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Abstract— While it is well known that second order scaling
in network traffic can leads to larger queuneing delays, higher
drop rates and extended periods of congestion, reducing the
scaling exponents has remained an open problem. In this
paper we evaluate some techniques to reduce the degree of
scaling in TCP traffic, specifically by reducing two related
causes: (1) timeouts and exponential backoffs (2) burstiness
and ACK compression. We propose a simple modification
to the RED algorithm, and show that it can lead to signifi-
cant reductions in hoth multt and mono fractal properties of
TCP traffic as compared to the currently implemented active
and passive buffer management policies, We then evaluate
TCP pacing and show that it too can reduce the multi and
mono fractal scaling of traffic. We also show that though
our technigues are aimed at small time-scale TCP related
causes of scaling, it is also effective in reducing the degree
of self-similarity in traffic even when application and user
level causes are also present, as long as TCP is used as the
underlying transport protocol.

1. INTRODUCTION

It is well known that the scaling, burstiness and long-
range dependence associated self-similar and multi-fractal
nature of traffic can lead to a number of undesirable effects
like high buffer overflow rates, large delays and persistent
periods of congestion {1}, {2], [11]. The severity of these
conditions is dependent on various conditions like the rel-
evant time-scales of the system and system utilization {1].
However, given other factors are constant, the overflow rates
are proportional to the degree of self-similarity or the Hurst
parameter [9].

Our focus in this paper is to study techniques which re-
duce the degree of second order scaling in network traffic.
The time-scales over which we focus our attentions corre-
sponds from few milli-seconds to 100s of seconds and thus
corresponds to the multi-fractal and pseudo self-similar be-
havior. The underlying idea of the first technique is to re-
duce the incidence of timeouts and exponential backoff in
TCP flows which can cause scaling on finite time-scales as
shown in [5], [14]. We do this by looking at existing and
also proposing a new buffer management policy to reduce
correlated losses (and consequently timeouts) in TCP flows.
The second technique is to eliminate the inherent bursti-
ness and back-to-back packet transmissions in TCP flows.
One of the reasons behind this behavior is the phenomenon
of ACK compression in TCP flows [15]. ACK compression
has also been suggested as a possible cause of the fractal
nature of network traffic in [3]. We look at the impact of
reducing the effects of ACK compression and burstiness of
TCP sources through TCP pacing {15] on the second-order
scaling of traffic.
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Our results show that both these techniques are very suc-
cessful in reducing the scaling exponents and burstiness in
traffic. While these techniques are aimed at TCP’s contri-
bution to traffic scaling, we also show that these techniques
are also effective when other factors like heavy-tailed file
sizes and human causes like think times are also present,
as long as TCP is used as the underlying transport proto-
col. Also, while we mainly concentrate on the multi-fractal
and fixed time-scale properties, our simulations show that
the large time scale properties are also affected by these
schemes resulting in lower degrees of self-similarity or the
Hurst parameter.

The rest of the paper is organized as follows. In Section
I1 we give a brief overview of basic concepts. Section I
investigates the impact of three buffer management schemes
on traffic scaling: taildrop, RED and a proposed modified
RED algorithm. In Section TV we concentrate on the impact
of reducing the burstiness of TCP flows. Finally, Section V
presents the discussions and concluding tremarks.

I1. DISCRETE WAVELET TRANSFORM AND
MULTI-SCALING

Consider an arrival process A(0,£) which counts the cu-
mulative traffic arrival in the time interval (0,£) and its as-
sociated increment process Xa (i) defined as

Xa(i) = A(0,iA) — A(0,(i = DA) 1)
The basic hypothesis associated with scaling is that the mo-
ments of the increment process behave as

S Xali)i~C@ATD A0 ()

While in theory, this behavior should hold over all time
scales for the scaling hypothesis to be satisfied, in practice,
the hypothesis can be said to be reasonable if the behavior
is satisfied over a range of timescales. The function 7(g) is
called the structure function and for mono-fractal or self-
similar processes, T(g) is linear in g. For multi-fractal pro-
cesses, 7(g) is non-linear in ¢ and for both the processes, in
general, is decreasing in gq.

The discrete wavelet transform represents a one dimen-
sional signal X(t) in terms of shifted and dilated wver-
sions of a bandpass wavelet function (t) and shifted
versions of a low pass scaling function ¢(t). For the
choices of ¥(¢) and ¢(¢) which allow us to form an or-
thonormal basis, the signal can be represented as X(¢) =
T (X O)d0(0) Sor(t) + T T (X (E0hs(8)) i D),
where ¢;(t) = 27924279t — k) and ¥;i(f) =
279/%p(279t — k). The quantity d;x = {X;) is referred
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to as the wavelet coefficient at scale 7 and time 27k. With
the partition functions defined as

Sui) = - 3 | dy '~ C()g®), @
 k

for gelf-similar processes a(g) is linear and given by a(g) =
Hg4-q/2. On the other hand, if a{g) non-linear, we say that
the process shows multi-scaling. It is common in multi-
fractal theory te define the exponents slightly differently:
¢{g) = alg)— q/2 which results in {(g}) = Hg for self-similar
processes. In this paper, we plot {(g) to study the scaling
behavior of network traffic.

III. BUFFER MANAGEMENT POLICIES AND
MULTI-SCALING

In this section we look at the effect of buffer management
policies on the scaling properties of traffic passing through
it. We consider both passive and active queue management
algorithms.

A. Taildrop Queues

Taildrop queues are currently the most widely imple-
mented queueing mechanisms in routers in the Internet [10].
The first-in-first-out (FIFO) policy of taildrop queues, cou-
pled with the bursty nature of TCP traffic implies that the
packet drops from a taildrop queue become correlated and
multiple packets can get dropped from the same window.
The effect of taildrop queues on the probability of timeouts
in TCP flows, can be modeled with the correlated loss model
used in (10} and [12].

B. RED Queues

RED is an active queue management algorithm which ran-
domly drops packets hefore a queue becomes full, so that end
nodes can respond to congestion before buffers overflow and
was proposed in [4]. For each packet arrival at the queue,
the drop probability for the packet d(k) is given by

0 ) for k < minm
dik) = Eﬁ%mxp for ming, < k < mazy,
1 otherwise

(4)
where ming,, maxs, and mazx, are control variables denot-
ing the queue thresholds and the maximum drop probability.

For a RED queue the packet drop pattern is closely mod-
eled by an independent loss model as noted in {13] and the
references therein. In Figure 1 we plot the probability that
a loss in a TCP flow with a congestion window of 5 leads to
a timeout in the case of correlated and independent losses.
We see that with correlated losses, the probability of time-
outs are much higher for the same loss rates. This leads
to the intuition that the scaling and burstiness of traffic
passing through RED queues will be much lesser than that
through taildrop queues. We verify this intuition through
simulations later in this section.
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Fig. 1. Comparison of timeout probabilities for TCP flows with a
window of 5 for correlated and independent loss models.

Algorithm 1 Meodified Dropping algorithm of RED

last_drop.flag <= 0
for Each Packet Arrival do
if last_drop flag = 1 then
last_drop_flag = 0;
goto enqueue;
else if miny, < avg < maz, then
with probability d(k), drop the packet
if packet is dropped then
last_drop flag = 1;
end if
else if mexy, < avg then
Drop the packet;
last_drop flag = 1;
else
goto enqueue;
end if
end for

C. Modified RED Queues

If the offered load to a RED queue is sufficiently high
such that the average queue length becormnes close 10 maz,y,,
RED fails to perform better than taildrop queues (7]. This
is due to the fact that when the average queue length be-
comes greater than mazey, RED drops each packet with
probability . To deal with this situation, we propose a
small change to RED’s dropping policy and the new algo-
rithm for packet dropping is shown in Algorithm 1. The
idea is not to drop any two consecutive packets which arrive
at the queue, unless of course if the queue is full. Since TCP
generally sends back to back packets, ensuring that no two
consecutive packets are dropped will reduce the probability
that multiple packets from the same window are dropped,
thereby reducing the occurrence of timeouts.

The probability that any arbitrarily arriving packet is
dropped when the average queue length is &, 0 < k < glen
can be calculated as

dik)
15 d() (5)

where d{k) is defined in Equation (4). We note that if maz,

d'(k) =
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Fig. 2. Comparison of packet drop probabilities in the RED and
modified RED buffer management policies.

Fig. 3. Topology of the network for the validation tests,

is small as is suggested in literature on RED parameter con-
figuring, then this modification does not significantly affect
the drop rates while the average queue length is less than
maz.y,. However, when the average queue length exceeds
maxy, but is less than glen, the packet drop probability
becomes 0.5 as compared to 1 in RED (Figure 2), thereby
reducing the incidence of timeouts.

D. Results

Our simulation results were generated by simulations us-
ing the simulator ns. The topology used for the simulations
is shown in Figure 3. The simulations for each queueing
policy is again broken in two parts: the presence or ab-
sence of web traffic. The web traffic is introduced as back-
ground traffic for more realistic wide area netwotking sce-
narios and to test the effectiveness of the buffer management
policies against non-TCP related causes of scaling like file
sizes and human factors. The web traffic was generated us-
ing the specifications defined in [3]. For the simulations, the
buffer size was kept at 100 packets. For the RED and mod-
ified RED queues, the other parameters were ming, = 30,
mazy, = 90, maz, = 0.1 and w, = 0.002. All the sim-
ulatiops were conducted for a “simulated” time of 3600.0
seconds. For the scaling plots, we collected anci analyzed
the arrival statistics corresponding to the aggregate traffic
arTiving at the bottleneck link.

In Figure 4 we compare the scaling exponents {{(q) for
simulations without web traffic corresponding to 30 TCP
flows. The results for other flow sizes (40, 50 and 60) are
similar. We note that, as expected, taildrop queunes show a
much higher variation and a non-linear pattern in the scaling
exponents suggesting multi-fractal behavior. In contrast,
the linear nature of {(g) for the RED and modified RED

queues suggest less burstiness and a behavior consistent with
self-similarity.

The results for simulations with web traffic are shown in
Figure 5. In this case, we note that the scaling exponents
for all the three queues behave linearly in g suggesting self-
similar behavior. The self-similar behavior in this case is
due to the heavy tails introduced by the web traffic. For
this case, we also plot the Hurst parameters for each case
in Table I. We note that for Jower loads the Hurst param-
eters corresponding to the taildrop queue are higher than
both the RED and the modified RED algorithms. As the
load on the network increases, the Hurst parameter of the
traffic in the RED queue becomes more than the other two
scheduling disciplines. This is due to the higher proportion
of consecutive losses in RED queues under high loads (7].
However, we note that for all cases, the modified RED al-
gorithm performs better than the others or equals the best
performance.

In Table I we also compare the throughputs of the long
TCP flows in the simulation scenarios. The improvement
in the throughput with RED queues over taildrop queues
is around 5-11% with web traffic and 1-3% in its absence.
Similarly, modified RED increases the throughput by 5%
over RED in the presence of web traffic while there is no
improvement in its absence.

IV. SOURCE-LEVEL BURSTINESS OF TCP Frows

TCF traffic is inherently bursty in nature and TCP
sources tend to send back to back packets. One of the
key reasons behind this behavior is ACK compression as
described in [15]. The immediate consequence of this is
that the sender becomes bursty and sends more back to
back packets. Additionally, the sender might be misled into
sending move data than the network can accept [8]. This
in turn contributes fo the losses and timeouts experienced
by the TCP flow. It was also conjectured i [3] that the
phenomenon of ACK compression might be responsible for
the fractal behavior of network traffic. Thus, the prospect
of reducing scaling in network traffic by undoing the effects
ACK compression on TCP dynamics is very promising and
worthy of further exploration.

One of the most widely reported mechanisms for smooth-
ing out TCP traffic is through evenly spacing or “pacing”
a window of packets over the round-trip time and was first
proposed in [15]. Pacing is accomplished at the sender (re-
ceiver) if instead of transmitting a packet (ACK) everytime
an ACK {packet) is received, it is delayed to maintain the
proper spacing between two successive packets (ACKs). The
delay between two successive packets is given by

RIT
delay = o (6)
where cwnd is the current value of the congestion window.

In Figure 6 we plot the behavior of the scaling exponent
of paced TCP and TCP Reno for taildrop and RED queues.
We again note that while TCP Reno shows multi-fractal
behavior, specially with taildrop queues, while multi-fractal
scaling is absent for paced TCP for both taildrop and RED

-
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Fig. 5. Scaling behavior with web traffic: 30 TCP flows and 10 web sessions.

Queues with web traffic

Configuration Taildrop RED Modified RED
Throughput | H | Throughput | A | Throughput | H
10 Long, 5 web 63988.44 0.58 72082.00 0.50 63065.77 0.50
15 Long, 5 web 42099.70 | 067 | 4478519 | 0.60 | 4742237 | 0.57
10 Long, 10 web 33005.78 0.74 37165.11 0.76 34517.33 0.75
15 Long, 10 web 22318.52 0.77 23449.48 0.84 25204.88 0.77
20 Long, 10 web 17508.89 0.80 19952.00 0.091 21275.88 0.80

TABLE |
THROUGHPUT (IN BITS/SEC) AND HURST PARAMETERS FOR THE THREE BUFFER MANAGEMENT POLICIES.

queues. In both the cases, pacing leads to significant reduc-
tions in the traffic burstiness and consequently the scaling,

In Figure 7 we compare the scaling exponents for paced
and T'CP Reno in the presence of web traffic (20 long TCP
flows and 10 web sessions) and results for other cases {enu-
merated in Table IT} are similar. We note that the behavior
of {{q) is linear in q suggesting the presence of self-similar
properties. In Table II we compare the Hurst parameters
for the simulations with web traffic. We note that pacing is
very successful at reducing the degree of self-similarity even
with the presence of session and user level causes. Also, we
note that pacing leads to larger reductions in H as com-
pared to the modified RED algorithm. This leads us to be-
lieve (without rigorous proof) that the inherent burstiness
in TCP flows is a greater contributor to traffic self-similarity
than timeouts and exponential backoffs.

V. SUMMARY

In this paper we explored some methods for reducing the
degree of second order scaling of TCP traffic. The methods

Queues with web traffic

Configuration Taildrop RED

Renc | Paced | Reno | Paced

10 Long, 5web | 058 | 050 | 050 | 050

15 Long, 5web | 067 | 0.50 | 0.60 [ 0.50

10 Long, 10 web | 0.74 0.50 0.76 0.50

15 Long, 10 web | 0.77 0.50 0.84 0.50

20 Long, 10 web | 0.80 0.54 0.91 0.58

TABLE H

HURST PARAMETERS FCR RENC AND PACED TCP WITH WEB TRAFFIC
FOR TAILDROP AND RED QUEUES.

were based on two of the causes which contribute to the
self-similarity and multi-fractal nature of network and in
particular TCP traffic: timeouts and the burstiness of TCP
traffic. While we considered only the causes of multi and
mono fractality from the TCP point of view, our solutions
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Fig. 7. Comperison of scaling behavior with web traffic (20 long flows and 10 web session) for Reno and Paced TCP.

are also effective against other causes of self-similarity like
session interarrival times and heavy tailed distributions in
the file sizes, introduced by web traffic.

Our results show that while taildrop queues lead to a
multi-fractal behavior in traffic, RED and modified RED
queues result in self-similar traffic. Also, in the presence of
web traffic, the traffic has mono-fractal characteristics due
to the heavy tails associated with web server file sizes and
inter-file separation times. For these cases, RED and mod-
ified RED algorithms have lower degrees of self-similarity
than taildrop queues and the modified RED queue consis-
tently gives the lowest degree of self-similarity for all these
SCenarios.

Another factor contributing to the multi-fractal scaling
of network traffic is the inherent burstiness of TCP traffic
which can be reduced by paced TCP. Our simulations show
that pacing in TCP eliminated the multi-fractal scaling of
TCP traffic under both taildrop and RED queues. Also,
in the presence of web traffic, paced TCP results in signifi-
cant reductions in the Hurst parameter for both RED and
taildrop queues at the bottleneck when compared to other
versions of TCP and is in fact more successful at it than the

modiﬁed RED algorithm.
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