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Abstract

Today the Internet offers a single path between end-systems even though it intrin-
sically has a large multiplicity of paths. In this paper we present BANANAS, an
architectural framework aimed at introducing multipath routing in the Internet.
BANANAS uses the idea of a globally known path identifier, known as “PathID” to
achieve source ! specified, explicit, multipath routing in a partially upgraded net-
work. We show that BANANAS allows introduction of sophisticated explicit and
multipath routing capabilities in the context of connectionless routing protocols
(e.g. OSPF, IS-IS, BGP etc.). BANANAS framework allows flexibility in function
placement and complexity management. Results from complexity analysis, SSFNet
simulations and Linux/Zebra implementation at Utah’s Emulab testbed have been
used to evaluate and illustrate the BANANAS framework.
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1 Introduction

Today’s Internet routing protocols like OSPF and BGP were designed to pro-
vide one primary end-to-end service, “best effort reachability.” These pro-
tocols realize the “best-effort” concept by offering a single-path to destina-
tion subnets. However, the internet topology has an intrinsic multiplicity of

1 source refers to the first BANANAS upgraded router in the data path and not
necessarily the source host
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paths, hosts have multiple potential network interfaces and autonomous sys-
tems (both enterprises and ISPs of various sizes) are multi-homed [1-3]. It is
interesting to ponder on two questions:

a) Why is path multiplicity a valuable architectural feature?

b) Why have we not significantly exploited the intrinsic path multiplicity in the
Internet ¢

The answer to the first question is that multi-path transmission can be funda-
mentally more efficient than the current single-path paradigm. Just like packet
switching is fundamentally more efficient than circuit switching because it of-
fers the potential to leverage both spatial and temporal multiplexing gains
at a single link (see [4], chapter 1,2), a network offers one more dimension
where spatio-temporal multiplexing gains may be obtained, different paths.
Packet switching does not waste unused capacity if user demand is available
at a single link; similarly, with path multiplicity available to end-to-end flows,
unused capacity in paths will not be wasted if user demand is available. Using
our proposed BANANAS framework, such multiple paths may be leveraged
at different levels in the networking stack- legacy OSPF or BGP networks,
overlay networks, peer-to-peer networks (e.g. dynamically instantiated over-
lays using a peer-to-peer lookup infrastructure to support video-conferencing)
and last-mile multi-hop fixed-wireless networks.

The answer to the second question is clearly not the lack of algorithms and pro-
tocols. There have been several proposals for multipath route-computation [5-
8], Internet signaling architectures [9-13], novel overlay routing methods [14,15]
and transport-level approaches for multi-homed hosts [16,17]. The fact that
these developments have not triggered widespread deployment suggests that
the core problem is an architectural one 2. The Internet lacks an evolution-
ary framework that admits incremental deployment of path multiplicity, while
providing sufficient flexibility in terms of architectural function-placement and
management of complexity. This paper proposes to fill that void with a frame-
work called “BANANAS” 3.

At the highest level, BANANAS proposes a simple extension of Internet
operation to admit and leverage end-to-end path-multiplicity (PM). In this
model, source-hosts initiate one or more end-to-end “flows” and map flows
to local network interfaces. The “network” provides one or more end-to-end
paths through the independent upgrades of a subset of network nodes, possi-
bly situated in multiple administrative domains. A subset of these upgraded
nodes (e.g. selected edge-nodes) may also map “flows” to available “paths” *.

2 Another key problem involves incentives; but incentives depend upon attributes
of the underlying architectural framework.

3 BANANAS is not an acronymn! It is adapted from the car racing comedy movie
title Herbie goes Bananas

4 E.g. Packets from TCP connections would be mapped single “path” to avoid



Source-hosts may arbitrarily map “packets” to “flows.” Observe that today’s
single-path model is a special case of this PM-model. The PM model also al-
lows a subset of source-hosts and routers to be independently upgraded within
the scope of usual administrative boundaries. Upgraded node may “see” only
a subset of available paths within appropriate administrative boundaries. This
high-level model is a best-effort path multiplicity model, clearly different from
IPv4/IPv6 connectionless loose-source-routing model [18,19] and from end-to-
end signaled source-route models used in ATM networks (e.g. PNNI [20]) or
MPLS networks [21].

BANANAS provides a set of concepts and building blocks to realize this high-
level PM model. A core abstract idea in BANANAS is that a path can be
efficiently encoded as a short hash (called the “PathID”) of a sequence of
globally-known identifiers (e.g. router IDs, link interface IDs, link weights,
AS numbers etc.). This concept has some very important advantages. First,
a hash-based data-plane encoding is more efficient than IPv4/IPv6’s loose-
source-routing encoding [18,19] that is an uncompressed string of IP addresses.
Second, since the PathlD is a function of globally-known quantities, it inher-
its their global significance, i.e., it can be computed and interpreted within
the same scope of visibility. This “global” scope may refer to a single routing
domain if router/link IDs are involved; or may refer to the universe of BGP-4
routers if AS numbers are used. The global PathID semantics allows any up-
graded multipath capable (MPC) node to autonomously compute the PathID
without any changes in legacy single-path capable nodes. It also removes the
need for an explicit out-of-band signaling protocol as a path-setup mechanism.
Note that one purpose of signaling in ATM and MPLS is to map global IDs
(global addresses, path specifications) to locally assigned IDs (labels). The
global PathID semantics allow the mapping of BANANAS in an incremental
manner to connectionless Internet routing protocols (e.g. OSPF, BGP-4).

In addition, the BANANAS framework allows considerable flexibility in terms
of architectural function placement and complexity management. These in-
tangible aspects are crucial for tailoring the proposed building blocks and
establishing the appropriate incentives for adoption by vendors and ISPs. For
example, the framework allows considerable flexibility in the choice of mul-
tipath route-computation algorithms. It also provides a distributed valida-
tion procedure to ensure the validity of computed PathlIDs, i.e. to check if
forwarding exists in all downstream routers for the PathIDs. As another ex-
ample of architectural flexibility, we propose an efficient variable-length hash
realization of the abstract framework. This scheme moves control-plane com-
plexity and state overheads to network edges, allowing a very simple interior
node design. The proposed scheme realizations are evaluated using integrated
OSPF/BGP simulations in sizable topologies and Linux/Zebra implementa-
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tion run on Utah’s Emulab emulation testbed facility.

We are currently deploying the BANANAS framework on the worldwide Plan-
etLab infrastructure [22] as an public experimental wide-area network overlay
service. We are also building a medium-sized multi-hop 802.11 community
wireless network on which this framework will be deployed. We believe that
the mere expectation of multiple end-to-end paths will trigger application inno-
vation in new areas such as end-to-end bandwidth aggregation [17], end-to-end
resilience and video transmission over multi-paths [14,15,23] and end-to-end
multi-path based security strategies (e.g. protecting data integrity using mul-
tipaths).

The rest of the paper is organized as follows. Section 2 introduces the ab-
stract framework and concepts. Section 3 explores the architectural flexibility
in BANANAS by considering an alternate index-based PathID encoding. Sec-
tion 4 summarizes the intra-domain routing extensions for link-state protocols,
OSPF and IS-IS. Section 5 develops the inter-domain ideas of BANANAS in
the context of BGP-4. Section 6 presents both simulation and linux-based
implementation results to illustrate the architectural features of BANANAS.
Related work is surveyed in Section 7, followed by summary and concluding
remarks in Section 8.

2 The BANANAS Framework

2.1 PathID: Abstract Concept

Consider a network modelled as a graph G = (V, E) where V is the set of
vertices or nodes and E is the set of edges or links in the network. Let N
denote the number of nodes in the network, i.e. the cardinality of the set
V. Each link (7, j) € E has an identifier associated with it, denoted by [, ;.
Each node i also has an identifier denoted by n;. Consider a path P ; from
node i to node j, which passes through nodes ¢,1,2,...,m — 1, 5. This path
can be represented as a sequence of globally-known node and link identifiers
[ni,li1, 1, b2, 12, ..y lm—1 4, mj]. This path sequence can be compactly repre-
sented by a hash of its elements. A path identifier (or, in short “PathID”)
is defined as a hash of the above sequence or any non-null subsequence de-
rived from it. Observe that the IP destination address (j), the uncompressed
IPv4/v6 loose-source-routes [18,19], the XOR of router IDs proposed in LIRA
[11], or a hash of the subsequence of link weights are all examples of valid
PathIDs, obviously with differing characteristics. Therefore the particular sub-
sequence and PathID encoding function chosen is crucial in determining the
utility of the PathID. These abstract concepts are illustrated in Figure 1.
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PathlD is a hash of the Path sequence above.
For example, MD5, CRC, Sum, XOR, etc.

Fig. 1. Path and PathID Concepts

A desirable hash is compact, easy to compute and has a low collision prob-
ability (i.e. high uniqueness probability). This demands a hash function that
offers low collision probabilities. A simple hash of the path sequence may be
obtained by using the sum or XOR function (suggested in LIRA [11]). While
these are simple and fast, it may lead to non-unique PathIDs. Our canonical
hash function choice is a 128-bit MD5 hash followed by a 32-bit CRC of the
128 bit MDb5 hash (resulting in a final 32-bit hash value). We use the notation
(MD5 + CRC32) hash to represent the above two-step hashing process. Alter-
natively, 32-bits of the 128-bit MD5 hash could also have been used. This hash
value is used in conjunction with the destination address (j); leading to a two-
tuple hash [j, PathID]. For convenience, we refer to the second tuple value as
PathID. The collision probability, probability that multiple paths lead to same
PathlID, depends only on the number of paths to any given destination prefix,
and the nature of the path subsequence on which the MD5+CRC32 function
is applied. Assuming a random bit-string as input and all the 232 outputs to
be equally likely, the probability for collision is given by 1 — WL/&)" where,
n is the number of possible outcomes (232) and k is the number of paths to a
destination.

A sequence of well-known link interface IDs, router IDs and link weights (in
OSPF or IS-IS) on the path can be used to generate the underlying path se-
quence. However, link-weights are usually non-unique, chosen from a narrow
range and may be dynamic (to implement traffic engineering/ adaptive rout-
ing), whereas router IDs and link interface IDs are unique identifiers. Our
canonical choice is the subsequence of all node IDs on the path (generalizes to
a sequence of AS numbers in BGP-4). Section 3 develops an alternative hash
function that is a concatenation of well-known link ID indices at nodes.



2.2 Packet Forwarding

This section describes the forwarding table structure and forwarding algorithm
corresponding to our canonical choice of hash function and path subsequence
made in Section 2.1. Section 3 develops an alternative forwarding algorithm
(for OSPF/IS-IS) that does not require a large forwarding table at interior
nodes.

IP forwarding tables essentially contain two-tuple entries of the form [desti-
nation prefix, outgoing interface]. A longest-prefix-match lookup proce-
dure is employed. At upgraded routers we propose to use four-tuple entries
of the form [destination prefix, incoming PathID, outgoing interface,
outgoing PathID]. The “incoming PathID” field represents the hash of the
explicit path from the current router to the destination prefix. The “outgo-
ing PathID” field is the hash of the corresponding path suffix from the next
upgraded router to the destination.

An upgraded router first matches the destination IP address using the longest
prefix match, followed by an exact match of the PathID for that destination.
If matched, the incoming PathID in the packet is replaced by the outgoing
PathID, and the packet is sent to the outgoing interface. If an exact match is
not found (i.e. errant hash value in packet), then the hash value in the packet
is set to zero, and the packet is sent on the default path (i.e. shortest path in
OSPF/IS-IS or default policy route in BGP-4). The hash value may also be
set to zero if the next-hop is the destination itself, or there are no upgraded
routers in the path specified by the incoming PathID. A non-upgraded router
simply ignores the PathID field and forwards the packet on the shortest path.
The global PathIDs may be computed at each router with minor modifications

to OSPF LSAs (See Section 4).

Fig. 2. Multi-Path Forwarding with Partial Upgrades



Figure 2 shows a partially upgraded network. Nodes A, C and D are multipath
capable (MPC). Assume that node A is the originating node for a packet
destined to node F. The shortest path from intermediate node B to node F is
B-D-F and path A-B-C-F is not available for forwarding because node B is a
non-upgraded node and the next-hop of default shortest path of B is not C.
However, paths such as A-B-D-C-F, A-D-E-F, A-D-C-E-F etc. are available.
If the path A-B-D-E-F is chosen, then the PathID of an incoming packet will
be Hash(A-B-D-E-F). A sets the PathID field to Hash(D-E-F), i.e. the hash
of the path suffix from the next MPC router to destination. Node B forwards
the packet on its shortest-path (i.e. to D). Node D sets the PathID to zero,
because there is no MPC router on the path to F.

2.3  Path and PathID Computation

The BANANAS framework not only supports upgrades of a subset of nodes,
but also allows heterogeneity in multipath computation algorithms used at
different upgraded routers. The fundamental tradeoff in link-state protocols
(given our canonical choice of PathID hashing method) is route-computation
and space complexity incurred at upgraded routers to avoid signaling.

In link-state protocols each router has a complete map of the network in the
form of link-state database. We propose to first annotate this “map” at an
upgraded node with the knowledge of other upgraded nodes (we defer the
discussion of how this is achieved in case of OSPF/IS-IS and BGP to sections
4 and 5). In Figure 2, upgraded node A will know that nodes C and D are
upgraded and vice versa.

Presently, consider a single flat, link-state routing domain. We do not consider
extension of BANANAS to distance-vector routing algorithms (e.g. RIP). Us-
ing the link-state database (“map”) and knowledge of upgraded routers, every
router can locally compute available network paths. The simplest model that
admits the largest number of paths is where each upgraded router can forward
to any neighbor. The paths can be computed by performing a depth-first-
search (DFS) [24] that traverses every neighbor of upgraded nodes and the
shortest-path neighbor at non-upgraded nodes. The shortest path next-hops
of non-upgraded nodes can be found by performing multiple Dijkstra’s or an
all-shortest paths algorithm e.g. Floyd-Warshall [24]. This results in a table
containing next-hops for all paths to a destination under the constraint of a
known subset of MPC nodes. We refer to this strategy as DFS under partial
upgrade constraints or DFS-PU for shorthand. This simple approach is ex-
pensive in both computational and storage terms, especially as the number of
MPC nodes grows.



The BANANAS framework allows an upgraded router to compute and store
only a walid subset of available paths under partial constraints. The subset of
available loop-free paths can be computed using a multipath computation al-
gorithm available in literature, for example k-shortest-paths, all k-hop paths,
k-disjoint paths (see [5] and references within), DFS with constrained depth
([7] uses a depth-constraint of 1-hop) etc. The only constraint is that the algo-
rithm should also compute the shortest (default) path. These algorithms may
be adapted for the MPC constraint, i.e. there is a known subset of upgraded
nodes.

However, there is a second, more subtle problem: if different routers compute
and store different sets of paths, it is possible that the path computed by one
upgraded node may not be supported by another upgraded or non-upgraded
node that lies downstream on this path. We term such paths as “invalid”, i.e.,
forwarding support for the path does not exist at some downstream node.

To solve the above problem, we propose a distributed validation algorithm
that ensures validity of chosen paths. The main idea behind the validation
algorithm is that a path is valid (i.e. forwarding for a path exists) if all its path
suffixes are valid. This suggests a mathematical induction based approach. We
know that all one-hop paths are always valid because they represent a direct
link. A two-hop path is valid if its one-hop path suffiz is valid.

The proposed algorithm (see Algorithm 1) has two phases. In the first phase
a node computes the paths using the chosen algorithm. For example, let us
assume that node ¢ uses a k;-shortest-path algorithm. The k; paths computed
to each destination are input into a map data structure that is ordered by
hop-count. In phase 2, the validation phase, the node needs to know the path
computation algorithm and parameters used by other upgraded nodes. In our
example, node ¢ needs to know the k; parameter associated with each upgraded
node j. With this knowledge, it can compute the k; paths for node j and input
it into the hop-count ordered map data-structure (lines 2-5 in Algorithm 1).
At non-upgraded nodes, k; is 1 (lines 6-9 in Algorithm 1). Essentially we have
computed all potentially available paths in phase 1.

Phase 2 operates similar to mathematical induction. All one-hop paths in the
map are declared as valid. For each 2-hop path, the algorithm simply searches
for the 1-hop path suffix in the just-validated set. If a match is not found, the
path is invalid and is discarded. If the path (i.e. the corresponding PathID
entry) exists in the forwarding table, it is removed. In this process, validating
an m-hop path entry implies looking up its (m-1)-hop path suffix in the just-
validated set of (m-1)-hop paths and finding a match (the variable temp_pair
and the lines 16,17 in Algorithm 1 are used to find a suffix match in the
Routing_-Map structure). By mathematical induction, when the entire map
has been linearly traversed, the remaining paths are valid.



The computational complexity of this approach can be estimated as follows.
In a N-node network with u upgraded routers, the complexity of first phase is
given uC'(k) + (N —u)C(1) where, C(k) denotes the complexity of computing
k-shortest paths, C'(1) denotes the complexity of Dijkstra’s algorithm. The
total number of paths, 7', computed at the end of first phase is equal to (N —
D((N —u)+ =% k;). The complexity of the validation phase is O(Tlog(T)h)
where, h is the average hop count for the paths. The log(T) term arises due
to searching for a suffix in the Map (see Algorithm 1, line 18). The validation
algorithm may be optimized or be eliminated for special cases, e.g. if all nodes
are upgraded and use the same value of k.

In summary, Algorithm 1 is a general 2-phase validation procedure that can be
applied to validate paths computed using any deterministic path computation
algorithm at MPC routers that also computes the default shortest path.

Algorithm 1 Algorithm for validating paths at a router in a partially up-

graded network

1: Let NU and U denote the set of all non-upgraded and upgraded nodes respec-

tively

for allu € U do
newPaths < Compute paths using u’s advertised algorithm
Routing_Map.append (newPaths)

end for

for alln € NU do
newPaths «— Compute shortest path using Dijkstra’s algorithm
Routing_Map.append(newPaths)

9: end for

10: All 1-hop paths are valid

11: Initialize suffixrLength «— 2

12: while suffizLength < maxHops do

13:  for all path € Routing_ Map do

14: if hop count of path > suffirLength then

15: temp_pair.hopcount «— suffizLength-1;

16: temp_pair.PathString < last suffirLength nodes in path;
17: if Routing Map.find(temp_pair) == FALSE then

18: delete path

19: end if

20: end if

21:  end for

22:  suffirLength++;
23: end while




3 Architectural Flexibility in BANANAS

A general concern with the canonical description so far is the increase in
computational and space complexity at upgraded nodes (both edge and core
nodes). An interesting question is whether we can use an alternative hashing
method that leads to overall complexity reduction and a more attractive di-
vision of functions between the edge and core, and between data-plane and
control-plane. To demonstrate the affirmative answer, we develop a new indez-
based encoding scheme that moves complexity to network edges, and simplifies
core node operations by using an efficient, reversible hash. The tradeoff is to
use a variable-length PathID encoding instead of the canonical 32-bit fixed
length encoding. Moreover, the scheme is only applicable to link-state proto-
cols, where the neighbor relationships do not change often. Specifically, the
index-based scheme is not applicable to path-vector based protocols like BGP-
4, or mobile ad-hoc networks where neighbor relationships change rapidly.

3.1 Index-based Scheme: PathID Encoding

To motivate the scheme, consider an example. An upgraded node orders its
link interface IDs (or alternatively neighbor node IDs)and represents each link
by its index in this ordering (see Figure 3). This link ID, i.e. index, can now
be efficiently encoded. For example, a router with 15 interfaces will need 4-
bit link indices. In general, the link or interface IDs of a node may be locally
hashed using a globally-known hash function. Since every node knows the global
hash function and it operates on globally-known link IDs (e.g. IP addresses
of interfaces) each node can independently compute the hashes of any other
node.

Ob | 001 | 100 01

IP Address | Index Ngde 6's Interface Index
128.12.25.2 1 >Node 10’s Interface Index
12812253 2

»Node 9’s Interface Index
128.12.25.4 3
128.12.25.5 4

Fig. 3. Explanation of Index-Based Encoding Scheme
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A path can now be specified as a concatenation of such link-indices (e.g.
Figure 3 shows PathID, in binary, of a path via nodes 9-10-6 ). This PathID
encoding is guaranteed to be unique (unlike the earlier MD5+CRC32 encoding
which had a very small collision probability). For a reasonable maximum bit-
budget in the packet header (e.g. 128 bits), and an average of 15 interfaces per
router, up to 32-hop paths can be encoded with this technique. The limitation
of 32-hops is not too restrictive (in [25], authors find that the average number
of hops to reach a destination in the Internet is 19); it applies only within
a single area or a domain. The PathID is re-initialized by the first upgraded
router after crossing any area or domain boundary.

The concatenation operation used here is an example of a reversible or perfect
hash, i.e., the local hash (i.e. next-hop information) can be extracted from
the overall PathID without needing a per-path table entry. The state needed
at interior nodes is a small; only a table mapping link indices to link-IDs is
needed. For example, at a router with 15 interfaces, a 15 entry index-table
is needed irrespective of network size. No other control-plane computation or
state-complexity is required at interior nodes. Since the interior nodes can
forward to any neighbor now, a large number of network paths may be sup-
ported. Edge-nodes can compute paths using heterogeneous algorithms, and
use a simpler validation algorithm (see Section 3.3).

To summarize the impact in terms of function placement and complexity man-
agement, the index-based scheme uses per-hop PathID processing instead of
a table-driven per-hop PathID swapping strategy. Only edge routers need to
compute the multipaths and their PathIDs using a simplified validation pro-
cedure. The memory requirements at the core routers are also greatly reduces.

3.2 Index-Based Scheme: Packet Forwarding

Upgraded interior routers maintain an index table that maps the interface
index to the link interface IP address. On receiving a packet, an upgraded
interior router extracts the interface index of the outgoing interface (next-
hop) from the PathID field in the packet header and uses the interface index
table to forward the packet on the appropriate link (see Figure 4).

Figure 4 shows a packet being sent from node S to node 7 along the path S-6-
2-4-3-7, the PathID at various points and various interface indices. Only nodes
S, 6 and 4 are upgraded. Node S has complete map of the network from the
link-state database and knows that node 6 has two interfaces and the next-hop
index at node 6 is 2, encoded using two-bits. Note that the interface indexing
starts from 1 because PathID of zero still refers to the default (shortest) path.
Likewise, the index at node 4 for this path is 3, encoded using three bits.
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The PathID of the packet sent from node S is 0...01110, = 14, indicating an
index (102 = 2 for node 6 and 011, = 3 for node 4). Node 6 has an index
table with 2 entries mapping the link indices to the interface IP addresses. On
receiving a packet with PathID in the routing header, it extracts the last two
bits and then looks up its index table. The PathID is also right-shifted by two
bits in this operation so that the next upgraded router can extract its index
from the last bits of the PathID. Similarly, node 4 will extract three bits from
the PathID and right shifts it by the same number before forwarding it. The
remaining PathID will now be zero. The non-upgraded routers merely forward
packets along the default shortest paths, oblivious of the PathID field.

l-PathiD I-PathiD
0b011 10 0b011

@ (6

> 2

I-PathiD
0b011

I-PathiD
0b0 0bo

)
7 ) (3)—=(4)"
O I-PathiD N \F&

Forwarding at upgraded router

1.Mask I-PathID with 7

| 2.5hift I-PathlD by 3-bits to right |
| 3.Get interface IP-address with index 3
{ 4.Forward packet on this interface

Fig. 4. Forwarding with the Index-based PathID encoding scheme (Note: “Ob” in-
dicates binary encoding)

3.3 Index-based Scheme: Path Computation

In this scheme, “source” (or edge routers) can independently use any mul-
tipath computation algorithm to find a subset of available paths, similar to
the discussion in Section 2.3. The only information needed is the knowledge
of which routers in the network are upgraded (available with the MPC-bit in
LSAs).

Path validation is only necessary to impose the constraint that non-upgraded
nodes can forward packets only on their default shortest paths. Algorithm
2 shows the pseudo-code of a generic validation algorithm for edge routers.
Only those paths are valid, where the next-hop of the non-upgraded routers
corresponds to their shortest path next-hop. Again, the validation algorithm
consists of two phases. First phase deals with the computation of shortest

12



paths for non-upgraded nodes (lines 4-6 in Algorithm 2) and computation of
multiple paths using any desired multipath computation algorithm. In second
phase, the paths are checked for passing through non-upgraded nodes. If a
path passes through a non-upgraded node, the next-hop must be same as
the next-hop in the pre-computed shortest path. A path is invalid if this
condition is not met (lines 14-16). In a N-node network with u upgraded
routers, the complexity of first phase is given C'(k) 4+ (N —u)C(1) where, C(k)
denotes the complexity of computing k paths (assuming the upgraded router
keeps k paths), C(1) denotes the complexity of Dijkstra’s single-shortest-path
algorithm. The complexity of the second phase of the validation algorithm
is O(k x (N —1) x (N — u)), where k is the maximum number of paths for
each destination to be stored in the forwarding table. Note that the validation
phase in the index-based path encoding scheme is simpler compared to the
validation phase in Algorithm 1. This is because the upgraded routers can
forward packets to any of their interfaces. Recall that in Algorithm 1, the
validation phase also needed to ensure that the downstream upgraded nodes of
a path would indeed provide forwarding for that path (i.e. have a forwarding
table entry for that path).

Algorithm 2 Algorithm for validating paths in new Scheme
1: Let V' denote the set of nodes in a network and NU denote the set of non-

upgraded nodes

Compute multiple paths using desired multipath computation algorithm

Let P(dst) denote the set of paths to destination dst

for n € NU do
Compute Dijkstra

end for

for dst € N do
Compute the desired paths to destination dst using any of k-shortest paths,
k-disjoint paths, all paths upto k-hops etc.

9: for path € P(dst) do

10: forn € NU do

11: if path.find(n)==TRUE then

12: // nextHopSP is the next-hop in the shortest path from n to dst
13: // nextHop(path) denotes the next-hop of n in the path
14: if nextHop(path) ! = nextHopSP then

15: delete path

16: end if

17: end if

18: end for

19:  end for

20: end for
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4 BANANAS Extensions For Intra-Domain Protocols

In this section, we summarize the extensions to OSPF/IS-IS to support the
BANANAS framework. A 32-bit PathID field is required in the packet header,
that can be implemented as a new routing option, called i-PathID (in the con-
text of intra-domain routing, PathID actually refers to i-PathID). The route
computation algorithm (Dijkstra’s algorithm) at upgraded routers must be ex-
tended to compute multiple paths (e.g. DF'S under partial upgrade constraints
(DFS-PU), k-shortest paths [5] etc), and a validation algorithm (Algorithm
1). The upgraded nodes must compute the shortest path as the default path.
Incoming packets with erroneous PathIDs are forwarded on the shortest paths
and the PathID field set to zero. The intra-domain forwarding tables at up-
graded routers would have tuples (destination prefix, incoming PathID, out-
going interface (next-hop), outgoing PathID). As indicated in Figure 5, one
bit in the OSPF Link State Advertisements (LSAs) [26] must be used to indi-
cate that the router is multipath capable (MPC). In the Linux/Zebra based
implementation as well as in the SSFNet simulations, we have used the eighth
bit in the LSA options field of the router-LSA as the MPC bit.

LS Age
- MPC-bit: unused bit #8 of options
Options W
Link State 1D k; value used at router J,

— unused B-bits after Router Type

Advertising Router

| LS Sequence Number 7‘

LS Checksum

Length

Router Type | 0 J

Fig. 5. Proposed Modifications to OSPF Link State Advertisements (LSAs)

Also, if we allow different upgraded routers to compute paths using different
algorithms, we need some bits to indicate the choice of route computation
algorithm along with its parameters (E.g. the value of k in k-shortest paths
algorithm). In our Zebra-based implementation, we have assumed that up-
graded nodes implement the k-shortest-path algorithm with different values
of k. Therefore, we leverage the currently unused 8-bits after the router type
field in the LSA to indicate the value of k.

For the alternative index-based path encoding scheme, the concatenation of
indices is done from the lower-order-bits to the high-order-bits. Each router
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simply shifts the PathID to the right by the number of bits needed to encode its
interface index. This allows upgraded interior routers to extract the next-hop
index from the lowest-order-bits without knowing its position within the path,
i.e. without the knowledge of how many upgraded nodes are on the path. The
upgraded interior routers only need to set the MPC bit in their LSA and need
not advertise the route computation algorithm. Each upgraded router must
maintain an ordered list of its own interfaces and the corresponding index. The
upgraded edge routers can use any multipath algorithm to compute multiple
paths. However, they need to validate the paths using the validation algorithm
(Algorithm 2). All upgraded routers must always compute the default shortest
paths to all destinations. This is necessary in order to forward packets with
no PathID option, zero or erroneous PathlID.

4.1 Forwarding Across Multiple Areas

Large OSPF and IS-IS networks support hierarchical routing with up to two
levels of hierarchy. Our approach is to view each area as a flat routing domain
for the purpose of multipath computation. Multiple paths are found locally
within areas, and crossing areas are view as crossing to a new multipath rout-
ing domain, i.e. we re-use the i-PathID field. For example, if a source needs
to send a packet outside an area, it chooses one of the multipaths to the area
border router (ABR). Then, the ABR may choose among the several multi-
paths within area 0 to other ABRs. The i-PathID field is re-initialized by the
first ABR at the area-boundary.

5 BANANAS Extensions to BGP

5.1 Motivation and Goals

BGP-4 [27] is the inter-domain routing protocol in the Internet. BGP uses
a path vector and policy routing approach to announce a subset of actively
used paths to its neighbors. Load-balancing and traffic engineering in BGP
are becoming important as operators attempt to deploy services like virtual
private networks (VPNs), and optimize on complex peering agreements [1,28—
30]. Enterprises are also increasingly multi-homed and are increasingly active
in managing their inbound and outbound traffic [1,31].

While BANANAS is not designed to address multitude of configuration, sta-
bility and load-balancing problems [32,29,33] of BGP, it does provide a set
of building blocks to enable fine-grained BGP traffic engineering both within
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and across domains. In particular, BANANAS introduces two new capabili-
ties: explicit exit forwarding and explicit AS-PATH forwarding. We examine
these aspects further in the following sections.

5.2 Explicit-Exit Forwarding

The idea of explicit-exit routing is quite simple. The overall objective is to de-
fine a traffic aggregate and then map it to a chosen exit router (ASBR). Traffic
aggregates may be chosen at per-packet, per-flow or per-prefix granularities
by the upgraded EBGP or IBGP routers, i.e., ISPs can define fine-grained
bundles of outbound traffic. Unlike LOCAL_PREF, the explicit exit capabil-
ity can map traffic for the same destination prefix to multiple exits (based
upon the autonomous decisions at upgraded IBGP nodes).

The explicit exit mechanism works as follows. An upgraded IBGP router
chooses an arbitrary exit AS border router (ASBR) for a given traffic ag-
gregate (e.g. a flow or all traffic to a destination prefix). It then “pushes” the
destination address into a “address stack” field, and replaces the destination
address with the exit ASBR address (adjusting the checksum appropriately).
Now, intermediate routers forward the packet to the exit-ASBR to which it is
addressed. The exit-ASBR then simply “pops” the address from the address-
stack field back into the destination address field (and adjusts the checksum)
before forwarding it along to the next AS.

The upgraded IBGP node would hence have table entries of the form: [Dest-
Prefix Exit-ASBR Next-Hop-to-Exit-ASBR] and [Dest-Prefix Default-
Next-Hop]. The second tuple is the regular IBGP-defined default policy route
for the destination prefix: this forwarding entry is used for all traffic for which
this IBGP router does not decide the exit router. The first 3-tuple is applied
only to the traffic aggregates for which this IBGP router chooses an explicit
exit. This kind of operation is important to avoid conflicting exit routing de-
cisions by upgraded IBGP routers.

Observe that only a subset of IBGP routers and exit ASBRs (eBGP) routers
need to be upgraded. All BGP routers synchronize on their default policy
routes as usual [27]. In addition, the upgraded exit ASBRs should also syn-
chronize with the upgraded IBGP routers so that they know which exits are
available for any given prefix.

The explicit-exit mechanisms proposed are similar in spirit to the label-stacking
(multi-level tunnelling) ideas in MPLS[21]. A key difference is that BANANAS
proposes only a single-level address stack, whereas MPLS can have multiple
levels in its label-stack. Note that the explicit exit routing is a special case
of explicit path routing introduced in earlier sections. The PathID “hash” in
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this case is simply the exit ASBR IP address. This address stacking procedure
operates in the fast processing path at all routers (both upgraded and non-
upgraded), unlike IP loose-source-routing that defaults to the slow-processing
path because it is an IP option.

5.8  FExplicit AS-PATH Forwarding

The goal of explicit AS-PATH forwarding is to provide a distributed mecha-
nism to send packets along an arbitrary, but validated AS-PATH. The idea is
similar to the explicit path routing introduced for OSPF/IS-IS, except that we
now refer to explicit AS-PATHs rather than a sequence of contiguous routers
and links. In particular, we propose a separate hash field called external-
PathID or e-PathID in packets for this function. The e-PathID is the hash of
the desired AS-PATH, i.e., hash of the sequence of AS numbers.

The e-PathID hash is processed as follows. First, in an upgraded AS, assume
that at least the entry and exit AS border routers (ASBRs) are upgraded to
support the explicit AS-PATH function. Assume that a border router (called
the entry ASBR) receives a packet with a non-zero, valid e-PathID. The in-
coming e-PathID is used by the entry ASBR to determine an appropriate exit
ASBR. The packet is then explicitly sent to this exit ASBR using the mech-
anisms described in the earlier section, i.e. address-stacking. Indeed, once the
address is stacked, the i-PathID may also be explicitly chosen to indicate a
specific route to that exit ASBR. Note that the e-PathID is not swapped at
the entry ASBR. The outgoing e-PathID (for the AS-PATH suffix) replaces
the incoming e-PathID only at the exit ASBR. This convention is required
because the autonomous system is an atomic entity (similar to a node) as
far as the e-PathlD is concerned. However, the AS physically breaks up into
an entry- and exit-ASBR (similar to input and output interfaces of a node).
If we imagine that the abstract PathID swapping happens at the output in-
terface, that corresponds to our convention of swapping the e-PathID at the
exit ASBR. Observe, that we have required only EBGP routers to be aware
of the multi-AS-PATH feature, and do not require upgrades in selected IBGP
routers (unlike the explicit exit case discussed earlier).

To illustrate the explicit AS-PATH feature, we consider the AS-graph topology
in Figure 6, and assume that we would like to send traffic from AS1 to AS5,
i.e. to the IP prefix 0.0.0.48 along AS-PATH AS1-AS2-AS3-AS5, represented
as (12 3 5). The AS-PATHs available are AS1-AS2-AS5, AS1-AS2-AS4-AS3-
AS5, AS1-AS2-AS3-AS5. The explicit path (1 2 3 5) is chosen at router 1; the
suffix AS-PATH is (2 3 5) whose hash is placed in the e-PathID field in the
outgoing IP packet. The next-hop is an entry router in AS2. An exact match
of prefix and e-PathID results in the packet being forwarded to the AS3. The
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Fig. 6. Topology for illustrating explicit AS-PATH forwarding

e-PathID will be swapped only at the exit ASBR (i.e. Router 2 in AS2). A
similar sequence of events occurs in AS3 involving entry ASBR (router 1) and
exit ASBR (router 3) before the packet is forwarded to AS5. The outgoing
e-PathID from AS3 will be set to 0 because AS5 is the destination AS.

In spite of these apparent reductions in upgrade complexity, BGP’s path-
vector nature poses a more important problem. Specifically, a new AS-PATH
is unknown to an upstream AS unless the intervening AS explicitly adver-
tises it (after internal synchronization). In other words, even if ISPs were
interested in AS-PATH multiplicity, increased control traffic is necessary to
advertise the existence of multiple AS-PATHs to neighbor AS’es. Recall that
such excess control traffic was not required in link-state algorithms (we merely
piggybacked LSAs with minimal information). On the other hand, the path-
vector nature of BGP-4 also implies that no path computation is necessary
once the multiple AS-PATHs have been received and filtered for acceptance.

We recognize that this increased control traffic requirement poses a significant
disincentive for ISPs against adopting multi-AS-PATH capabilities en masse.
Given the scalability and instability issues with adding control traffic, we
expect that ISPs may choose to advertise only a small set of multiple AS-
PATHs to their neighbor AS’es. For example, some AS’es may collaborate
to allow forwarding along multiple paths to certain destination prefixes and
advertise this as a non-transitive attribute to certain AS’es only.
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5.4 BANANAS Extensions to BGP-4

In summary, we propose two capabilities in the context of inter-domain rout-
ing: explicit exit routing and explicit AS-PATH routing. For the former, we
propose a 32-bit “address stack” field in the routing header into which the
destination IP address will be “pushed”. The destination field in the IP header
is overwritten with the exit ASBR’s IP address. The Exit ASBR will simply
“pop” the destination address back from the ”address stack” to the destination
[P address. This address stacking procedure (similar to MPLS) operates in the
fast processing path unlike the IP loose source routing option. Moreover, it
allows flexibility for only a subset of BGP routers to be upgraded to support
such explicit exit choice.

For explicit AS-PATH forwarding we propose a new 32-bit field in the packet
routing header called the external PathID or e-PathID. This field stores a hash
of the sequence of ASNs along the desired explicit AS-PATH. ISPs may choose
to only advertise a small set of multiple AS-PATHs to their selected neigh-
bor AS’es. In a multi AS-PATH capable AS, only the entry ASBRs and exit
ASBRs (i.e. only the EBGP routers) need to be upgraded and synchronized
on the available multiple AS paths. The incoming ePathID hash is swapped
with the outgoing AS-PATH suffix hash only at the exit AS border router.
The forwarding from the entry ASBR to the exit ASBR uses the explicit
exit mechanisms described above. Multiple paths between the entry and exit
ASBRs are possible using the i-PathID mechanism described earlier for intra-
domain routing.

6 Implementation and Simulation Results

In this section, we illustrate the working of the proposed framework. We
have implemented the BANANAS framework schemes in the Linux kernel:
we use MIT’s Click Modular Router package [34] (data-plane) and GNU Ze-
bra routing sofware version 0.92a [35] (control-plane). These implementations
are tested on Utah’s Emulab testbed [36] to emulate sizable topologies run-
ning real implementation code. In particular, we test three cases: a) when an
upgraded router keeps all available paths (as computed by the DFS-PU strat-
egy), b) when upgraded nodes compute k-shortest paths, with heterogeneous
values of k at different nodes, and c¢) the index-based scheme to illustrate
architectural flexibility.

We use SSFNet [37] for larger integrated BGP/OSPF simulations. These
SSEFNet simulations illustrate the framework in larger network topologies that
integrate both OSPF and BGP BANANAS functionalities. Note that in this
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section, we have intentionally preferred simplicity in terms of topology/test-
case choices. We have performed a larger set of SSFNet simulations and Emu-
lab runs in more complex scenarios, all of which support our assertions. These
results will be reported in a detailed technical report.

6.1 Linuz Implementation Results

Figure 7 shows the topology of a simple validation experiment conducted on
Utah’s Emulab [36] testbed with the Linux Zebra version 0.92a of OSPF (i.e.
control-plane) upgraded with our BANANAS building blocks. The forwarding
plane was implemented in Linux using MIT’s Click Modular Router package
[34]. Note that this is a partially upgraded network: only nodes 1 and 2 (the
dark colored nodes) are upgraded in this configuration. Figure 7 also indicates
the IP addresses of various router interfaces and the link weights. The router
ID is statically defined to be the smallest interface IP address.

399 699 75 69.6

67.7

78.7

67 g8
511811 818

All IP-addresses denoted by a.b are actually 192.168.a.b

Fig. 7. Experimental Topology on Utah Emulab using Linux Zebra/Click Platforms
(Note: only dark colored nodes are multi-path capable)

6.1.1 All Paths with Partial Upgrades (DFS-PU Algorithm,)

Table 1 illustrates a partial forwarding table computed at node 1 (IP address
192.168.1.1) for destination 3 (192.186.3.3). Note that the path string shown in
Table 1 is only for the sake of illustration and is not stored in the actual routing
table. The PathIDs are the (MD5 + CRC-32) hashes of the router IDs (i.e. IP
addresses of nodes) on the path. For example, the PathID 2084819824 corre-
sponds to a hash of the set of router IDs {192.168.1.1, 192.168.1.2, 192.168.6.6,
192.168.39.9, 192.168.3.3 }. The outgoing path ID is the hash of the suffix path
formed after omitting 192.168.1.1. If the path goes through other nodes which
are not upgraded (e.g. 1-4-3), the outgoing path ID is the hash of the suffix
path starting from the next upgraded router on the path. In the case of the
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path 1-4-3, both nodes 4 and 3 are not upgraded, so the suffix path ID is zero.

Outgoing I/f Path Incoming PathID  Outgoing PathID
192.168.1.1  1-2-6-9-3 2084819824 664104731
192.168.3.1  1-3 599270449 0
192.168.4.1  1-4-3 4183108560 0
192.168.5.1  1-5-4-3 1365378675 0

Table 1

Partial routing table at 192.168.1.1 for destination 192.186.3.3

6.1.2 k-Shortest Paths with Partial Upgrades

In this section we illustrate, using the Linux implementation, the case when
the upgraded routers compute upto k-shortest paths, and different upgraded
routers using different values of k.

Consider the 10-node topology shown in Figure 7. This topology was setup in
the Emulab network. We assume that the routers 192.168.1.1 and 192.168.1.2
are upgraded with k equal to 3 and 2 respectively. The results are presented
to verify the correctness of the “validation phase” (Algorithm 2). Tables 2,
3 show respectively part of the routing tables at 198.168.1.1 for destinations
198.168.6.6 and 198.168.8.8 respectively. Tables 4, 5 show the corresponding
entries at router 198.168.2.2. For destination 198.168.6.6 the router 198.168.1.1
finds 3 paths, all of which are valid as two paths have next-hop 198.168.2.2
and router 198.168.2.2 keeps 2 shortest paths. For destination 198.168.8.8, the
router 198.168.1.1 computes 3-paths, 1-2-8, 1-2-6-7-8, 1-2-7-8. The path 1-2-
7-8 is invalidated in the “validation phase” as router 198.168.2.2 only keeps 2
paths (2-8, 2-6-7-8). Note that the Path string is shown in Tables 2-5 for the
purpose of explanation.

Path Incoming PathID | Next-hop | Outgoing PathID
1-2-6 1989316858 192.168.1.2 3491782861
1-2-7-6 656924081 192.168.1.2 3645081405
1-3-9-6 534784006 192.168.3.3 0

Table 2

Part of routing table at 192.168.1.1 for destination 192.186.6.6
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Path Incoming PathID | Next-hop | Outgoing PathID

1-2-8 3654096761 192.168.1.2 1973392862
1-2-7-6-8 1777786090 192.168.1.2 2123671348
Table 3

Part of routing table at 192.168.1.1 for destination 192.186.8.8

Path | Incoming PathID | Next-hop | Outgoing PathID

2-6 1973392862 0.0.0.0 1973392862
2-7-6 2123671348 192.168.7.7 2123671348
Table 4

Part of routing table at 192.168.2.2 for destination 192.186.6.6

Path Incoming PathID | Next-hop | Outgoing PathID

2-8 3491782861 0.0.0.0 0
2-6-7-8 3645081405 192.168.6.6 0
Table 5

Part of routing table at 192.168.2.2 for destination 192.186.8.8

Fig. 8. Old MCI Topology: Used for Testing the Index-Based Scheme (Only Nodes
4,6, 7,9, 10 are upgraded)

6.2 FEvaluation of Indez-based Path Encoding Scheme

The alternative index-based PathID encoding scheme was implemented in
the Linux kernel (MIT’s Click Router platform) and simulated in SSFNet.
We present our simulation results in this section on a sizeable topology that
corresponds to the old MCI topology of 1995 [38].
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0.0.1.74/28

U=Updated AS

Fig. 9. Topology used for integrated SSFNet simulation

In this configuration, only nodes 4, 6, 7, 9, 10 are upgraded. The source node
in this simulation is node 6. Observe that node 6 is the only node that com-
putes the k-shortest-paths (k = 5) for all destinations and runs the validation
algorithm (Algorithm 2). All other upgraded nodes merely keep an index ta-
ble as described in Section 3.1). Table 6 shows a part of the forwarding table
at node 6 (only those paths for destination node 7), and the i-PathIDs using
index-based encodings. The node 6 may choose any one of these paths for a
packet to node 7. We have verified that the progression of i-PathIDs through
the network follows the description given in Section 3.2.

Path Next-Hop i-PathID
6-2-4-3-7 2 0b01110
6-10-9-17-16-11-7 10 0b00110001
6-10-14-11-7 10 0b00101
6-10-9-4-3-7 10 0b01110110001

Table 6
Paths at node 6 for destination node 7 (Note: Ob indicates binary encoding)

6.3 Integrated OSPF/BGP SSFNet Simulation

In this section we use SSFNet simulation results to illustrate the integrated
operation of proposed framework in the Internet. This example demonstrates
both the intra-domain (OSPF) and inter-domain (BGP-4) operation of the
framework with explicit AS-PATH as well as explicit exit forwarding.
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Fig. 10. Blow-up of AS2’s Internal Topology in the Integrated OSPF/BGP Simula-
tion (Figure 9)

Forwarding Table of AS1 at Router 1
Dest NextHop | In e-PathID | AS-PATH | Out e-PathID | Exit ASBR
0.57/28 | 2.93/32 | 2025862315 2-4-8 3535826417 | 0.91/32
0.57/28 | 2.93/32 | 4160716901 | 2-5-6-7-8 1248156781 0.91/32
0.57/28 | 2.93/32 669121903 2-5-6-4-8 2630971039 0.91/32
Table 7

Integrated OSPF/BGP Simulation: Forwarding Table of the Border Router in AS1

(Note: 0.57/28 refers to IP address 0.0.0.57/28 etc)

Forwarding Table of AS2 at Router 5
Dest NextHop | In e-PathID | ASPATH | Out e-PathID | Exit ASBR
0.57/28 | 2.97/32 | 3535826417 2-4-8 3535826417 | 2.107/32
0.57/28 | 2.113/32 | 3535826417 2-4-8 3535826417 2.107/32
0.57/28 | 2.97/32 1248156781 | 2-5-6-7-8 | 1248156781 2.24/32
0.57/28 | 2.113/32 | 1248156781 | 2-5-6-7-8 1248156781 2.24/32
Table 8

Integrated OSPF/BGP Simulation: Forwarding Table Router 5 in AS2 (See Fig-
ure 10)

Figure 9 shows the topology used for the results presented in this section.
The topology has eight (8) autonomous systems (AS’es). Four of these AS’es,
namely AS1, AS2, AS5 and AS6, have been upgraded to support explicit AS-
PATH forwarding. Even within these upgraded autonomous systems, only a
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Destination Path i-PathID
0.0.2.107/32 5-4-3-2 17
0.0.2.107/32 5-1-4-3-2 18
0.0.2.107/32 5-4-11-7-2 1669
0.0.2.107/32 5-4-8-7-2 201
0.0.2.24/32 5-4-11-10-15-14 69
0.0.2.24/32 5-4-8-7-6-14 169
0.0.2.24/32 5-4-8-16-15-14 105
0.0.2.24/32 5-1-4-8-16-15-14 106
0.0.2.24/32 5-4-11-9-10-15-14 101
0.0.2.24/32 | 5-1-4-11-9-10-15-14 102

Table 9
Forwarding table at Router 5 in AS2 (Figure 10): k Shortest Paths (k = 7)

subset of routers are upgraded to support the explicit AS-PATH and explicit
exit routing as described in Sections 5.3 and 5.2. The upgraded routers have
been marked with a “U” in Figure 9. A blow-up of the internal topology of
AS2 is shown in Figure 10; the upgraded routers are again indicated with “U”

Consider forwarding of a packet from AS1 to AS8 (see Figure 9). Given the con-
straints that only a partial set of AS’es are upgraded, the following AS-PATHs
may be used from AS1 to reach AS8: AS2-AS4-AS8, AS2-AS5-AS6-AST-ASS8
and AS2-AS5-AS6-AS4-AS8. These AS-PATHs and their corresponding e-
PathlIDs are indicated in Table 7, which is a part of the routing table at the
AS border router in AS1. Note that the AS-PATH AS2-AS4-AS6-AS7-ASS8 is
not available because AS4 is not upgraded, and uses a default AS-PATH of
AS4-AS8. Also in this simulation, we assumed that the upgraded routers do
not do any further filtering, i.e., they re-advertise all their available AS-PATHs
to their neighboring AS’es.

In our example simulation, the border router of AS1 chooses the AS-PATH
AS2-AS4-AS8, which corresponds to the e-PathID of 3535826417 (see the first
row of Table 7). When the packet arrives at router 5 of AS2 (the entry ASBR),
its header looks like Figure 11(A). This entry ASBR (i.e. router 5) of AS2
examines the incoming e-PathID to find the exit ASBR to be node 2 with 1P
address 0.0.2.107 (see first row of Table 8). Note that it does not swap the
e-PathlID field, because this will be done at the exit ASBR. To emphasize this
point, observe that the outgoing e-PathID column in Table 8 is the same as
the incoming e-PathID for the destination prefix 0.0.0.57/28.

The entry ASBR (router 5) now “pushes” the destination IP address (i.e.
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Dest IP Add | EPathID | IPathID | Add on Stack

A At the entry router for AS2

Dest IP Add| EPathID | IPathID | Add on Stack
B At router S@AS2 after address
002107 | 1248156781 1669 | 00057 is pushed on stack

At router 2@AS2 which is the exit
router after address is popped from

the stack

Dest IP Add | EPathID | IPathID | Add on Stack
0.0.0.57 1895667324 0 -

Fig. 11. Diagram Showing How e-PathID, i-PathID and Destination Address Change
in the Integrated OSPF/BGP Simulation

0.0.0.57) into the address stack field and replaces it with the exit ASBR IP
address. The entry ASBR also chooses a path within the AS to the exit ASBR.
Table 9 shows the intra-domain paths available to reach exit ASBR (router
2). In this simulation, we have integrated the index-based PathID encoding
scheme as well as the k-shortest path route computation scheme (k=7) with
the OSPF protocol running in AS2. In particular, the path 5-4-11-7-2 within
the AS is chosen that corresponds to a i-PathID of 1669 (see the third row
of Table 9). The header fields of the packet at this stage are shown in Fig-
ure 11(B).

The packet proceeds on the explicit intra-domain path (as described in earlier
sections) to reach the exit router 2 with an i-PathID value of 0. At this router,
the destination address (0.0.0.57) is “popped” back from the address stack.
The e-PathID is also replaced with the outgoing e-PathID of 1895667324 (see
Figure 11(C)). Now the packet is sent to AS4, which is not upgraded, but sends
the packet on its default policy AS-PATH, i.e., directly to AS8. In summary,
we have shown how a distributed set of upgraded and non-upgraded nodes,
with explicit paths independently selected within upgraded AS’es can honor
an explicit AS-PATH request of the source AS.

7 Related Work

Most related work for multipath routing have been done in the context of
intra-domain protocols. OSPF, the most common intra-domain routing pro-
tocol used in the Internet today is based on single shortest path with equal
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splitting between next-hops of equal cost paths. Lorenz et al [39] show that
OSPF routing performance could be improved by O(N) if traffic-matrix aware
explicit source-based multipath routing is used (e.g. MPLS-based [40,41]).

Protocol extensions to support multipath routing (both in RIP and OSPF)
have been studied by Narvaez et al [7], Chen et al [6] and Vutukury et al
[8]. In [7], authors propose to find loop-free multipaths only by concatenating
the shortest paths of their neighbors with their link to the neighbors. This
approach essentially uses a depth first search with a depth of 1, whereas we
allow arbitrary depth in our DFS-PU algorithm. Chen et al and Vutukury et al
[6,8] propose more general multipath computations, but their schemes require
the co-operation and upgrade of all the routers in the network. Chen et al
present a general concept of suffix-matched path identifier to allow multipath
computation using distributed computation, but they use local labels to realize
the path like in ATM networks [20] or MPLS [21]. Therefore, they require a
signaling protocol to map a global path specification to locally assigned labels
at each node.

The proposed BANANAS framework allows source-based multipath routing
using a “PathID”. The use of a globally significant path hash allows multi-
path capabilities without signaling (i.e. in a connectionless manner) even in
a partially upgraded network. The signaling requirement for source-routing is
seen in protocols like ATM networks, MPLS networks [21] and NIMROD [12]
routing (a link-state approach to inter-domain routing). IPv4 [18] and IPv6
[19,13] provide a variable-length loose-source-routing option that may be con-
sidered “data-plane” signaling. But IPv4/v6 uses a uncompressed string of IP
addresses in contrast to our efficient PathID encoding schemes.

Even though MPLS has gained popularity in some large ISPs, many ISPs may
prefer using OSPF/IS-IS to enable multipath and traffic engineering capabil-
ities. This is due to the widespread deployment and operational experience
available with OSPF /IS-IS. Our approach extends the OSPF /IS-IS to allow
such capabilities even in partially upgraded networks. Our index-based scheme
offers significant reduction of state complexity in comparison to MPLS label
tables. Our computations can also be further optimized using incremental
k-shortest path algorithms similar to those suggested for OSPF’s Dijkstra al-
gorithm [42,43].

In LIRA [11], Stoica et al briefly propose a forwarding scheme which they
suggest could replace MPLS. A path is encoded as the XOR of router IDs
along the path, and is processed along the path using a series of XOR oper-
ations. The work in LIRA is a special case of the BANANAS framework. In
particular, the authors do not consider the larger architectural issues of par-
tial upgrades, route-computation, state-computation tradeoffs, inter-domain
operation etc. The focus in their paper was also different: a framework for

27



service differentiation.

8 Summary and Concluding Remarks

The key contributions in this paper can be summarized as follows.

a. Identification of abstract multipath architectural concepts (global PathID
semantics, efficient path hashing) that are crucial to avoiding the need for
signaling and allowing incremental network upgrades in connectionless routing
protocols.

b. Canonical multipath and explicit path realizations in the context of legacy
routing protocols: OSPF, BGP-4.

c. Demonstration of significant architectural flexibility: alternative PathID en-
codings, alternative route-computation algorithms (DFS-PU, k;-shortest paths),
movement of complexity to edges, division of functions between data-plane and
control-plane, development of distributed validation algorithms etc.

d. Linux implementation results and integrated OSPF /BGP simulation results
to validate various options

These building blocks can be used in two broad ways. First, in the context of
traffic engineering within a partially upgraded legacy network. An operator
may want to emulate signaled capabilities in a connectionless network (e.g.
see [41,39]) or might desire fine-grained traffic management control hard to
extract from parameter tweaking (e.g. see [30,29,31,32]). The building blocks
may be mixed and matched in a limited number of ways. For example, one
could select a MD5+CRC32 encoding for BGP-4 (i.e. e-PathIDs) and a index-
based encoding for OSPF (i-PathID). Obviously, a common encoding must be
chosen across ISPs for the explicit AS-PATH case.

Second, and perhaps more important, the BANANAS framework building
blocks could form the long-term basis for a best-effort end-to-end path multi-
plicity model. Through the independent partial upgrades of nodes in different
autonomous systems, end-systems can have a growing expectation of multiple
end-to-end paths. We strongly believe that such a mere ezpectation of end-to-
end path multiplicity will trigger substantial application innovation. To test
this hypothesis, we plan to deploy the BANANAS framework on the Plan-
etLab infrastructure [22] as a public experimental wide-area network overlay
service by Fall 2003.
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