-
ing (EEP)laterin SectionV. However, it is possibleto im-
plementseveral otherpricing schemesy usingtheinfor-
mationavailableat Ingressi. OtherthanEEPR we imple-
mentedanotherpricing schemePriceDiscovery, whichis
availablein [21].

Also, theingressi usesthetotal estimatechetwork ca-
pacity C' in calculatingthe V,,,,, contractparametede-
finedin (1). Admissioncontrol techniquescanbe used
to identify the bestvalue for V... We usea simple
methodwhich doesnot put ary restrictionon V44, i.€.
Vmaz = C x T whereT is the contractiength.

BudgetEstimatoris the sub-componenthat obseres
demandfor eachedge-to-edgdlow. We implicitly as-
sumethat users “budget” representsisers demand(i.e.
willingness-to-pay) So, BudgetEstimatorestimates$ud-
get?)ij of eachedge-to-edgeaffic flow?. Wewill describe
asimplealgorithmthatcalculate:%ij laterin SectionlV-
D.1.

B. EgressStationj

Figure 6 illustratessub-componentsf EgressStation
j in the framewvork: Congestion Detectoy Congestion-
BasedCapacityEstimatoy Flow CostAnalyzer andFair-
nessluner.

CongestiorDetectorimplementsanalgorithmto detect
congestionn network core by observingtraffic arriving
atEgressj. Congestiordetectioncanbe donein several
ways. We assumehatinterior routersmark (i.e. setsthe
ECN bit) the datapacletsif their local queueexceedsa
threshold. CongestionDetectorgenerates “congestion
indication” if it obseresa marked paclet in the arriving
traffic.

Congestion-Base@apacityEstimatorestimatesavail-
able capacity¢;; for eachedge-to-edgdlow exiting at
Egressj. In orderto calculateé;;, it usescongestion
indicationsfrom CongestionDetectorand actual output
ratesy;; of theflows. Thecrucialpropertyof Congestion-
BasedCapacityEstimatoris that,it estimatesapacityin a

2Note that edge-to-edgdlow doesnot meanan individual users

flow. Ratherit is the traffic flow thatis composeddf aggr@ation of
all traffic goingfrom oneedgenodeto anotheredgenode.



TABLE |
LIST OF PARAMETERS IN DISTRIBUTED-DCC FRAMEWORK.

\ PARAMETER | SYMBOL | DESCRIPTION
ContractLength(sec) T Lengthof contracts
Obsenration Intenal(sec) 0] Time-scaleof obserationsat Egressaboutcongestion
LPSIntenal (sec) L Time-scaleof communicatiorbetweerLPSandprovider stations
Edge-to-Edgéd°rice($/Mb) Dij Unit pricefor traffic flow from to 5

BudgetEstimation($) Bij Estimationfor budgetof flow from s to 5
UpdatedBudgetEstimation($) bij BudgetEstimationfor flow from ¢ to j adjustedoy FairnessTuner

Estimated\etwork Capacity(Mb/s) C Estimationfor total network capacity

EstimatedCapacity(Mb/s) Cij

Estimationof availablecapacityfor flow 4 to j

Allowed Capacity(Mb/s) Cij Capacitygivenby CapacityAllocatorto flow i to j
Flow Input Rateat Ingress(Mb/s) Tij Arrival rateof flow ¢ to j atIngress;
Flow OutputRateat EgresqMb/s) Wij Departingrateof flow 7 to j atEgressj
Estimated-low Cost i Estimationfor amountof costincurredby flow : to 5
- k Holding time of “congested’statein ETICA algorithm
FairnesLCoeficient e Tunerfor fairnesgype of FairnessTuner

congestion-basatanneyi.e. it decreasethecapacityes-
timationwhenthereis congestionndicationandincreases
when there is no congestionindication. This makes
the pricescongestion-sensite, since Pricing Schemeat
Ingresscalculategricesbasedon the estimatedcapacity
An examplealgorithmfor Congestion-Base@apacityEs-
timatorwill bedescribedaterin SectionlV-D.2.

Flow CostAnalyzerdeterminegostof eachtraffic flow
(e.g. numberof links traversedby the flow, numberof
bottleneckdraversedby the flow, amountof queuingde-
lay causeddy the flow) exiting at Egressj. Costincurred
by eachflow canbe sereral things: numberof traversed
links, numberof traversedbottlenecks amountof queu-
ing delaycaused We assumehatnumberof bottlenecks
is agoodrepresentationf the costincurredby aflow. In
AppendixA, we definean algorithm ARBE, which esti-
matesnumberof bottlenecktraversedby a flow. ARBE
outputsestimatechumberof bottlenecks;; traversedby
theflow fromingressi to egressy.

LPS,aswill bedescribedn the next section,allocates
capacityto edge-to-edgdlows basedon their budgets.
The flows with higher budgetsare given more capacity
thantheothers.So,Egressj canpenalize/fvor aflow by
increasing/decreasy its budgetf)ij. FairnessTuneris the
componenthatupdateiij. So,FairnessTunerpenalizes
or favorstheflow from ingress; by updatingits estimated
budgetvalue,i.e. b;; = f(IA)ij,f'ij, < parameters >)
where < parameters > are other optional parameters
thatmaybeusedfor decidinghow muchto penalizeor fa-
vor theflow. For example,if theflow ingressi is passing
throughmore congestedreasthanthe otherflows, Fair-

nessTunercanpenalizethis flow by reducingits budget
estimationb;;. Wewill describeanalgorithmfor Fairness
Tunerlaterin SectionlV-D.4.

Egress; sends¢;;s (calculatedby Congestion-Based
Capacity Estimator) and b;;s (calculated by Fairness
Tuner)to LPS.

C. Logical Pricing Server(LPS)

Figure?7 illustratesbasicfunctionsof LPSin theframe-
work. LPSrecevesinformationfrom egressesndcalcu-
latesallowedcapacityc;; for eachedge-to-edgéow. The
communicatiorbetweenLPS andthe stationstake place
at every LPSinterval L. Thereis only one major sub-
componentn LPS: CapacityAllocator.

CapacityAllocator receves ¢;;s, bijs and congestion
indicationsfrom EgressStations. It calculatesllowedca-
pacity c;; for eachflow. Calculationof c;; valuesis a
complicatedaskwhich dependn internaltopology In
generalthe flows shouldsharecapacityof the samebot-
tleneckin proportionto theirbudgets.Wewill laterdefine
agenericalgorithmETICA for CapacityAllocatorin Sec-
tion IV-D.3.

Otherthan functionsof CapacityAllocator, LPS also
calculatestotal available network capacityC', which is
necessaryor determiningthe contractparametew/,,, .. at
IngressesLPSsimply sumsg¢;; to calculateC'.

LPScanbeimplementedn acentralizedor distributed
manner(seeSectionVI-A).




D. Sub-Components

1) Budget Estimator: At Ingressi, BudgetEstimator
performsa very trivial operationto estimatebudgets?)ij
of eachflow startingat Ingressi. Theingress: basically
knows its currentprice for eachflow, p;;. Whenit re-
celves a paclet it just needsto determinewhich egress
stationthe pacletis goingto. GiventhatIingress; hasthe
addressesf all the egressstationsof the samediff-serv
domain,it canfind out which egressthe paclet is going
to. So, by monitoring the paclets transmittedfor each
flow, theingresscanestimatethe budgetof eachflow. Let
z;; bethetotal numberof pacletstransmittedor flow ; to
j in unittime, thenthe budgetestimatefor theflow i to j
is b;; = z;;p;;- Noticethatthis operationrmustbe doneat
theingressratherthanegress becausesomeof the pack-
etsmight be droppedbeforearriving at the egress. This
causes;; to bemeasuredess,andhencecauses;; to be
lessthanit is supposedo be.

2) Congestion-Based Capacity Estimator:  The
essenceof Congestion-Basedapacity Estimatoris to
decreaséhe capacityestimationwhenthereis congestion
indication(s)andto increasdt whenthereis no conges-
tion indication. In this senseseveral capacityestimation
algorithmscanbe used,e.g. Additive IncreaseAdditive
Decrease (AIAD), Additive Increase Multiplicative
Decreasd AIMD). We now provide a full descriptionof
suchanalgorithm.

At Egressj, given congestionindicationsfrom Con-
gestionDetectorandoutputrate;; of flows, Congestion-
BasedCapacity Estimatorimplementsthe following al-
gorithm for eachflow from Ingressi: Let O be obser
vationintervalsatwhich the estimatormalesanobsenra-
tion aboutcongestiorstatusof thenetwork. Theestimator
identifieseachobseration interval ascongestedor non-
congested Basically anobserationintenal is congested
if a congestiornindicationwasreceved from Congestion
Detectorduring that obsenration intenal. At the end of
eachobserationintenal ¢, the estimatorupdateghe esti-
matedcapacityc;; asfollows:

AL — p *Mi'(t),
Cij (t) - { éz’j(t — 1) +JA6,

congested
non-congested

whereg isin (0,1), 1;;(t) is the measuredutputrate of
flow 7 to j during obserationintenal ¢, andA¢ is a pre-
definedincreasegparameterThis algorithmis a variantof
well-knovn AIMD.

3) ETICA: Edge-to-edg, Topolagyy-IndependentCa-
pacity Allocation: Firstly, notethat LPS s goingto im-
plementETICA algorithm as a CapacityAllocator (see
Figure 7). So,we will referto LPS throughoutthe de-
scriptionof ETICA below.

Fig.8. Stateofanedge-to-edgédow in ETICA algorithm: Thestates
1 > 0 are“congested’statesandthestatei = 0 is the“non-congested”
state representedvith grayandwhite colorsrespectiely.

At LPS, we introducea new information abouteach
edge-to-edgéow f;;. A flow f;; is congestedif egress;
hasbeenreceving congestiornindicationsfrom that flow
recently(we will laterdefinewhat“recent”is).

Again at LPS, let K;; determinethe stateof f;;. If
K;; > 0, LPSdeterminesf;; ascongestedlf not, it de-
terminesf;; asnon-congestedAt every LPSintenal ¢,
LPScalculatesk;; asfollows:

~

k,
Kij(t—1) -1,

congestionn ¢t — 1
no congestionn¢ — 1

()

wheref is a positive integer Noticethatk parametede-
fineshow long a flow will stayin “congested’stateafter
the last congestiorindication. So, in otherwords, k de-
finesthetime-lineto determinaf a congestiorindication
is “recent” or not. Accordingto theseconsiderationsn
ETICA algorithm, Figure 8 illustratesstatesof an edge-
to-edgeflow giventhatprobability of receving aconges-
tion indicationin the last LPS intenal is p. Gray states
arethe statesin which the flow is “congested”,and the
single white stateis the “non-congested’state. Obsene
thatnumberof congestedtateq(i.e. gray states)s equal
to k which definesto whatextenta congestiorindication
is “recent”. 3

Giventheabose methodto determinewvhetheraflow is
congestear not, we now describethe algorithmto allo-
catecapacityto the flows. Let F' be the setof all edge-
to-edgeflows in the diff-serv domain,and F, be the set
of congestededge-to-edgélows. Let C.. betheaccumu-
lation of ¢;;s where f;; € F,. Further let B, betheac-
cumulationof b;;s where f;; € F.. Then,LPScalculates
theallowed capacityfor f;; asfollows:

Cij:{

Theintuition is thatif aflow is congestedthenit mustbe
competingwith othercongestedlows. So, a congested

Kij(t) = {

b
FZCC, Kz’j >0

Cij, otherwise

Notethatinsteadof settingK;; to kat every congestionndication,
severaldifferentmethodscanbeusedfor this purposeput we proceed
with themethodin (2).



flow is allowed a capacityin proportionto its budgetrel-
ative to budgetsof all congestedlows. Sincewe as-
sumeno knowledge aboutthe interior topology we can
approximatethe situationby consideringhesecongested
flows asif they are passingthrougha single bottleneck.
If knowledgeabouttheinterior topologyis provided,one
caneasilydevelop betteralgorithmsby sub-groupinghe
congestedlows thatarepassinghroughthe samebottle-
neck.

In short,the ETICA algorithmbasicallysaysthataflow
in oneof its “congested’statesgetsa sharé of the total
capacityof thecongestedlows (i.e. C.). If theflow isin
its in “non-congestedtate thenit usesits own capacity

If aflow is not congestedthenit is allowed to useits
own estimatedcapacity which will give enoughfreedom
to utilize capacityavailable to that particularflow. Dy-
namicsof the algorithmwill be understoodnore clearly
afterthe simulationexperimentsn SectionVIIl.

4) FairnessTuner: We examinethe issuesregarding
fairnessin two main cases.We first determinethesetwo
casesandthenprovide solutionswithin Distributed-DCC
framework.

« Single-bottlendccase: The pricing protocolshould
chage the sameprice to the uses of the samebot-
tlene&. In this way, amongthe customersisingthe
samebottlenecktheoneswhohave morebudgetwill
be givenmoreratethanthe others.Theintuition be-
hind this reasonings that the costof providing ca-
pacityto eachcustomeiis thesame.

« Multi-bottlene& case: The pricing protocol should
charge more to the customes whosetraffic passes
through more bottlene&s and causemore coststo
the provider. So, otherthan proportionalityto cus-
tomerbudgets,we alsowantto allocatelessrateto
thecustomersvhoseflows arepassinghroughmore
bottleneckghanthe othercustomers.

For multi-bottlenecknetworks, two main types of
fairnesshave beendefined: max-minfairness[22],
proportionalfairnesg8]. In max-minfair rateallo-
cation, all flows get equalshareof the bottlenecks,
while in proportionalfair rateallocationflows getpe-
nalizedaccordingto the numberof traversedbottle-
necks. Dependingon the cost structureand users
utilities, for some casesthe provider may want to
choosemax-minor proportionalrateallocation. So,

4Note thatin this definition of ETICA, we definedthis “share” as
the ratio of b;;/B. which is basedon f;;'s monetaryvalue with re-
spectto monetaryvalue of all congestedlows F.. This is because
our maingoalis to “price” effectively. However, one candefinethis
shareaccordingto othercriteria(suchasequalto all congestedlows(,
which malesit possibleto useETICA for completelyrateallocation
purposes.

we would like to have ability of tuning the pricing
protocolsuchthatfairnessof its rateallocationis in
theway the provider wants.

For abetterunderstandingf proportionalfairnessand
max-minfairnesswe studythemin termsof socialwel-
faremaximizationwith a canonicalkexamplein Appendix
B.

To achiere the fairnessobjectvesdefinedin the abore
itemizedlist, we introducenew parameteror tuningrate
allocationto flows. In orderto penalizeflow i to j, the
egress canreducef),-j while updatingtheflow’sestimated
budget.It useshefollowing formulato do so:

J— 7 .. , p— gij
bzy = f(b”,’l"(t)’ «, Tmzn) - Tomin + ('rij (t) — 'f'min) *a

wherer;;(t) is the congestioncost causedby the flow ¢
t0 7, Tmin 1S theminimumpossiblecongestiorcostfor the
flow, anda is fairnesscoeficient Insteacbf b;;, theegress
J now sendsbh;; to LPS.Whena is O, FairnessTuneris
emplg/ing max-minfairness. As it getslarger, the flow
getspenalizednoreandrateallocationgetscloserto pro-
portionalfairnessHowever, if it is too large,thentherate
allocationwill move away from proportionalfairnessLet
o* bethe a valuewheretherateallocationis proportion-
ally fair. If theestimatiorr;;(t) is absolutelycorrect,then
a* = 1. Otherwisejt depend®n how accurate-;;(t) is.

Assumingthateachbottleneckhasthe sameamountof
congestiorandcapacity Then,in orderto calculater;;(t)
andr,;», we candirectly usethe numberof bottlenecks
theflow i to j is passinghrough.In suchacasey,,;, will
be 1 andr;;(t) shouldbe numberof bottleneckshe flow
is passingthrough. ARBE, in AppendixA, calculatesan
estimatiorfor r;;.

V. EDGE-TO-EDGE PRICING SCHEME (EEP)

For flow f;;, Distributed-DCCframewvork providesan
allowedcapacityc;; andanestimatiorof totaluseroudget
Eij atingressi. So, the provider stationat ingress: can
usethesetwo informationto calculateprice. We propose
asimplepriceformulato balancesupplyanddemand:

Dij = bﬂ

Cij

®3)

Here,b;; representsiserdemandandc;; is the available
supply

In Appendix C, we provided a detailedoptimization
analysisof this EEP pricing schemein Distributed-DCC
framavork. We shavedthatthe price calculationformula
in (3) is optimalfor thewell-known total userutility max-
imizationproblem.We considereckffect of differentutil-
ity functionsandelasticitiesof userson optimalprices.



V1. DISTRIBUTED-DCC: PFCC ARCHITECTURE

In orderto adaptDistributed-DCCto PFCCarchitec-
ture, LPS mustoperateon very low time-scalesIn other
words, LPS intenal must be small enoughto maintain
controlover congestionsincePFCCassumeso underly-
ing congestiorcontrolmechanismThis raisestwo issues
to beaddressed:

« In order to maintain humaninvolvementinto the
system,intermediatagentsbetweencustomersand
Ingressstationsmustbe implemented.

» Since LPS must operateat very small time-scales,
scalabilityissuesegardingLPS mustbe solved.

As we previously saidearlierin Sectionlll-A, we do not
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Sincetheseabove-definedscalingtechniquesare very
well-knowvn, we do not focus on detaileddescriptionof
them.

VIl. DISTRIBUTED-DCC: POCC ARCHITECTURE

In this sectionwe developnecessargomponents or-
derto adaptDistributed-DCCframevork to POCCarchi-
tecture. First, we will briefly describean edge-to-edge
congestiorncontrol mechanisnRiviera[23], [24]. Then,
we will addresproblemsdefinedin Sectionlll-B for the
caseof overlaying Distributed-DCCover Riviera. This
will fit Distributed-DCCto the POCCarchitecture.

Also, to summarizehepreviousandthis section,Table

focus on the first problemsinceit cannotbe addressed !l shavs differencesbetweenDistributed-DCCs PFCC

within this paperbecauseof its large size and comple-
ity. So,we assumehatcustomersrewilling to undertale

andPOCCversions.

high pricevariations,andleave developmenif necessary A, Edge-to-Ed@ CongestionControl: Riviera

intermediateagentsfor future research.We addresshe
secondoroblemin thefollowing sub-section.

A. Scalability

Distributed-DCCoperate®n peredge-to-edgéow ba-
sis. There are mainly two issuesregarding scalability:
LPS, the numberof flows. First of all, the flows arenot
perconnectionbasis,i.e. all the traffic going from edge
routers to j is countedasonly oneflow. This actually
relieves the scalability problemfor operationsthat hap-
penon perflow basis.The numberof flowsin the system
will ben(n — 1) wheren is thenumberof edgeroutersin
the diff-servdomain. So, indeed,scalability of the flows
is not a problemfor the currentinternetsincenumberof
edgeroutersfor asinglediff-servdomainis very small. If
it becomesolargein future,thenaggrgationtechniques
canbe usedto overcomethis scalabilityissue,of course,
by sacrificingsomeoptimality.

Scalabilityof LPS canbe donein two ways. Firstidea
is to implementLPS in afully distributed manner The
edgestationsexchangenformationwith eachother(sim-
ilar to link-staterouting). Basically eachstationwill send
total of n — 1 messagesgachof which headedo other
stations. So, this will increasethe overheadon the net-
work becausef the extra messagesd,e. the compleity
will increaserom O(n) to O(n?) in termsof numberof
messages.

Alternatively, LPS can be divided into multiple local
LPSswhich synchronizeamongthemseles to maintain
consisteng. This way the compleity of numberof mes-
sageswill reduce.However, thiswill be atacostof some
optimality again.

We now describeoverall propertiesof anedge-to-edge
congestiorcontrol schemeRiviera[23], [24], which we
will alsousein our experimentdaterin the paper

Rivieratakesadwantageof two-way communicatiorbe-
tweeningressand egressedgeroutersin a diff-serv net-
work. Ingresssendsa forward feedbackio egressin re-
sponseto feedbackfrom egress,and egresssendsbad-
ward feedbackto ingressin responseo feedbackfrom
ingress. So, ingressand egressof a traffic flow keep
bouncingfeedbackto eachother Ignoring loss of data
paclets,the egressof atraffic flow measuresheaccumu-
lation, a, causedby the flow by usingthe bouncedfeed-
backsandRTT estimations.

The egressnodekeepstwo thresholdparameterso de-
tectcongestionmaz_thresh andmin_thresh. For each
flow, the egresskeepsa variable that sayswhetherthe
flow is congestear not. Whena for a particularflow ex-
ceedsnax_thresh, theegressupdateshevariableto con-
gested Similarly, whena is lessthanmin _thresh, it up-
dateghevariableto not-congsted It doesnot updatethe
variableif a isin betweenmaz_thresh andmin_thresh.
Theingressnodegetsinformedaboutthe congestiorde-
tection by backward feedbacksand emplg/s AIMD-ER
(AIMD-Explicit Rate,i.e. avariantof regular AIMD) to
adjustthesendingrate.

In a single-bottlenecknetwork, Riviera can be tuned
suchthateachflow getsweightedshareof the bottleneck
capacity Every ingressnode: maintainsan additve in-
creasgarameterq;, andamultiplicative decreasparam-
eter 3, for eachedge-to-edgéow. Theseparameterare
usedn AIMD-ER. Amongtheedge-to-edg#ows, by set-
ting the increaseparameterga;) at theingresseandthe
thresholdparametergmazx_thresh andmin_thresh) at
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TABLE I
DIFFERENCES BETWEEN DISTRIBUTED-DCC’ s PFCC AND POCC VERSIONS.

DISTRIBUTED-DCC:PFCC

DISTRIBUTED-DCC:POCC \

LPSmustoperateatsmalltime-scales

LPSmayoperateat largetime-scales

LPSmustbescaledbecausef its operationatime-scale

It is notnecessaryo scaleLPS

Framevork canachiese arangeof fairnessn
rateallocation

Fairnesf rateallocationis limited anddepend®on the
underlyingcongestiorcontrolmechanism

Bottleneckqueuesat network corearelarge

Bottleneckqueuesat network corearesmall

Doesnot needto managejueuest network edges

Needto managejueuesat network edges

the egressesn ratio of desiredrateallocation,it is possi-
ble to make surethat the flows get the desiredrate allo-
cation. For example,assumeherearetwo flows 1 and2
competingfor a bottleneck(similar to Figure9-a). If we
wantflow 1 to getacapacityof w timesmorethanflow 2,
thenthefollowing conditionsmustbe hold:

1) ag=way

2) maz_threshs = w maz_thresh,

3) min_threshy = w min_thresh,

B. Distributed-DCCover Riviera

We now provide solutionsdefinedin SectionllI-B, for
the caseof overlayingDistributed-DCCover Riviera:

1) Parametermapping: For eachedge-to-edgédlow,
LPScancalculatethe capacityshareof thatflow out
of the total network capacity Let y;; = c;;/C be
the fraction of network capacitythat mustbe given
totheflow i to j. LPScancorvey v;;stotheingress
stationsandthey canmultiply theincreasgparame-
ter o;; with ;5. Also, LPScancommunicatey;;sto
the egressesandthey canmultiply maz_thresh;;
andmin_thresh;; with ;.

Edge queues:In Distributed-DCC,ingressstations
are informed by LPS aboutallocatedcapacityc;;

for eachedge-to-edgélow. So,oneintuitive way of

makingsurethatthe userwill notcontractfor more
thanc;; is to subtrachecessargapacityto drainthe
alreadybuilt edgequeuefrom c;;, andthenmalke

contractsaccordingly In otherwords, the ingress
stationupdateghe allocatedcapacityc;; for flow 4

to j by the following formulacgj = ¢ij — Qij/T,

anduses%- for price calculation. Note that @;; is

the edgequeuelengthfor flow i to j, andT is the
lengthof thecontract.

An alternatve optionaltechniques asfollows: Re-
memberfrom SectionlV-D.2 thatthe egressnodes
are making capacity estimation dependingon if

marked paclets have arrived or not. Specifically

2)

fraction of its currentoutputrate, when a marked
pacletwasreceiedin thelastobserationintenal.
So,the provider stationat theingresscanmarkthe
pacletsif sizeof the edgequeueexceedsa thresh-
old. This will indirectly reducethe capacityesti-
mation, and hencedrain the edgequeue. Notice
thatit is possibleto employ this methodsimulta-
neouslywith the methoddescribedn the previous
paragraphLaterin simulationexperimentsyve will
employ both of themsimultaneously

VIIl. SIMULATION EXPERIMENTS AND RESULTS

We now presenins|[25] simulationexperimentdor the
two architecturesPFCCandPOCC,on single-bottleneck
andmulti-bottlenecktopology Our goalsareto illustrate
fairnessand stability propertiesof the two architectures
with possiblecomparison®f two.

For PFCCand POCC,we simulateDistributed-DCCs
PFCCand POCCversionswhich were describein Sec-
tions VI and VII respectrely. We will simulate EEP
pricing schemeat Ingressstations. We will also present
simulationsto investigatesensitvity of Distributed-DCC
framewvork to variousparameters.List of itemswe will
presenin the simulationexperiments:

» Steady-statpropertieof PFCCandPOCCarchitec-
tures:queuesrateallocation
PFCCsfairnesgropertiesProvision of variousfair-
nessin rateallocationby changingthefairnesscoef-
ficienta
Performanceof Distributed-DCCSs capacityalloca-
tion algorithmETICA in termsof adaptveness
Distributed-DCCS sensitvity to variousparameters:
contractlengthT, obsenrationintenal O, LPSinter
val L, budgetratio R of flows, parametef of ETICA

A. ExperimentalConfiguation
The single-bottleneckopology hasa bottlenecklink,

they reducethe capacityestimationfor a flow to a which is connectedo n edgenodesat eachside where
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Fig.9. (a)Single-bottleneckb) Multi-bottlenecknetwork for Distributed-DCCexperiments.

n is the numberof users. The multi-bottlenecktopol-
ogy hasn — 1 bottlenecHKinks, thatareconnectedo each
otherserially Thereareagainn ingressandn egressedge
nodes. Eachingressedgenodeis mutually connectedo
the beginning of a bottlenecklink, and eachegressnode
is mutually connectedo the endof a bottleneckink. All
bottlenecklinks have a capacityof 10Mb/sandall other
links have 15Mb/s. Propagationdelay on eachlink is
5ms, and userssendUDP traffic with an averagepaclet
size of 1000B. To easeunderstandinghe experiments,
eachusersendsits traffic to a separatesgress. For the
multi-bottlenecktopology oneusersendghroughall the
bottlenecks(i.e. long flow) while the otherscrossthat
users long flow. The queuesat the interior nodes(i.e.
nodesthat standat the tips of bottleneckliinks) markthe
paclets whentheir local queuesize exceeds30 paclets.
In the multi-bottlenecktopologythey incrementa header
field insteadof just marking. Figure 9-ashaws a single-
bottlenecktopologywith n = 3. Figure9-b shavs multi-
bottlenecktopology with n = 4. The white nodesare
edgenodesandthe gray nodesareinterior nodes.These
figuresalsoshaw thetraffic flow of usersonthetopology
Theuserflow triesto maximizeits total utility by contract-
ing for b/p amountof capacity whereb is its budgetand
p is price. Theflows’s budgetsarerandomizedaccording
to truncated-NormaJ26] distribution with a given mean
value. This meanvalueis whatwe will referto asflows’s
budgetin our simulationexperiments.

Contractingakesplaceatevery 4s,obserationintenal
is 0.8s,andLPSintenal is 0.16s. Ingressesendbudget
estimationsto correspondingegressesat every obsenra-
tion interval. LPS sendsnformationto ingressesit every
LPSintenal. The parametek is setto 25, which means
a flow is determinedto be non-congestedt least after
(pleaseseeSectionlV-D.3) 25 LPS intenals equivalent
to onecontractingntenal.

The parameter§ is setto 1 paclet (i.e. 1000B),the
initial valueof ¢;; for eachflow f;; is setto 0.1Mb/s,3 is
setto 0.95,andAr is setto 0.0005.Also notethat,in the
experimentspaclet dropsarenotallowedin any network

node. This is becauseave would like to seeperformance
of theschemeén termsof assuredervice.

B. Experiment®n Single-bottlendcTopolayy

We run simulationexperimentsfor PFCCand POCC
onthesingle-bottleneckopology whichis representeth
Figure9-a. In this experimentthereare3 userswith bud-
getsof 30, 20, 10 respecirely for usersl, 2, 3. Total
simulationtime is 15000s,andat the beginning only the
userlis active in the system.After 5000s the user2 gets
active. Again after 5000sat simulationtime 10000,the
user3 getsactie.

For POCC thereis anadditionalcomponentn thesim-
ulation: edgequeues. The edgequeuesmark the pack-
etswhen queuesize exceeds200 paclets. So, in order
to managehe edgequeuesn this simulationexperiment,
we simultaneoushemplg the two techniquegiefinedin
SectionVII-B.

In termsof results,the volume given to eachflow is
very important. Figures10-aand 11-ashawv the volumes
givento eachflow in PFCCandPOCCrespectiely. We
seethe flows are sharingthe bottleneckcapacityin pro-
portionto their budgets.In comparisorto POCC,PFCC
allocatesvolume more smoothlybut with the samepro-
portionality to the flows. The noisy volumeallocationin
POCCis causedby coordinationissues(i.e. parameter
mapping edgequeues)nvestigatedn SectionVII.

Figures10-band11-bshav the price beingadwertised
to flows in PFCCand POCCrespeciiely. As the new
usergoin in, the pricing schemencreaseshe pricein or-
derto balancesupplyanddemand.

Figures10-cand11-cshaws the bottleneckqueuesize
in PFCCandPOCCrespectiely. Noticethatqueuesizes
make peakstransientlyat the timeswhennew usersgets
actve. Otherwise,the queuesizeis controlledreason-
ably andthe systemis stable. In comparisonto PFCC,
POCCmanageshebottleneckqueuemuchbetterbecause
of the tight control enforcedby the underlyingedge-to-
edgecongestiorcontrolalgorithmRiviera.

Figuresrom 12-ato 12-cshaw thesizesof edgequeues
in POCC.We canobsenre thatuserggetactive at 5000sof
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Fig. 10. Resultsof single-bottleneclexperimentfor PFCC.

intenals. We obsere stablebehaior but with oscillations
larger thanthe bottleneckqueueillustratedin Figure11-
c. Thisis becauseof the tight edge-to-edg&ongestion
control, which pushesacklogto the edges.This suitsto
thebig-pictureof thetwo architectureshavn in Figurel.
Also, obsere thatthe edgequeuesaregenerallymuch
lower thanthe thresholdof 200 paclets. This meanshat
the paclets were marked at the edgequeuesvery rarely
So,thetechniqueof markingthe pacletsatthe edgesand
reducingthe estimatedcapacityindirectly was not domi-
nantin this simulation. Rathey the techniqueof reducing
the estimatedcapacitydirectly at the ingresswas domi-
nantin termsof handlingof edgequeuegpleaseseeSec-
tion VII-B for full understandingf thesetwo techniques).

C. Experiment®n Multi-bottlene& Topolay

Onamulti-bottlenecknetwork, we would like illustrate
two propertiesor PFCC:
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« Propertyl: provision of variousfairnessin rate al-
location by changingthe fairnesscoeficient o of
Distributed-DCCframework (seeSectionlV-D.4)

« Property 2. performanceof Distributed-DCC$ ca-
pacityallocationalgorithmETICA in termsof adap-
tivenesgseeSectionlV-D.3)

SinceRivieradoesnot currently’ provide a setof param-
etersfor weightedallocation on multi-bottlenecktopol-
ogy, we will notrun ary experimentfor POCCon multi-
bottleneckopology

In orderto illustrate Propertyl, we run a seriesof ex-
perimentsfor PFCCwith different « values. Remem-
berthat « is the fairnesscoeficient of Distributed-DCC.
Higher a valuesimply more penalty to the flows that
causemore congestioncosts. We use a larger version
of the topology representedn Figure9-b. In the multi-
bottlenecktopology thereare 10 usersand 9 bottleneck

51t is still beingstudiedby its developers.
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Fig.13. Resultsof PFCCexperimentson multi-bottlenecktopology

links. Total simulationtime is 10,000s. At the begin-
ning, the userwith the long flow is active. All the other
usershave traffic flows crossingthelong flow. After each
1000soneof theseotherusergyetsactive. So,asthetime
passeshe numberof bottlenecksn the systemincreases
sincenew userswith crossingflows join in. Notice that
the numberof bottlenecksn the systemis onelessthan
the numberof active userflows. We areinterestedn the
volumegivento thelongflow, sinceit is theonethatcause
morecongestiorcoststhanthe otheruserflows.

Figurel3-ashavstheaveragevolumegivento thelong
flow versusthe numberof bottlenecksin the systemfor
different valuesof «. As expectedthe long flow gets
lessand less capacityas « increases.When « is zero,
the schemeachieves max-min fairness. As it increases
theschemegetscloserto proportionalfairness Also note
that,the otheruserflows gettherestof the bottleneckca-
pacity andhenceutilize the bottlenecks.
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This variationin fairnessis basicallyachieved by ad-
vertisemenof differentpricesto theuserflows according
to thecostsincurredby them.Figure13-bshavstheaver
agepricethatis adwertisedto thelong flow asthe number
of bottlenecksn thesystemncreasesWe canseethatthe
price adwertisedto the long flow increasesasthe number
of bottleneckdncreases.

Finally, to illustrate Property2, we ran an experiment
onthetopologyin Figure9-b with smallchangesWe in-
creasedapacityof thebottleneckatnodeD from 10 Mb/s
to 15Mb/s. Therearefour flows andthreebottleneckdn
thenetwork asrepresenteth Figure9-h Initially, all the
flows have an equalbudgetof 10. Total simulationtime
is 30000s. Betweentimes 10000and 20000, budget of
flow 1 is temporarilyincreasedo 20. The fairnesscoefi-
cienta is setto 0. All theotherparameterge.g. marking
thresholds,nitial values)are exactly the sameasin the
single-bottleneclexperimentsf the previous section.



Figure13-cshaws the volumesgivento eachflow, and
Figure 13-d shaws the given volumesaveragedover 200
contractingperiods. Until time 10000s flows 0, 1, and2
sharethe bottleneckcapacitiesequally presentinga max-
min fair allocationbecauser wassetto 0. However, flow
3 is gettingmorethanthe othersbecausef the extra ca-
pacityatbottlenecknodeD. Thisflexibility is achieredby
thefreedomgivenindividual flows by the capacityalloca-
tion algorithm(seeSectionlV-D.3).

Betweentimes10000and20000,flow 2 getsa stepin-
creasan its allocatedvolumebecaus®f the stepincrease
in its budget. In resultof this, flow 0 getsa stepdecrease
in its volume.Also, flows 2 and3 adaptthemselesto the
new situationby attemptingto utilize the extra capacity
leftover from the reductionin flow 0’s volume. So, flow
2 and 3 getsa stepdecreasén their volumes. After time
20000, flows restoreto their original volumeallocations,
illustratingtheadaptvenessf thescheme.

D. ParameterSensitivity

In Distributed-DCC,thereare several parameterghat
effect systemperformance For example,in the previous
section,we shaved thatthe fairnesscoeficient a affects
the rate allocationsignificantly In this section,we will
investigatefour parametersicontractlength7’, obsera-
tion interval O, LPSintenal L, andthe parameterfc. In
fact, thelastone/ is a parameteof the ETICA capacity
allocationalgorithm,but we will investigatdt sinceit has
crucial role in performanceof the whole system. Also,
we only investigatethe PFCCarchitecture sinceperfor
manceof POCCarchitecturedependson the underlying
edge-to-edgeongestiorcontrolscheme.

To seesensitvity of systemperformanceo thefour pa-
rameterswe run seseral simulationexperimentson the
samesingle-bottleneckopologythatwe experimentedn
SectionVIII-B, exceptthatthereareonly two flowsin the
network. Experimentparametersreagainthe same ex-
ceptthatwe vary eachparametefl’, O, L, k oneatatime.
So, theinitial experimentalset-upis that7 = 100RT'T’,
O =20RTT,andL = 4ARTT whereRTT = 0.04sec.

We look at threemetricsin systemperformanceaver
agebottleneckqueuelength,averageutilization, andser
vicedifferentiation.To measureheservicedifferentiation
ability of the system,we setratio of budgetsof the two
flows andobsere if the systemreally allocatescapacity
in proportionto flows’ budgets.Let R betheratio of the
two flows’ budgetssetbeforethe simulation. We vary R
from 1 to 100. Also, to seetheeffect of k, we vary i from
510 175.

So, for each(k, R) pair, we vary eachof the threepa-
rameters(i.e. T, O and L) one at a time startingfrom
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the initial set-upT 100RTT, O 20RTT, and
L = 4RTT. Thefollowing sub-sectiongresenthe re-
sults of thesesimulation experimentsand obsenrations
madefrom them.

1) Effectof ContractLength: Foreach(k, R), wevary
the contractlengthT” from 25RT'T to 500RTT. Figures
14-ato 14-d shawv behaior of averagequeuelengthfor
differentvaluesof k. Figurel4-a,for instanceplotsaver
agequeudengthasT andR varywhenk = 15.

In all the graphsfrom Figure 14-ato Figure 14-d, we
obsenre thataveragequeuelengthincreasesteadilyasT
increases.This is simply becausehe pricing framewvork
loosescontrolaspricing intenal increasesAlso, obsere
that R effectsaveragequeudengthnegatively. Thisis be-
causeof the unpredictabilitycausedy ETICA's frequent
statechangegseeSectionlV-D.3 for details). Note that
statechangeshapperwhen’ is small,i.e. theflow goes
backto “non-congestedstateafterstayingat“congested”
statefor shortamountof time. But, when’ is large, the
flow staysin the“congested’statelonger We canobsere
this by following the graphsfrom Figure 14-ato Figure
14-dask increasesObsere thateffect of R getssmaller
ask increasesndvanishestk = 150.

Figuresl5-aand15-bplot the utilization of bottleneck
link during the simulationsfor differentvaluesof k. We
obsere thatneitherchangesn 7' nor changesn R effect
thebottleneckutilization.

Finally, Figures16-ato 16-f shav servicedifferentia-
tion ability of the systenfor differentvaluesof thebudget
ratio R. Figure16-b,for example plotsobseredratiosof
the two flows’ ratesfor differentvaluesof k asthe con-
tractlengthT increaseslt alsoplotstheinitially setratio
of flow budgetsshovn as“optimal”.

We canobsere thatask getslargerthe obseredratio
getscloserto the optimalratio. This is mainly becausef
the topology anddynamicsof the ETICA algorithm. As
we discussee@arlier for single-bottleneckopologylarger
k valuesarebetter which will allow lessfreedomto indi-
vidual flows in sharingthe bottleneckcapacity A “free”
(which correspondgo “non-congested’statein ETICA)
flow tendsto getan equalshareof the bottleneckcapac-
ity. In “congested’state however, Distributed-DCCallo-
catescapacityproportionatlto flows’ budgets.So,aflow’s
rate goesback an forth betweenthe equalshae andthe
proportionalshae.

As R getslargerwe seeimportanceof k ontheservice
differentiationability. Actually, whenR = 1 all k val-
uesperformequally sincethe equalshareandthe propor
tional shareareequialent. However, when R getslarger
thedifferencebetweeri curesgetslargertoo.

Another obseration from the Figures16-ato 16-f is
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thatservicedifferentiationgetsslightly betterwhenT in-
creasesThisis becaus®f the averagingeffectsof larger
contractingperiods.However, this costslarger queuesas
we obseredin Figurel4.

2) Effectof LPSInterval: For each(k, R), we vary
the LPSinterval L from 5RTT to 100RTT. Note that
we vary L only up to acontractingperiodT = 100RT'T.
Apparently increasingL to valueslargerthana contract-
ing periodis goingto reducesystenperformanceSo,we
donotinvestigatehecaselL > T.

Figuresl7-ato 17-d shawv behaior of averagequeue
lengthfor differentvaluesof k. Figure14-a,for instance,
plotsaveragequeudengthas L and R varywhenk = 15.
For small valuesof &, we obsere that averagequeue
lengthincreasessR increaseswhichis againbecausef
the frequentstatechangef flows in ETICA algorithm.
However, ask increasesthe effect of changesn R be-
comedessimportantanddo not effect the averagequeue
length.

Anotherinterestingobsenration is that averagequeue
lengthis high for larger R valuesregardlessof &, when
L is lessthanthe obseration intenal, i.e. L < O =
20RTT. Thisis becausef two things: First, LPS cannot
getobserationsfrom all stations.This causesemporary
inaccuraciesn its calculationssuchascalculationof es-
timatedcapacity Second,smaller .. meansthat flows’s
statetransitionswill occurmorefrequentlysincethe pa-
rameterk is definedin termsof Ls, i.e. if & = 10, then
the flow will go backto “non-congested’stateafter 10
LPSintervak. So, this revealsa non-intuitive fact about
dynamicsof Distributed-DCC,i.e. LPSinterval L should
be setto a valuein betweerthe observatiorinterval and
the contracting period In otherwords,the LPS intenal
shouldsatisfythe conditionO < L < T to obtainbetter
performancen Distributed-DCC.

Overall, we obsenre that changesn L doesnot affect
averagequeudengthaslongasnumberof statetransitions
of flowsin ETICA is small.
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Figures18-aand18-bplot the utilization of bottleneck
link during the simulationsfor differentvaluesof k. We
obsere thatneitherchangesn L nor changesn R effect
thebottleneckutilization.

Finally, Figures19-ato 19-f shav servicedifferentia-
tion ability of the systentor differentvaluesof thebudget
ratio R. Figure19-b,for example plotsobseredratiosof
the two flows’ ratesfor differentvaluesof k asthe con-
tractlength L varies. It alsoplotstheinitially setratio of
flow budgets shavn as“optimal”.

We obsere a similar behaior in servicedifferentia-
tion graphsaswe did in the averagequeuelengthgraphs
in Figure 17. Servicedifferentiationup to the obsera-
tion intenal O = 20RTT significantly worsethan the
servicedifferentiationin betweerthe obserationintenal
20RTT andthe contractlength100RT'T. So again,we
obserethat L shouldbelargerthantheobserationinter
val, andlessthanthe contractiength.

Also, aswe did in SectionVIII-D.1, we againseethat
effect of k on servicedifferentiationbecomesmore im-
portantastheratio R increases.

3) Effectof Observatiorinterval: Foreach(k, R), we
vary theobserationinterval O from 4RT'T to 100RT'T.
Notethatwe vary O only up to a contractingperiodT’ =
100RTT. Apparentlyincreasing) to valuedargerthana
contractingperiodis goingto reducesystemperformance.
So,wedonotinvestigatehecaseO > T.

Figures20-ato 20-d shav behaior of averagequeue
lengthfor differentvaluesof k. Figure20-a,for instance,
plotsaveragequeudengthasO andR varywhenk = 15.
Obsere thatfor small i values averagequeuelengthin-
creasesis R increasesAgain, thisis becausef thelarge
numberof statetransitiondn ETICA algorithm.However,
for large valuesof & we do not seeary effect of R atall.
Thisis becaus&TICA causesmallnumberof statetran-
sitionsfor large k valuesin single-bottleneckopologies.
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Also, for large k valueswe obsere thataveragequeue
lengthincreasesharplyasobsenrationinterval getscloser
to the contractlength 100RTT. This is simply because
accurag of capacityestimation(which is dependenbn
numberof obsenationsmadeduring a contract)deterio-
rates. We do not seethis effect in the graphsfor small &
values becauséheeffect of statechangess dominantfor
thosecases.

Figures21-aand21-bplot the utilization of bottleneck
link during the simulationsfor differentvaluesof k. We
obsere thatneitherchangesn O norchangesn R effect
thebottleneckutilization.

Finally, Figures22-ato 22-f shawv servicedifferentia-
tion ability of the systenfor differentvaluesof thebudget
ratio R. Figure22-b,for example plotsobseredratiosof
thetwo flows’ ratesfor differentvaluesof i asthecontract
lengthO varieswhen R = 10. It alsoplots theinitially
setratio of flow budgetsshavn as“optimal”.

OtherthansmalldeterioratiorwhenQ getscloserto the

contractength100RT'T', we do notreally seeary signifi-
canteffect of the obserationintenal O on servicediffer-
entiation.Thisis mainly becausaservicedifferentiationof
Distributed-DCCis heavily dependenbn accurag of ca-
pacity estimation for which oneobseration per contract
is enoughfor our simulatedsystem.In our simulatedsys-
tem, capacityestimationusesonly the latestobsenration
(seeSectionlV-D.2). If we hadusedall the obserations
(e.g.averagethem),theneffect of theobserationinterval
on servicedifferentiationwould be moresignificant.
Also, aswe did in SectionsvIll-D.1 andVIlI-D.2, we
againseethat effect of % on servicedifferentiationbe-
comesmoreimportantastheratio R increases.

IX. SUMMARY AND DISCUSSIONS

In this paper we presenteda new framework,
Distributed-DCC,for congestiorpricing in a single diff-
servdomain. Distributed-DCCcan provide a contract-
ing framevork basedon short-term contractsbetween



user application and the service provider.  Since con-
tractsareshort-termjt becomegpossibleto updateprices
frequentlyand henceto adwertise dynamicprices. Par

ticularly, on a totally edge-to-edgéasis,we described
ways of calculatingcongestion-basegrices, which en-

ablescongestiorpricingin theproposedistributed-DCC
framework.

Main contritution of the paperis to develop an easy-
to-implementcongestionpricing framewvork which pro-
videsflexibility in rate allocation. We investigatedrair-
nessissueswithin Distributed-DCCandillustratedways
of achieving arange of fairnesstypes(i.e. from max-min
to proportional)throughcongestiorpricing undercertain
conditions. The fact that it is possibleto achieve vari-
ousfairnesstypeswithin a single framawork is very en-
couraging.We alsodevelopeda pricing schemeEdge-to-
EdgePricing (EEP),within the Distributed-DCCframe-
work, andpresentedeveral simulationexperimentsof it.

By extensve simulations, we also investigatedef-
fectsof differentparametersn Distributed-DCCS perfor
mance. We demonstratedhat Distributed-DCCSs edge-
to-edgecapacityallocationalgorithm,ETICA, hasdomi-
nanteffectsof Distributed-DCCS performancesspecially
whenratio of flows’ budgetsR is large. We alsoinves-
tigatedDistributed-DCCS time-scaleparametersontract
length T, obsenration interval O, and LPS intenal L.
We demonstratedffect of thesetime-scaleparametersn
threeperformancenetrics:averagequeue utilization,and
servicedifferentiationability. We foundthatthe bestset-
ting for thethreetime-scaleparameterss: O < L < T.

Also, we introducedwo pricing architecturedasecbn
themanneiof attackingthe problemof congestiorcontrol
by pricing: Pricing for CongestionControl (PFCC)and
Pricingover CongestiorControl(POCC).We adaptedhe
Distributed-DCC framework to thesearchitecturesand
comparedthe architecturesdy simulation. We demon-
stratedthatPOCCis betterin termsof managingconges-
tionin network core,while PFCCachiezeswider rangeof
fairnesgypesin rateallocation.

Futurework shouldincludeinvestigationof issuesre-
latedto extendingDistributed-DCCon multiple diff-serv
domains. Anotherfuture work item is to implementsoft
admissioncontroltechniquesn the framevork by tuning
the contractparameteV,q,. Currently Vi, is setto
total network capacity which allows eachindividual user
to contractup to thewhole network capacity This some-
times(especiallywhennew usersoin in) causesisersto
contractfor significantlylargerthanthe network canhan-
dle.

Several otherimprovementsare possibleto the frame-
work suchas better capacityestimationtechniqueqsee
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SectionlV-D.2), betterbudgetestimationtechniquegsee
SectionlV-D.1).
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APPENDIX A: ALGORITHM FOR
ROUTING-SENSITIVE BOTTLENECK-COUNT
EsTiIMATION (ARBE)

Given a diff-serv network, we would like to estimate
numberof bottlenecksachedge-to-edgéow is passing
through.ThealgorithmARBE presentedhn this appendix
providesa solutionto this problem.

Assumingthat interior routersincrementbottlene&-
countheadeffield of pacletswhencongestedARBE cal-
culatesghe numberof bottlenecksanedge-to-edgéow is
passinghrough.ARBE operatesttheegressedgerouter

Assumingthateachbottleneckhasthe sameamountof
congestionand also assumehat they have the sameca-
pacity Let r;;(t) bethe numberof bottleneckshe flow
from ingress: to egressj, fi;, is passinghroughattime
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t. ARBE operate®ndeterministidime intervals,andcal-
culatesr;;(t) asfollows:
Fi(£),

rig(t) = { rij(t — 1) — Ar, 4)
wherer;;(t) is thehighesnumberof bottleneckshatflow
passedthroughin time intenal ¢, Ar is a pre-defined
value. 7;;(t) is updatedat eachpaclet arrival by simply
equatingit to the maximumof its actualvalue and the
bottleneck-counheadefield of the newly arrived paclet.
Algorithm 1 shavs the pseudo-codéor thealgorithm.

rij(t — 1) < 745(t)
otherwise

Algorithm 1 Algorithm  for
Bottleneck-CounEstimation
ARBE(BC(t), Ar)
{Ar is decayingstep-size:
{BC(t) is the maximumbottleneck-counteceved in
thelastintenal ¢.}
{BC is theactualestimatiorfor bottleneck-count.
if BC(t) > BC then
BC + BC(t)
else
BC + BC — Ar
endif

Routing-Sensitie

Realizethat the bottleneck-countheaderfield of the
paclets are being incrementedonly if they are passing
througha congestedbottleneck.lt is possiblehatsomeof
thebottlenecksarenotcongestedvhena particularpaclet
is passingthroughthem. For example, the bottleneck-
countheadeffield of the paclet maybeincrementednly
threetimes, althoughit actually passedhroughsix bot-
tlenecks. So, it is hecessaryo biasthe estimationto the
largesthnumberof bottleneckshepacletsof thatflow have
passedecently

Also as anotherissue, P routing causesoute of the
flows to changedynamically To considerthe dynamic
behaior of theroutes,it is alsonecessaryo decrease;;
whenr;;(t — 1) > 7;;(t). So,if therouteof theflow has
changedthenafter sometime (dependingon how large
the Ar is) thevalueof r;; will decreaséo theactualnum-
berof bottleneckgheflow is passinghrough.

APPENDIX B: MAX-MIN FAIRNESS, PROPORTIONAL
FAIRNESS, AND SocIAL WELFARE MAXIMIZATION

Consideramulti-bottlenecknetwork in whichthereis a
long flow thatis crossedy n parallelflows. An example
of sucha network is shavn in Figure 9-b. Supposeall
the bottlenecksareequialentin capacity C'. Intuitively,
whatever thelong flow gets,all the parallelflows will get
the restof the capacity Let x, be the capacitygiven to



thelong flow andz; be the capacitygivento oneof the
parallelflows. Supposehatthe utility of thelong flow is
ug(zo) = wolog(zy) andthe utility of oneof the parallel
flowsis ui(z1) = wilog(z1). Noticethatw, andw; are
thesensitvity of theflowsto capacity(alsointerpretedas
flow’s budget). Sincethe long flow is passingthroughn
bottlenecks,costof providing capacityto the long flow
is n timesmorethancostof providing capacityto oneof
the parallelflows. So, let costof providing z; to one of
the parallelflows be K (z1) = kz1, andlet the costof
providing z, to thelong flow be Ky(zo) = nkxzq. Within
thiscontet, thesocialwelfare,W, andits Lagrangiarwill

be:

W = wolog(xy) + nwilog(z1) — nkxy — nkxy

7 = wolog(zg)+nwilog(z1)—nk(zo+z1)+A(zo+z1—C)

After solvingtheabove Lagrangianwe getthefollowing
solutionsfor 2y andz; to maximizeW':

’w()C
g = ———
wo + nun
nw1C
= —-
wo + nun

Fromtheabove result,we make two obserations:

« First, if boththe long flow anda parallelflow have
equal bandwidth sensitvity, i.e. wy = wi, then
the optimal allocationwill bezy = C/(n + 1) and
z1 = Cn/(n+1). Thisis theproportionalfair case.
So,proportionalfairnesss optimalonly whenall the
flows have equalbandwidthsensitvity. As another
interpretationjt is optimalonly if all the flows have
equalbudget.

« Secondjf thelong flow is sensitve to bandwidthn
timesmorethana parallelflow, i.e. wg = nwy, then
the optimalallocationwill bezy = z; = C/2. This
is themax-minfair case.So,max-minfairnesss op-
timal only whenthe long flow’s utility is sensitve
to bandwidthin proportionto the costof providing
capacityto it. In otherwords, by interpretingband-
width sensitvity astheflow’s budget,max-minfair-
nessis optimal only whenthe long flow hasbudget
in proportionto the costof providing capacityto it.

Obsenrations similar to abose have beenmadein the

areae.g.[8], [27].

APPENDIX C: OPTIMIZATION ANALYSIS OF
EDGE-TO-EDGE PRICING (EEP)

In SectionV, we describeda pricing schemeEER
which suitsto the Distributed-DCCframewvork. Themain
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ideaof the EEPIs to balancesupplyanddemandy equat-
ing priceto theratio of users’budget(i.e. demand)B by
available capacityC'. Basedon that, we usedthe pricing
formula:

p= )

Q| @

where B is the users’ estimatedbudget and C is the
estimatedavailable network capacity The capacityes-
timation is performedbasedon congestionlevel in the
network, andthis makes the EEP schemea congestion-
sensitve pricing schemgseeSectionlV-D.2).

In this appendixwe will provide theoreticalproof that
(5) is optimalin the caseof logarithmicuserutilities. Fur
therwe will alsoshav how to calculateoptimal pricesin
the caseof non-layarithmi® concae utilities.

We will also investigateusers’elasticity to price and
bandwidth. Specifically we will first define different
typesof userelasticities,andthenlook at effect of these
elasticitieson optimalprices.

Also, note that optimization problem being solved is
basedntheassumptionthateachlink in thenetwork has
anassociatedbcal price,justlike in Low etal’s[9] pric-
ing framavork. Notice that this violatesthe fundamen-
tal designprinciplesof Distributed-DCCframeawork. This
meansour optimizationstudyof EEPhereis theoretically
correctwhile Distributed-DCCframewvork tradeff some
optimality for implementatiorpurposes.

A. ProblemFormulation

We now formulatethe problemof total userutility max-
imizationfor a multi-usermulti-bottlenecknetwork.

Let F = {1,...,F} be the setof flows and L =
{1, ..., L} bethesetof linksin thenetwork. Also, let L( f)
bethesetof links theflow f passeshroughand F'(I) be
the setof flows passingthroughthelink [. Let ¢; bethe
capacityof link . Let A bethe vectorof flow ratesand
Ay betherateof flow f. We canformulatethe total user
utility maximizationproblemasfollows:

SYSTEM -
m)z\leUf()\f)
f
subjectto
o <@, I=1,..,L (6)
fer()

This problemcanbe divided into two separatgroblems
by emplgying monetaryexchangebetweeruserflows and

5Note that non-logarithmicdoesnot meanconvex utility functions.
Our proofsarevalid only for concae utility functions.



the network provider. Following Kelly’s [28] methodol-
ogy we split the systemprobleminto two:

Thefirst problemis solved at the userside. Given ac-
cumulationof link priceson theflow f’sroute,p/, what
is the optimal sendingratein orderto maximizesurplus

FLOW;(p') :

> Wf}

max {Uf /\f
s 1EL()

over

Ap >0 (7

The secondproblemis solved at the provider’s side.
Givensendingrateof userflows (which aredependenbn
thelink prices),whatis the optimal price to adwertisein
orderto maximizerevenue

NETWORK (\(p!)) :
maxz Z PIAf
I IeL(f)
subjectto
oA <, 1=1,..,L
FEF(D)
over
p>0 (8)
Let the total price paid by flow f bep/ = 3¢, (s pi

Then,solutionto FLOW(p/) will be:

Up(A) =»'
Ar(p!) = U () ©)
Whenit comesto the NETW ORK (A(pf)) problem,

the solutionwill be dependenbn userflows utility func-
tionssincetheir sendingateis basedn their utility func-
tions as shawn in the solutionof FLOW/(p/). So, in

thenext sectionswe will solvethe NETW ORK (\(pf))

problemfor the casesf logarithmicandnon-logarithmic
utility functions.

B. OptimalPrices: Logarithmic Utility Functions

We model customeri’s utility with the well-known
function’ [8], [22], [29], [9]

ui(x) = wilog(x) (20)

wherez is theallocatedbandwidthto thecustomemandw;
is customer’s budget(or bandwidthsensitvity).

"WangandSchulzrinngntroduceda morecomplex versionin [15].
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Now, we setup a vectorizednotation, then solve the
revenue maximization problem NETW ORK (A\(p/))
describedin the previous section. Assumethe network
includesn flows andm links. Let A be row vectorof the
flow rates(\ for f € F), P becolumnvectorof theprice
ateachlink (p; for I € L). Definethen x n matrix P*
in which the diagonalelementPJ?;- is the aggregateprice
beingadiertisedto flow j (i.e. p’ = 371 (;) pi) andall
theotherelementsare0. Also, let A bethen x m routing
matrixin whichtheelement4;; is 1 if ith flow is passing
thoughjth link andthe element4;; is 0, if not, C bethe
columnvectorof link capacitieqc; for [ € L). Finally,
definethen x n matrix X in which the diagonalelement
);; is therateof flow j (i.e. Aj; = A;) andall the other
elementsre0.

Giventheabove notation relationshipbetweerthelink
pricevector P andtheflow aggreatepricematrix P* can
bewritten as:

AP = P*e (11)

A= (e)T =el'A

wheree is the columnunit vector

We usethe utility functionof (10)in our analysis.By
plugging(10) in (9) we obtainflow’s demandunctionin
vectorizednotation:

AP*) =wp! (12)

whereW is row vectorof the weightsw; in flow’s utility
function (10). Similarly, we canwrite dervative of (12)
as:

N(P*) = -w(P**) (13)

Also, we can write the utility function (10) and its
derwative in vectorizednotationasfollows:

U =
U\ =

(14)

Wlog(})
! (15)

WA~

The revenuemaximizationof (8) canbe re-writtenas
follows:

max R = AAP
P
subjectto
2 < ot (16)
So,we write the Lagrangiarasfollows:
L =XAP +(CT — M)y 17)

wherer is columnvectorof the Lagrangemultipliers for
thelink capacityconstrain.



By plugging (12) and (13) in appropriateplaces,the
optimality conditionsfor (17) canbewritten as:
L,:CT —wP'4=0 (18)

Lp- : —W(P*?) 1P e+ WP le—W(P**) 1Ay =0

(19)
By solving19for P*, we obtain:
P 'Pre4+Te— P Ay =0 (20)
P =0 (21)
Now, solwe (18) for P*:
CT-—wPA=0 (22)
P* = A(CH™'w (23)

Apparently theoptimizationproblemhastwo solutions
asshawvn in (21) and(23). Since(21) violatesthe condi-
tion P > 0, we accepthe solutionin (23).

Wefinally derive P by using(11):

AP = P*e = A(CT)"'We (24)
P=(CT)"'we (25)

SinceP* = (P*)T, we canderive anothersolution:
AP = Prfe=WTC'ATe (26)
P=A"'wTc4aTe (27)

Notice that the result in (25) holds for a single-
bottleneck(i.e. single-link) network. In non-\ectorized
notation,this resultstranslatego:

_ 2 fer Wy
c

Theresultin (27) holdsfor amulti-bottlenecknetwork.
Thisresultmeanghateachlink’s optimal priceis depen-
denton theroutesof eachflow passinghroughthatlink.
More specifically the optimal price for link [ is accu-
mulation of budgetsof flows passingthroughlink [ (i.e.
WTAT in the formula) divided by total capacityof the
links that are traversedby the flows traversingthe link [
(i.e. A~'C ! in theformula). In non-\ectorizednotation,
priceof link I canbewritten as:

o= o rer) Wf
2 feF(l) 2keL(f) k

C. Elasticity

The term elastic was first introducedto the network-
ing researcltommunityby Shenler [30]. Shenler called
applicationsthat adjusttheir sendingratesaccordingto
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the available bandwidthas“elastic applications”,andthe
traffic generatedy suchapplicationsas“elastic traffic”.

An exampleof suchtraffic is the well-knovn TCP traf-

fic, which is adjustedaccordingto the congestionindi-

cationsrepresentinglecreasén the available bandwidth.
Shenler, further called applicationsthat do not change
their sendingratesaccordingto the available bandwidth
as‘“inelastic”. So, this interpretationof elasticity is the
sameas adaptivenessi.e. an applicationis elasticif it

adaptsits rate accordingto the network conditions,it is

inelasticif it doesnot.

The conceptof elasticity originatesfrom the theory of
economics. In economics,demandelasticity according
to pricé® is definedas percentchange in demandin re-
sponsdo a percentchange in price [31]. In otherwords,
demancelasticityis the responsienessof the demando
price changes.A formal definition of demandelasticity
canbewrittenas[31]:

_ AX(p)/X(p)
Ap/p
wherep is price, Ap is the changein the price, X (p)
is users demandfunction, and A X (p) is the changein
users demand(28) canbere-writtenas:

__p dX(p)
X(p) dp
Givene, the characteristid., of userdemands made
accordingto thefollowing functionaldefinition[31]:

(28)

(29)

elastic |e] >1
L. =< unitelastic |e| =1
inelastic  |e] <1

So,Shenler’s interpretatiorof elasticityfor userutility
is actuallydifferentfrom the realmeaningof elasticityin
economics. Note that Shenler definedelasticity of user
utility (or applicationutility) accordingo bandwidthjet’s
callit e. Letu(x) beusers utility if heis givenz amount
of bandwidth. Then,following the agumentin (29), we
canwrite e as:

z du(z)
u(z) dz

According to Shenler’s interpretation,the functional
definition for L. (i.e. characteristiof users utility ac-
cordingto bandwidth)will beasfollows:

(30)

€E =

inelastic e€=10
elastic € # 0 & userutility is concae
notdefined, e # 0 & userutility is corvex

L

8Demandelasticitycanbe definedaccordingto several thingsother
thanprice (e.g. time of service,delay of service). In therestof the
text, we will referto demancelasticityto price whenwe saydemand
elasticity



Obviously, L. is a lot differentthan L.. Basically L.
interpretselasticityasresponsivenesshile L. doesit as
adaptiveness

We can constructthe relationshipbetweene and ¢,
given that the usersolves the well-knovn maximization
problem:

max {u(z) — zp}

The solution to the above problemis «/(z) = p. So,
givena price p, the userselectshis demandsuchthat his
maiginal utility equalsto p. Basedon that relationship
betweenthe utility function u(x) andthe demandfunc-
tion X (p), we canconstructthe relationshipbetweerthe
demand-pricelasticitye andtheutility-bandwidthe elas-
ticity. In the next sub-sectionsve will formulatetherela-
tionshipbetweertheseelasticities.
1) Utility-Bandwidth Elasticity e:
wheree # 0 ande # —1. Then,

Let X(p) = Ap°

p= ’U/(.Z‘) _ A_l/sl‘l/s

u(z) = A7/e (1 + 1) gl/et
€

So,

1
6:E+1’ eF0&e# -1

Figure23-aplotse with respecto .
2) Demand-PricéElasticitye: Letu(zr) = Bz¢ where
e # 1. Then,
u'(z) =p = Aex!

1

xp) = (5)"

— 1
1 ¢F

Figure23-bplotse with respectoe.

So,

£ =

D. OptimalPrices: Non-Lagarithmic Utility Functions

In SectionlX-B, we derived optimal pricesfor therev-
enuemaximizationproblem NETW ORK (A(pf)). In
thatderivationusersdemand-pricelasticitye was-1 (see
(12)), which meansusershadunit elasticdemandsNow,
we re-performthe derivation by assuminghatusershave

a utility-bandwidth elasticity of €, whereusers’demand-

priceelasticityise = 1/(e — 1) basedn thestudyin the
previoussection.Also, notethat0 < e < 1 mustbesatis-
fiedin orderto male sure concavityof the utility function

First,let B berow vectorof theweightsthatarediffer-
entfor eachflow’s utility function,and B bean (n x n)
matrix in which the elementB;; is the weight of flow j
andall the otherelementsarezero.

28

We usea genericutility function. Thefunctionandits
dervative is asfollows:

U(X) = BX®

U'(A) = BeA“!

(31)
(32)
Accordingto therelationshigbetweere ande described

in SectionlX-C.1, we canwrite thedemandunctionand
its derivative asfollows:

MNP*) =e e’ Bcp* (33)
Similarly, we canwrite derivative of (33) as:
N(P*) = e " B P! (34)

For the revenuemaximizationproblem,we againsolve
theLagrangiarin (17) but for thenew demandunctionof
(33). By plugging(33) and(34) in appropriateplacesthe
optimality conditionsfor (17) canbewritten as:

L,:CT — e "B~ P*A=0 (35)

Lp- : € feel B2 P** 1 (P*e — Ay) + ¢ S’ B~°P**¢ = 0(36)

By solving (36) for P*, we obtain:

e’ BP*  (P*e — Ay) + T B™P*e =0 (37)
eP* Y (P*e—Ay)+Te=0 (38)
1
P*=—Avyet (39)
€
Now, apply(39) into (35) andsolve for :
. 1 £
Ct =B (—Afye_l) A (40)
€
£
B cTA™! = (EA76_1> (41)
€
lA’ye_l — EA_I/E(CT)I/E(GT)_I/EB (42)
€
Substitutg42) into (39) andwe obtain P*:
P = 6Afl/z-:(C«T)l/s(eT)fl/sBE (43)

From(43) we obtainP:
AP = P*e = eA~Y5(CT)V5 (") ~1/% Be (44)
P = cA= AVE (M) (eF) Ve Be (45)
P—ea-lall/el ((CT)|1/5|)_1 (eT)1/el (B\d)ll/sl ¢ (46)

Theresultin (45) impliesthe samething asin thecase
of logarithmicutility functionsexceptthatthelink capac-
ities mustbetaken moreconseratively dependingon the
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Utility-Bandwidth Elasticity
N o

Demand-Price Elasticity
N o

. \ ) \

. . |

! . |

-4 2 0 2 4 -4 2 0 2 4

Demand-Price Elasticity Utility-Bandwidth Elasticity
(a) Utility-bandwidth elasticitye. (b) Demand-priceslasticitye.

Fig. 23. Utility-bandwidthelasticitye anddemand-pricelasticitye with respecto eachother

elasticity(e or ¢ by choice)of flows. Obsenre thatasflows
demand-pricelasticitye getshigher thecapacitymustbe
takenmoreconseratively basecntheformula(C™)!1/¢!,
Also obsere that as flows utility-bandwidth elasticity e
getshigher the capacitymust be taken more consera-
tively basecbntheformula (CT)/V/el = (CT)le-1,

Basedon (46) we canwrite the optimal price formulas
for single-bottleneckand multi-bottleneckcasesrespec-
tively asfollows in non-\ectorizedform:

> ol 1/e]
_ rer Wy

le| 1/¢]
e | ZIEE Yy
L per() Lrer(s) k




