A TCP-Friendly Traffic Marker for IP Differentiated Services

Azeem FeroZ Shivkumar Kalyanaraman Amit Rao
Department of ECSE
Rensselaer Polytechnic Institute
Troy, NY 12180
feroza@rpi.edu shivkuma@ecse.rpi.edu raopa@rpi.edu

Abstract algorithm in the network interior. The traffic marker
marks packets as “IN” or “OUT” (corresponding to the

The differentiated services architecture allows the pI’O\;V-VO “colors”) depending upon thg Service 'eYe' agregment
sion of “better-than-best-effort” services in the Interne .SLA)' An example of a differentiated dropping algorithm

However, the performance of legacy TCP applicatioﬁ “RI_Or;’) avarianthof the REID (R:nd?m EarIy_ (hBatewaé/)
over differentiated services is still influenced by burs gorithm(4, 5]. The RIO algorithm (*RED with In an

packet loss behavior. This paper proposes the use of T I") uses the same.RE'D algo'rithm for “IN” packets and
i]OUT" packets, albeit with a different set of parameters

friendly building blocks in the diff-serv architecture, an i)
or each. In particular, the OUT packets are preferentially

in particular, a TCP-friendly traffic marker to enhanc) :
TCP performance over assured service. We present pped upon evidence of congestion at the bottleneck
fore the IN packets. For example, a minimum rate of

marker design and resulting performance im rovemerptg . X -
g gp P ckets could be marked as “IN” in expectation of a mini-

in terms of improved predictability of service, reduc . q b he “IN” back d h
provisioning requirements, better fairness and fewer TCF m assure rate gcauset € packets would have
h probability of delivery.

timeouts. Though the marker improves assured serv g

performance predictability compared to a simple t0k§Bane; et al [8] showed that the use of a simple token
bucket marker, the performance is still dependent to SOR|G-ket marker for the above assured service results in TCP
extent on TCP dynamics. not realizing the minimum “assured rate.” The authors
attributed the cause of such behavior to TCP’s complex
response primarily to packet losses. Specifically, part of
1 INTRODUCTION the TCP flow was marked “IN” and a part marked “OUT.”
The overall performance was affected by the bursty losses
. o o being experienced by the “OUT” packets. The authors
There is a distinct need to move towards providing sefgncluded that it was unclear under such circumstances
vice differentiation (diff-serv) in the Internet. The curremiow the “assured service” can be characterized quantita-
best-effort model does not provide any means of prefgy|y for TCP applications. Such problems can reappear

entially treating traffic from customers who are willing t¢, other types of better-than-best-effort services being de-
pay more. The differentiated service model uses a cogjyned by the diff-serv community.

bination of network edge elements (traffic conditioners)

and network core elements (per-hop behaviors or PHBES)is paper proposes a general approach to such problems

to achieve service differentiation [2, 3]. in better-than-best-effort differentiated services - the use
of “TCP-friendly building blocks”. Specifically, we ex-

In this paper, we consider a simplified form of & bettepiore the meaning of the term “TCP-friendly” and develop

than-best-effort service called the “assured service’[Hne example building block, a TCP-friendly marker for

The building blocks of this service include a traffic markgpe simple assured service. We show that it can signifi-

at the edge of the domain, and a differentiated droppiggntly improve the service characteristics experienced by

“This project was supported in part by NSF contracts: ANI9806660CP applications Sl:'C_h @ediCtability of aS_Sured rates,.
and ANI9819112. There is a patent pending on this work; please cont@duced token provisioning requirements, improved fair-

shivkuma@ecse.rpi.edu for details ness, fewer overall packet losses and reduced number of

t i i \ .)
,4\zeem Feroz is currently with Packeteer Inc. TCP timeouts This approach can be generalized for use
Amit Rao is currently with Niksun Inc.

in other better-than-best-effort services. maximum segment sizes, the window size of a majority

)] _of transfers is small and are hence vulnerable to timeouts
The rest of the paper is organized as follows: Section,d4er such circumstances.

identifies the problems faced by TCP over assured service
and explores the meaning of the term “TCP-friendlyThe effect of such packet losses and timeouts include
Section 3 explores the design of TCP-friendly buildingervice degradation as characterized by transfer times or
blocks in general and the proposed TCP-friendly traffiaroughputs, unfairness as characterized by spread of per-
marker in particular. Sections 4 and 5 discuss the p#ow goodputs and a large number of packet losses and
formance of the TCP-friendly marker in relation to othdimeouts. The goal of “TCP-friendly” building blocks is
alternatives such as the token-bucket marker. SectiotoGeduce such negative performance effeBassed upon
summarizes and concludes the paper. the above discussion, the meaning of “TCP-friendly” is
to provide one or more of the following features in the
building blocks :

2 PERFORMANCE - . o
e promote the possibility of packet interleaving in the
PROBLEMS OF TCP OVER AS- network interior,

SURED SERVICE e protect small-window connections from packet loss,

e convert aggregate burst loss at a bottleneck into
It is well known that TCP Reno (the large installed base widely-spaced non-bursty per-connection loss,
of TCP implementations) has performance problems if a
connection encountersairst loss of packeise., ifacon- ¢ reduce packet burstiness created by TCP in general
nection sees a number of packet losses with nearby se-
quence numbers [9]. Specifically, three or more pack@ls characterized above, several well-known algorithms
dropped in a window can lead totimeoutplus multiple can be classified as “TCP-friendly.” For example, the
SSTHRESH reductions. The distribution of these lossrgD packet dropping algorithm randomizes packet loss
in the window is irrelevant for TCP Reno, i.e., the peand provides a minimum average spacing between packet
formance problems can occur with or without RED-typesses (though it operates on an aggregate of TCP flows).
gateways as long as multiple losses are experiencedrz¢keteer's TCP Rate control and other simple shaping
the same flow. Moreover, TCP transmission is bursty éigorithms can reduce packet burstiness caused by TCP
the sense that blocks of packets are transmitted backftict]. The set of features mentioned above is not neces-
back followed by idle times. Even after multiplexing agarily complete and can be extended. The term "TCP-
queuing points, packets of multiple flows generally terilendly” is also used by researchers in developing non-
to exhibit a low degree of interleaving. As a result whenCP traffic congestion control. But there, the emphasis
they encounter a bottleneck, multiple successive packgtsn fairness of bandwidth allocation between TCP and
of a single flow have a high probability of experiencingon-TCP traffic. Our emphasis here is to positively af-
similar behavior, for example, get dropped. fect existing TCP performance. In this paper, we present

N TCP Imol . like NewR 71 and TCa TCP-friendly traffic marker which satisfies some of the
ewer mplementations like NewReno [7] an Bbove criteria and results in significant performance im-
SACK [6] address some of these problems by use of b Fbvement of TCP receiving assured service.

ter end-to-end filtering, retransmission and feedback algo-

rithms. NewReno requires support only at the TCP source

(i.e. server-side upgrades), whereas TCP SACK requires

support at both the source and the receiver. Therefore3n TCP-FRIENDLY PACKET

spite of aggressive deployment of these newer versions, MARKER

the vast majority of TCP connections today are either

TCP Reno or NewReno. Now both these TCP versions

(Reno and NewRend)meoutwhen packet losses occuA packet marker is one of the traffic conditioners in diff-
and the source window size is small. Such timeouts leadrv. The general problem in a marker is to optimally al-
to performance degradation irrespective of the upgradddoate an available pool of tokens to a set of incoming
NewReno. In other words, the definition of “burst losspackets in a given interval of time. The available pool
varies depending upon per-connection window size. Doktokens may depend upon service parameters such as
to the short size of web-transfers and the reasonably latige contracted rate and a measure of burstiness. Packets

Algorithm 1 Token Allocation which get a token are said to be marked “IN” and those
T = The Marking Interval which do not get tokens are said to be marked “OUT.” As
N =The number of flows mentioned earlier, this can be used as the basis of a sim-
M = Number of Tokens available for the N flows in T secondsplified form of the “assured service” [1]. Our algorithm

W (i) = Window Estimate for Flow calculated as the runningcan be generalized to the full assured service specification

average of the difference between the sequence number in gae,e|. Ongoing work involves implementation of our
direction and the acknowledgment number in the other %Lgorithm in linux-diffserv
K .

E(i) = Smoothed estimate of the number of packets flow i se
in the marking interval T. The Packet Marker is designed to :
S(2) = Number of consecutive OUT packets between every two
IN packets of flow i.
in_count (i) = Allocation of IN tokens for flow i in time T sec- 1. Protect small-window flows from packet losses:
onds.) _ Small-window flows are “protected” from packet
tiny_-windows = Number of flows having windows less than k. losses by allocating only “IN” tokens to them (sub-
Ezlzgielfjl:jllets—tiljz"lber of Available tokens per interval after small ject to the availability of tokens). A “Max-Min™

N fair [10] allocation of the rest of the tokens is made

window flows get their share h L | h h
maz_min_alloc(i)= Max-min fair allocation [10] of tokens per among the remaining flows. If there are not enoug

interval for flow i “IN” tokens to provide all small window flows with
their demand, the number of available tokens is
Step | equally divided among the small window flows and
1. For each flow i i (i) < k then the remaining packets are marked as “OUT".

tiny windows++; /+Increment tiny windows*/ 2 Maintain optimum spacing between “IN” and
)) . @ “OUT” tokens allocated for a flow: There could be
avadable = (M — X(E(i) for small window flows)) scenarios wherein a flow gets a burst of “OUT” to-
. . (2) kens followed by a burst of “IN” tokens. This could
Step Il :Divide the available tokens among the flows lead to burst loss of “OUT” packets resulting in a

2. Ifavailable== O then [*1f no tokens left after pro- timeout with TCP Reno. The probability of timeout
tecting small window flows */ could be reduced if an optimal spacing is maintained
e For Small Window Flows between “IN” and “OUT"” packets for each flow. This
Divide M among the small window flows allocation of tokens is done once every T seconds.
This is illustrated in the Token Allocation algorithm
in_count(i) = L (3) (Algorithm 1)
tiny_windows)
S(i) = (E(i) _ > _1 4) 3. Mark packets according to the allocations Packet
in_count (i) marking is done according to the per-flow allocations
e For All Other Flows of tokens made in the previous two steps. In the
marking algorithm, a packet is identified as belong-
in_count(i) = 0 (5) ing to a flow. All packets from small-window flows

are marked as “IN”. Also while marking, a spac-

3. Elseifavailable> 0 th . . .
s¢ ravafiable> S then ing variable (number of consecutive “OUT” packets

e For Small Window Flows between every two “IN” packets of flow) is main-
tained on a per-flow basis. If “IN” tokens run out for

in-count(i) = E(i) (6) any flow (either due to a prediction error or a sud-

S@E) =0 (7) den burst), then all successive packets for that flow

are marked as “OUT". Figure 1 further illustrates the

e For All Other Flows . - . .
marking scheme. Note that inspite of the packet “in-

Divide remaining tokens (available) among the other

flows with optimal spacing .terleavi'ng” int'roduced by this marking schemg, there
is a residual risk that a burst loss could result in mul-
in-count(i) = maz-min_alloc(i) (8) tiple (though not consecutive) packet losses within a

B TCP window. The Packet Marking Algorithm (Al-
SG) = <¢> -1 9) gorithm 2) illustrates this mechanism.

in_count(s)

Algorithm 2 Packet Marking

TOKEN BUCKET MARKER (E(i) = 10 and in_count(i) =4)

EERENR0DD0DOO

Burst of "OUT" packets

TCP-FRIENDLY MARKER (E(i) = 10, (i) = 1 and in_count(i) =4)

NN NN NiE NN RN

count(i) = flow variable to keep count of number of pack-

ets

"IN" and "OUT" packets spaced - no burst of "OUT" packets

(a) Save the spacing variable for each flow i in a tempo-

rary variable

default_spacing(i) = S(i) (10)

. "IN" PACKET

D "OUT" PACKET

Figure 1: lllustration of marking scheme

(b) Whenever a new packet comes in, identify its flow

index i.

(c) For flow i, check if “IN” tokens are available i.e if
in_count(i)> 0.

(d) If yes then do the following :

i. If count(i) > S(i)
Mark as “IN" (11)

S(i) = default_spacing(i)—(count(i)—S(i))

(12)
Reset count(i) = 0 (13)
Decrement in_count(i) (14)

ii. Elseifcount(i) < S(7)
Mark as “OUT" (15)
Increment count(i) (16)

(e) Else

Mark as “OUT" a7)

SIMULATION AND PERFOR-
MANCE ANALYSIS

For performance analysis, we consider the system (of TCP
flows in this case) as a black box to which is input a set of
parameterand workloads (parameters include the choice
of the scheme, configurations etc) and the output is a set
of metricswhich evaluate the tradeoff among various re-
source constraints in the system. The next two sections
explain the choice of metrics and parameter dimensions
explored in this study.

4.1 Metrics

Our goal in performance analysis is to quantify "best
effort” performance and "better-than-best-effort” perfor-
mance. Best effort performance hitherto has been ill-
guantified at best. The following set of metrics divided
into two groups, operator and user metrics, represents the
view of best-effort performance from the operator and
user’s perspectives. The overall performance of best effort
is a combination of these two groups of metrics. These
metrics were first introduced in our earlier work [11].

4.1.1 Service Provider (or operator) metrics packet size is 1024 bytes. The default marking interval (T
in algorithm 1) is 250ms.

The operator’s key resources are bandwidth and buffe\y\?e use a simulator called "netsim” developed at Ohio
The operator is willing to tradeoff buffer resources to eRste University

sure high utilization of bandwidth. But high queuing de-

lays or drop rates are undesired for supporting customere queuing discipline used at the bottleneck router R2
interactive applications such as telnet or WWW. The me&-RIO [4]. As mentioned earlier RIO is a simple variant
rics which measure the tradeoffs among these resourgthe RED (Random Early Gateway) algorithm[5]. The
are: RIO algorithm (“RED with In and Out”) uses the same
RED algorithm for “IN” packets and “OUT” packets, al-
1. Average link Utilization : Low link utilization, given Peit with a different set of parameters for each. We use

adequate load is unacceptable. (We use the averiifefollowing RIO parameters :
goodput metric as a partial proxy for this metric).

min threshold for “OUT” packetsfin_th_ouf) = 1
2. Packet loss rate Packet loss represents wasted ¢ P s)

bandwidth and buffer resources on upstream links. « max threshold for “OUT" packetafaxth_out) = 20

412 User Metrics e max probablllt_y of packet loss for “OUT” pack-
etsfnaxp_ouf) = 0.2

The user is interested in per-flow goodput (assuming infi-g min threshold for “IN” packetsfin_th_in) = 150
nite flows). This requires us to use N metrics (where N =

number of flows). But for brevity, we use: o max threshold for “IN” packetsfaxth_in) = 200

1. Average (per-flow) Goodput This quantity which @ max probability of packet loss for “IN" pack-
excludes retransmitted packets should be as high as etsfhaxp.in) = 0.005
possible.
e queue weightf_qg) = 0.002
2. Coefficient of Variation of (per-flow) Goodput:

This quantity is a rough measure of fairness. The , , ., L o
coefficient of variation (denoted CoV) is the raticﬁ” our simulations used "long TCP flows” simulating in-

of the standard deviation in goodput to the avera Qite FTP transfers. All flows start simultaneously and
goodput. Ideally, for a single bottleneck with infinit erefore we did not repeat simulations multiple times to
transfers. this metric should be close to zero get an average. Given the different variants of TCP im-

plementations in practice, these simulations should only
be interpreted as representative cases of absolute perfor-
. . . mance improvements, and not as exact percentage im-
4.2 Baseline Configuration provements.
Figure 2 shows our baseline configuration. We have 10

sources which are divided into groups of five each. RO

and R1 incorporate the marker building blocks and hab- SIMULATION RESULTS
dle traffic from five flows each. R2 is the bottleneck router

and both RO and R1 feed into R2. The R2-R3 link is the

bottleneck. R3 connects the traffic to the respective dedi® TCP-friendly traffic marker is designed to protect
nations. small windows from drops and maintain optimal spac-

ing between “IN” and “OUT” packets. The effects of
Each source is connected to its respective marker throtigdy marker are evaluated under various scenarios and de-
links of 1.5 Mbps. The marker feeds this into the bottlescribed in detail. In all the scenarios we compare the per-
neck through 10 Mbps links. The bottleneck link has a 1férmance of the TCP-friendly marker to a token bucket
Mbps capacity. All the destination links have 1.5 Mbpsarker. We also present results with no marking i.e. best-
capacity. All links have a length of 1000 km. The defauéffort service.

@xMARK ER
N
i
| / 10 Mbps
: BOTTLENECK
R2
. 1.5 Mbps
\
‘ /

10 Mbps

SOURCES DATA DESTINATIONS
—— ACKS
-2

—> ALL LINKS1.5Mbps , 1000km (unless otherwise mentioned)
DEFAULT PACKET SIZE = 1024 bytes
MARKER INTERVAL T =250ms

Figure 2: Base Configuration

Table 1: COMPARISON OF MARKERS FOR THE BASE CONFIGURATION : 10 FLOWS, SIMULATION TIME
=100s, BOTTLENECK BANDWIDTH = 1.5Mbps

Operator Metrics User Metrics
Configuration Timeouts | Packet Losses| Avg Goodput | CoV
packets/sec bps
TCP Friendly Marker 11 1.46 18503 0.12
Token Bucket Marker 18 2.28 17858 0.09
No Marker 18 4.24 18257 0.15

5.1 Simulation results with the Baseline 5.2 Simulations with large number of flows
Configuration

In this section, we test the performance of the TCP-

friendly marker with a large number of flows. We modify
We use the baseline configuration, and compare the nthe baseline configuration to have 100 flows. We still have
rics obtained with the TCP-friendly marker with those ota TCP-friendly marker for a set of five flows. Bottleneck
tained using a simple token bucket marker. Table 1 suspeed is 15 Mbps and link lengths 1000 km. The sim-
marizes the results. The TCP-friendly marker has a banation results are summarized in Table 2. We observe
eficial effect on all the metrics as compared to a simpleat deployment of the TCP-friendly marker causes a dra-
token bucket marker. We observe a smaller packet lomatic improvement in most of our metrics. Specifically
rate (1.46 as compared to 2.28) and a significantly fewee observe a smaller packet loss rate (23.26 as compared
number of timeouts (11 as compared to 18). Changes31.96) and fewer timeouts (348 as compared to 399)
in the other metrics are insignificant. Though the gaiméen compared to the token bucket marker. We also ob-
are small in this baseline configuration, the TCP-friendgerve improved fairness and hence improved predictabil-
marker still does better. A smaller coefficient of variandey of service (Coefficient of Variation in goodput of 0.09
for the token bucket marker can be attributed to the lowas compared to 0.16). There is also a marginal decrease
average goodput obtained. in average goodput (20377 as compared to 20449).

Table 2: COMPARISON OF MARKERS : 100 FLOWS, SIMULATION TIME = 100s, BOTTLENECK BAND-
WIDTH = 15Mbps

Operator Metrics User Metrics
Configuration Timeouts | Packet Losses| Avg Goodput | CoV
packets/sec bps
TCP Friendly Marker 348 23.26 20377 0.09
Token Bucket Marker 399 31.96 20449 0.16
No Marker 2145 100.27 20213 0.07

Table 3: COMPARISON OF MARKERS : 100 FLOWS, SIMULATION TIME = 100s, BOTTLENECK BAND-
WIDTH = 150Mbps

Operator Metrics User Metrics
Configuration Timeouts | Packet Losses| Avg Goodput | CoV
packets/sec bps
TCP Friendly Marker 1261 240.48 194795 0.03
Token Bucket Marker 4254 311.65 134952 0.05
No Marker 2954 322.07 151162 0.04

5.3 Simulations with large number of flows base of TCP implementations. However new TCP imple-
and high speed links mentations aimed at solving Reno’s problems have been
proposed and investigated. The most popular among the

In this section, we test the performance of the TCIQSEW@rTCP implementations are New Reno [7] and SACK

friendly marker with a large number of flows. We mod[—6]'
ify the baseline configuration to have 100 flows. Also all

source to marker links have a 15 Mbps bandwidth. Bot-e SACK : The main weakness of Reno is that multiple

tleneck speed is 150 Mbps. We still have a TCP-friendly (three or more) packet drops from window of data
marker for a set of five flows. Link lengths are 1000 km. may result in the source incurring a timeout. With

The simulation results are summarized in Table 3. We ob- the limited information that cumulative acknowledg-
serve that deployment of the TCP-friendly marker causes ments provide the source is unable to detect multiple
a dramatic improvement in most of our metrics. Specif- packet drops from the same window. SACK avoids
ically we observe a smaller packet loss rate (240.48 as this problem by using Reno with selective acknowl-
compared to 311.65), fewer timeouts (1261 as compared edgments and selective retransmission. The receiv-
to 4254) and higher average goodput (19475 as compared ing TCP sends back SACK packets to the sender “se-
to 134952) when compared to the token bucket marker. |ectively” acknowledging only received data. The
We also observe improved fairness and hence improved sender then need only send the missing data seg-
predictability of service (Coefficient of Variation in good- ments.

put of 0.03 as compared to 0.05).))
The results of using a TCP-friendly marker as com-

pared to a simple token bucket marker in conjunction

. . . . with SACK as the TCP implementation are shown in

5.4 Slmma.tlons with Different TCP Imple- Table 4. Comparison of Tables 4 and 1 shows thatin
mentations general SACK reduces the total number of timeouts.

We also note that the TCP-friendly marker reduces
In this section, we examine the effect of the TCP-friendly the total number of timeouts to a greater degree (1 as
marker with different TCP implementations. In the ear- opposed to 5) as compared to a token bucket marker.
lier sections we demonstrated the usefulness of the TCP We also observe improved fairness (as indicated by

marker with TCP Reno, the largest currently installed a smaller coefficient of Variation in goodput) and

hence greater predictability of service (0.10 as opable 6 shows the performance improvement that the
posed to 0.16). We again observe a smaller pacle&ZP-friendly marker provides as compared to the token
loss rate (1.76 as compared to 1.82), and a margindilycket marker in terms of providing assurances. It is ob-
higher average goodput (18421 vs 18329). served that both the token bucket and the TCP-friendly
markers fall short of providing the assurance they aim to
e NewReno: The NewReno algorithm proposes @rovide. For example for a assured bandwidth of 0.49
modification to Reno’s fast recovery algorithm. ImMbps, the token bucket marker can only get a bandwidth
the absence of SACK, there is little informatiomf 0.26 Mbps as compared to 0.44 Mbps got by the TCP-
available to the TCP sender in making retransmifsiendly marker. However the TCP-friendly marker is able
sion decisions during Fast Recovery. In NewRenw provide the guarantees to a far greater extent. This
during Fast Recovery an acknowledgment that ageans that in order to provide “assured” service for TCP,
knowledges some but not all of the packets outstargbme kind of over-provisioning is required in both cases.
ing is called a “partial ack”. With NewReno, partialThis over-provisioning could be in the form of provid-
acks do not take the source out of fast recovery. lilg more tokens than contracted for at the marker and
stead a partial ack is understood to indicate a packeWing excess capacity at the bottleneck. For example if
loss immediately after the last acknowledged packete wanted to guarantee approximately 0.5Mbps of band-
This packet is then retransmitted. width on a 1.5Mbps bottleneck, we need to give 20 to-
As opposed to SACK, NewReno, does not requik@ns per interval in _the case of a TCP-friendly marker
both the sender and receiver TCP support. The pen_d 40 tokens per _mterval for a token bucket marker.
sults of using a TCP-friendly marker as compared®Vever the TQR—fngndIy mgrker reduce_s the degree of
to a simple token bucket marker in conjunction witaken over-provisioning required .to. pr.owde guarantees.
ver and above thimken over-provisioningve also need
?ndwidth over-provisionings observed from the ratio
bandwidth obtained to bandwidth assured in Table 6.

of variation of goodput of 0.11 as compared to 0.14 hl:]S the ser\élce rearlllzedkby an appllcqt!on.ls a rl:uncno;;l
We also observe a smaller packet loss rate (1.49. {he assuredrate, the token over-provisioning, the mark-

compared to 1.77), fewer timeouts (17 as compargﬁJ scheme and TCP dynamics.
to 26) when compared to the token bucket marker.

There is also a marginal increase in average goodput

(18513 as compared to 18472).

NewReno as the TCP implementation are shown
Table 5. We again observe improved fairness ah
hence improved predictability of service (coefficie

5.5 Evaluation of Assured Service _)
5.6 Evaluation of Assured Service over

Ibanez et al.[8] pointed out some serious performance High Speed Links and Large Number of

issues with assured services. In particular, the authors FlOwWs

pointed out that in many cases assured service may not

give the “guarantees” it is aiming to provide. Specifi-

cally, in configurations where the assured traffic has liothis set of simulations we extend the configuration from

compete with unbounded best-effort traffic, this effect gection 5.5 to 100 flows and link speeds of 15Mbps. Again

pronounced. only one source is given increasing levels of assurance.
All other flows are best-effort. The links connecting the

We investigate the performance of the TCP-friendlyssred source to the network have a speed of 150Mbps.
marker in such scenarios where assured traffic is com-

peting with unbounded best-effort traffic. A performanceable 7 reaffirms the results we observed in Table 6.
evaluation of the TCP-friendly marker is done against tiée observe again that both markers fall short of providing
simple token bucket marker. In this configuration a singlke assurance they aim to provide. For example for an
source is provided with increasing levels of assurance agsured bandwidth of 49 Mbps, the token bucket marker
until the entire bottleneck bandwidth and the assuranan only get a bandwidth of 12.86 Mbps as compared to
it actually gets from the network is observed. The pe22.92 Mbps got by the TCP-friendly marker. The TCP-
formance of the TCP-friendly marker is contrasted withfaendly marker is able to provide the guarantees to a far
simple token bucket marker. greater extent.

Table 4: COMPARISON OF MARKERS FOR SACK : 10 FLOWS, SIMULATION TIME = 100s, BOTTLENECK
BANDWIDTH = 1.5Mbps

Operator Metrics User Metrics
Configuration Timeouts | Packet Losses| Avg Goodput | CoV
packets/sec bps
TCP Friendly Marker 1 1.76 18421 0.10
Token Bucket Marker 5 1.82 18329 0.16
No Marker 5 3.16 18309 0.17

Table 5: COMPARISON OF MARKERS FOR NEWRENO : 10 FLOWS, SIMULATION TIME = 100s, BOTTLE-
NECK BANDWIDTH = 1.5Mbps

Operator Metrics User Metrics
Configuration Timeouts | Packet Losses| Avg Goodput | CoV
packets/sec bps
TCP Friendly Marker 17 1.49 18513 0.11
Token Bucket Marker 26 1.77 18472 0.14
No Marker 30 3.31 18452 0.17
5.7 Other Simulations Further ongoing work includes implementing the TCP-

friendly marker in linux-diffserv to experimentally vali-

The performance of the TCP-friendly marker was olat€ the results and moving towards a more comprehen-
served in various other configurations. Some of the othiiy® TCP-friendly assured service solution. These direc-
configurations we looked at were short transfers, heteft2ns include integration with TCP rate control [11], pro-
geneous rtt flows and high speed links. We do not presé‘?’ﬁt'on agamst parameter sensitivity issues in RIO, and
the results for all the above configurations because Sfteful differentiated buffer management schemes at the
space constraints. The results are consistent with the fiRB€-

ings from the earlier sections. The TCP-friendly marker

is seen to provide performance enhancements in all of the

above configurations. References

[1] J. Heinanen, F. Baker, W.Weiss and J.Wroclawski,

6 CONCLUSION AND FUTURE Assured forwarding PHB group. IETF Internet draft
WORK draft-ietf-diffserv-af-05.txtFebruary 1999.

[2] S. Blake, D.Black, M.Carlson, E.Davies, Z.Wang
and W.Weiss, “An architecture for differentiated ser-

In summary, we looked at generic TCP performance prob- vices” Internet RFC 2475December 1998.

lems which remain in differentiated services, and demon-
strate that enhancements are needed in traffic conditios] s Blake, Y.Bernet, J.Binder, M.Carlson,
ers. Specifically, in this paper we observe the performance g carpenter, S.Keshav, E.Davies, B.Ohlman,

improvements we are able to produce by the deployment p \erma, Z.Wang and W.Weiss, “A framework for
of a TCP-friendly traffic marker. The service realized by (ifferentiated services”, IETF Internet Drafiraft-

an application is seen to be a function of the assured rate, jetf-diffserv-framework-01.txOctober 1998.

the marking scheme and TCP dynamics. By using our

TCP-friendly marker we can get better predictability off4] D.D. Clark and W. Fang, “Explicit allocation of best-
service, lower token provisioning requirements, improved effort packet delivery servicelEEE/ACM Transac-
fairness, fewer TCP timeouts and fewer packet losses. tions on Networking6(4):362-373, Aug. 1998.

Table 6: COMPARISON OF MARKERS FOR ASSURED SERVICE : 11 FLOWS, SIMULATION TIME = 100s,
BOTTLENECK BANDWIDTH = 1.5Mbps

Tokens/Interval| BW Assured BW Obtained BW Obtained/Assured
packets Mbps Mbps Mbps percent percent
Friendly | TokenBucket | Friendly | TokenBucket
15 0.49 0.44 0.26 90 53
20 0.66 0.52 0.34 79 52
25 0.82 0.57 0.36 70 44
30 0.98 0.7 0.42 71 43
35 1.15 0.73 0.46 63 40
40 1.31 0.89 0.49 68 37
45 1.47 0.99 0.59 68 40

Table 7: COMPARISON OF MARKERS FOR ASSURED SERVICE : 100 FLOWS, SIMULATION TIME = 100s,
BOTTLENECK BANDWIDTH = 150Mbps

Tokens/Interval| BW Assured BW Obtained BW Obtained/Assured
packets Mbps Mbps Mbps percent percent
Friendly | TokenBucket | Friendly | TokenBucket
1500 49 22.92 12.86 47 26
3000 98 45.77 30.51 47 30
4500 147 61.08 32.24 41 21

[5] S. Floyd, and V. Jacobson, “Random early detecti¢hl] S.Karandikar,

[6]

[7]

8] J.

[9]

gateways for congestion avoidancdEEE/ACM
Transactions on Networking/ol. 1, No. 4, August
1993, pp.397-413.

M.Mathis, J.Madhavi, S.Floyd and A.Romanov,
“TCP selective acknowledgement optiorigternet
RFC 2018 October 1996.

S.Floyd, and T. Henderson “The NewReno modi-
fication to TCP's fast recovery algorithmiternet
RFC 2582 April 1999.

Ibanez, K. Nichols, “Preliminary simulation
evaluation of an assured service”, IETF Internet
Draft, draft-ibanez-diffserv-assured-eval-00, #ti-
gust, 1998.

Kevin Fall and Sally Floyd, “Comparisons of Tahoe,
Reno and SACK TCP”, Computer Communication
Review, V. 26 N. 3, July 1996,

[10] A. Charny, “An algorithm for rate allocation in a

packet-switching network with feedback”, Masters
thesis, MIT 1994

S.Kalyanaraman, P.Bagal and B.Packer, “TCP rate
control”, Computer Communication Review, V. 30
N. 1, January 2000,

