
A TCP-Friendly Traffic Marker for IP Differentiated Services�

Azeem Ferozy Shivkumar Kalyanaraman Amit Raoz

Department of ECSE
Rensselaer Polytechnic Institute

Troy, NY 12180
feroza@rpi.edu shivkuma@ecse.rpi.edu raopa@rpi.edu

Abstract

The differentiated services architecture allows the provi-
sion of “better-than-best-effort” services in the Internet.
However, the performance of legacy TCP applications
over differentiated services is still influenced by bursty
packet loss behavior. This paper proposes the use of TCP-
friendly building blocks in the diff-serv architecture, and
in particular, a TCP-friendly traffic marker to enhance
TCP performance over assured service. We present the
marker design and resulting performance improvements
in terms of improved predictability of service, reduced
provisioning requirements, better fairness and fewer TCP
timeouts. Though the marker improves assured service
performance predictability compared to a simple token
bucket marker, the performance is still dependent to some
extent on TCP dynamics.

1 INTRODUCTION

There is a distinct need to move towards providing ser-
vice differentiation (diff-serv) in the Internet. The current
best-effort model does not provide any means of prefer-
entially treating traffic from customers who are willing to
pay more. The differentiated service model uses a com-
bination of network edge elements (traffic conditioners)
and network core elements (per-hop behaviors or PHBs)
to achieve service differentiation [2, 3].

In this paper, we consider a simplified form of a better-
than-best-effort service called the “assured service”[1].
The building blocks of this service include a traffic marker
at the edge of the domain, and a differentiated dropping

�This project was supported in part by NSF contracts: ANI9806660
and ANI9819112. There is a patent pending on this work; please contact
shivkuma@ecse.rpi.edu for details

yAzeem Feroz is currently with Packeteer Inc.
zAmit Rao is currently with Niksun Inc.

algorithm in the network interior. The traffic marker
marks packets as “IN” or “OUT” (corresponding to the
two “colors”) depending upon the service level agreement
(SLA). An example of a differentiated dropping algorithm
is “RIO” - a variant of the RED (Random Early Gateway)
algorithm[4, 5]. The RIO algorithm (“RED with In and
Out”) uses the same RED algorithm for “IN” packets and
“OUT” packets, albeit with a different set of parameters
for each. In particular, the OUT packets are preferentially
dropped upon evidence of congestion at the bottleneck
before the IN packets. For example, a minimum rate of
packets could be marked as “IN” in expectation of a mini-
mum “assured rate” because the “IN” packets would have
high probability of delivery.

Ibanez et al [8] showed that the use of a simple token
bucket marker for the above assured service results in TCP
not realizing the minimum “assured rate.” The authors
attributed the cause of such behavior to TCP’s complex
response primarily to packet losses. Specifically, part of
the TCP flow was marked “IN” and a part marked “OUT.”
The overall performance was affected by the bursty losses
being experienced by the “OUT” packets. The authors
concluded that it was unclear under such circumstances
how the “assured service” can be characterized quantita-
tively for TCP applications. Such problems can reappear
in other types of better-than-best-effort services being de-
signed by the diff-serv community.

This paper proposes a general approach to such problems
in better-than-best-effort differentiated services - the use
of “TCP-friendly building blocks”. Specifically, we ex-
plore the meaning of the term “TCP-friendly” and develop
one example building block, a TCP-friendly marker for
the simple assured service. We show that it can signifi-
cantly improve the service characteristics experienced by
TCP applications such aspredictability of assured rates,
reduced token provisioning requirements, improved fair-
ness, fewer overall packet losses and reduced number of
TCP timeouts. This approach can be generalized for use

in other better-than-best-effort services.

The rest of the paper is organized as follows: Section 2
identifies the problems faced by TCP over assured service
and explores the meaning of the term “TCP-friendly”.
Section 3 explores the design of TCP-friendly building
blocks in general and the proposed TCP-friendly traffic
marker in particular. Sections 4 and 5 discuss the per-
formance of the TCP-friendly marker in relation to other
alternatives such as the token-bucket marker. Section 6
summarizes and concludes the paper.

2 PERFORMANCE
PROBLEMS OF TCP OVER AS-
SURED SERVICE

It is well known that TCP Reno (the large installed base
of TCP implementations) has performance problems if a
connection encounters aburst loss of packetsi.e., if a con-
nection sees a number of packet losses with nearby se-
quence numbers [9]. Specifically, three or more packets
dropped in a window can lead to atimeoutplus multiple
SSTHRESH reductions. The distribution of these losses
in the window is irrelevant for TCP Reno, i.e., the per-
formance problems can occur with or without RED-type
gateways as long as multiple losses are experienced by
the same flow. Moreover, TCP transmission is bursty in
the sense that blocks of packets are transmitted back-to-
back followed by idle times. Even after multiplexing at
queuing points, packets of multiple flows generally tend
to exhibit a low degree of interleaving. As a result when
they encounter a bottleneck, multiple successive packets
of a single flow have a high probability of experiencing
similar behavior, for example, get dropped.

Newer TCP Implementations like NewReno [7] and TCP
SACK [6] address some of these problems by use of bet-
ter end-to-end filtering, retransmission and feedback algo-
rithms. NewReno requires support only at the TCP source
(i.e. server-side upgrades), whereas TCP SACK requires
support at both the source and the receiver. Therefore, in
spite of aggressive deployment of these newer versions,
the vast majority of TCP connections today are either
TCP Reno or NewReno. Now both these TCP versions
(Reno and NewReno)timeoutwhen packet losses occur
and the source window size is small. Such timeouts lead
to performance degradation irrespective of the upgrade to
NewReno. In other words, the definition of “burst loss”
varies depending upon per-connection window size. Due
to the short size of web-transfers and the reasonably large

maximum segment sizes, the window size of a majority
of transfers is small and are hence vulnerable to timeouts
under such circumstances.

The effect of such packet losses and timeouts include
service degradation as characterized by transfer times or
throughputs, unfairness as characterized by spread of per-
flow goodputs and a large number of packet losses and
timeouts.The goal of “TCP-friendly” building blocks is
to reduce such negative performance effects. Based upon
the above discussion, the meaning of “TCP-friendly” is
to provide one or more of the following features in the
building blocks :

� promote the possibility of packet interleaving in the
network interior,

� protect small-window connections from packet loss,

� convert aggregate burst loss at a bottleneck into
widely-spaced non-bursty per-connection loss,

� reduce packet burstiness created by TCP in general

As characterized above, several well-known algorithms
can be classified as “TCP-friendly.” For example, the
RED packet dropping algorithm randomizes packet loss
and provides a minimum average spacing between packet
losses (though it operates on an aggregate of TCP flows).
Packeteer’s TCP Rate control and other simple shaping
algorithms can reduce packet burstiness caused by TCP
[11]. The set of features mentioned above is not neces-
sarily complete and can be extended. The term ”TCP-
friendly” is also used by researchers in developing non-
TCP traffic congestion control. But there, the emphasis
is on fairness of bandwidth allocation between TCP and
non-TCP traffic. Our emphasis here is to positively af-
fect existing TCP performance. In this paper, we present
a TCP-friendly traffic marker which satisfies some of the
above criteria and results in significant performance im-
provement of TCP receiving assured service.

3 TCP-FRIENDLY PACKET
MARKER

A packet marker is one of the traffic conditioners in diff-
serv. The general problem in a marker is to optimally al-
locate an available pool of tokens to a set of incoming
packets in a given interval of time. The available pool
of tokens may depend upon service parameters such as
the contracted rate and a measure of burstiness. Packets

Algorithm 1 Token Allocation
T = The Marking Interval
N = The number of flows
M = Number of Tokens available for the N flows in T seconds
W (i) = Window Estimate for Flowi calculated as the running
average of the difference between the sequence number in one
direction and the acknowledgment number in the other
E(i) = Smoothed estimate of the number of packets flow i sends
in the marking interval T.
S(i) = Number of consecutive OUT packets between every two
IN packets of flow i.
in count(i) = Allocation of IN tokens for flow i in time T sec-
onds.
tiny windows = Number of flows having windows less than k.
(k defaults to 4)
available = Number of Available tokens per interval after small
window flows get their share
max min alloc(i)= Max-min fair allocation [10] of tokens per
interval for flow i

Step I

1. For each flow i ifW (i) < k then

tiny windows++; =�Increment tiny windows�=
(1)

available = (M � �(E(i) for small window flows))
(2)

Step II :Divide the available tokens among the flows

2. If available== 0 then /* If no tokens left after pro-
tecting small window flows */

� For Small Window Flows
Divide M among the small window flows

in count(i) =
M

tiny windows
(3)

S(i) =

�
E(i)

in count(i)

�
� 1 (4)

� For All Other Flows

in count(i) = 0 (5)

3. Else ifavailable> 0 then

� For Small Window Flows

in count(i) = E(i) (6)

S(i) = 0 (7)

� For All Other Flows
Divide remaining tokens (available) among the other
flows with optimal spacing

in count(i) = max min alloc(i) (8)

S(i) =

�
E(i)

in count(i)

�
� 1 (9)

which get a token are said to be marked “IN” and those
which do not get tokens are said to be marked “OUT.” As
mentioned earlier, this can be used as the basis of a sim-
plified form of the “assured service” [1]. Our algorithm
can be generalized to the full assured service specification
as well. Ongoing work involves implementation of our
algorithm in linux-diffserv.

The Packet Marker is designed to :

1. Protect small-window flows from packet losses:
Small-window flows are “protected” from packet
losses by allocating only “IN” tokens to them (sub-
ject to the availability of tokens). A “Max-Min”’
fair [10] allocation of the rest of the tokens is made
among the remaining flows. If there are not enough
“IN” tokens to provide all small window flows with
their demand, the number of available tokens is
equally divided among the small window flows and
the remaining packets are marked as “OUT”.

2. Maintain optimum spacing between “IN” and
“OUT” tokens allocated for a flow: There could be
scenarios wherein a flow gets a burst of “OUT” to-
kens followed by a burst of “IN” tokens. This could
lead to burst loss of “OUT” packets resulting in a
timeout with TCP Reno. The probability of timeout
could be reduced if an optimal spacing is maintained
between “IN” and “OUT” packets for each flow. This
allocation of tokens is done once every T seconds.
This is illustrated in the Token Allocation algorithm
(Algorithm 1).

3. Mark packets according to the allocations: Packet
marking is done according to the per-flow allocations
of tokens made in the previous two steps. In the
marking algorithm, a packet is identified as belong-
ing to a flow. All packets from small-window flows
are marked as “IN”. Also while marking, a spac-
ing variable (number of consecutive “OUT” packets
between every two “IN” packets of flow) is main-
tained on a per-flow basis. If “IN” tokens run out for
any flow (either due to a prediction error or a sud-
den burst), then all successive packets for that flow
are marked as “OUT”. Figure 1 further illustrates the
marking scheme. Note that inspite of the packet “in-
terleaving” introduced by this marking scheme, there
is a residual risk that a burst loss could result in mul-
tiple (though not consecutive) packet losses within a
TCP window. The Packet Marking Algorithm (Al-
gorithm 2) illustrates this mechanism.

Algorithm 2 Packet Marking

count(i) = flow variable to keep count of number of pack-
ets

(a) Save the spacing variable for each flow i in a tempo-
rary variable

default spacing(i) = S(i) (10)

(b) Whenever a new packet comes in, identify its flow
index i.

(c) For flow i, check if “IN” tokens are available i.e if
in count(i)> 0.

(d) If yes then do the following :

i. If count(i) � S(i)

Mark as \IN 00 (11)

S(i) = default spacing(i)�(count(i)�S(i))
(12)

Reset count(i) = 0 (13)

Decrement in count(i) (14)

ii. Else if count(i) < S(i)

Mark as \OUT 00 (15)

Increment count(i) (16)

(e) Else
Mark as \OUT 00 (17)

"IN" PACKET

"OUT" PACKET

Burst of "OUT" packets

"IN" and "OUT" packets spaced - no burst of "OUT" packets

TOKEN BUCKET MARKER (E(i) = 10 and in_count(i) =4)

TCP-FRIENDLY MARKER (E(i) = 10, S(i) = 1 and in_count(i) =4)

Figure 1: Illustration of marking scheme

4 SIMULATION AND PERFOR-
MANCE ANALYSIS

For performance analysis, we consider the system (of TCP
flows in this case) as a black box to which is input a set of
parametersand workloads (parameters include the choice
of the scheme, configurations etc) and the output is a set
of metricswhich evaluate the tradeoff among various re-
source constraints in the system. The next two sections
explain the choice of metrics and parameter dimensions
explored in this study.

4.1 Metrics

Our goal in performance analysis is to quantify ”best
effort” performance and ”better-than-best-effort” perfor-
mance. Best effort performance hitherto has been ill-
quantified at best. The following set of metrics divided
into two groups, operator and user metrics, represents the
view of best-effort performance from the operator and
user’s perspectives. The overall performance of best effort
is a combination of these two groups of metrics. These
metrics were first introduced in our earlier work [11].

4.1.1 Service Provider (or operator) metrics

The operator’s key resources are bandwidth and buffers.
The operator is willing to tradeoff buffer resources to en-
sure high utilization of bandwidth. But high queuing de-
lays or drop rates are undesired for supporting customers’
interactive applications such as telnet or WWW. The met-
rics which measure the tradeoffs among these resources
are:

1. Average link Utilization : Low link utilization, given
adequate load is unacceptable. (We use the average
goodput metric as a partial proxy for this metric).

2. Packet loss rate: Packet loss represents wasted
bandwidth and buffer resources on upstream links.

4.1.2 User Metrics

The user is interested in per-flow goodput (assuming infi-
nite flows). This requires us to use N metrics (where N =
number of flows). But for brevity, we use:

1. Average (per-flow) Goodput: This quantity which
excludes retransmitted packets should be as high as
possible.

2. Coefficient of Variation of (per-flow) Goodput:
This quantity is a rough measure of fairness. The
coefficient of variation (denoted CoV) is the ratio
of the standard deviation in goodput to the average
goodput. Ideally, for a single bottleneck with infinite
transfers, this metric should be close to zero.

4.2 Baseline Configuration

Figure 2 shows our baseline configuration. We have 10
sources which are divided into groups of five each. R0
and R1 incorporate the marker building blocks and han-
dle traffic from five flows each. R2 is the bottleneck router
and both R0 and R1 feed into R2. The R2-R3 link is the
bottleneck. R3 connects the traffic to the respective desti-
nations.

Each source is connected to its respective marker through
links of 1.5 Mbps. The marker feeds this into the bottle-
neck through 10 Mbps links. The bottleneck link has a 1.5
Mbps capacity. All the destination links have 1.5 Mbps
capacity. All links have a length of 1000 km. The default

packet size is 1024 bytes. The default marking interval (T
in algorithm 1) is 250ms.

We use a simulator called ”netsim” developed at Ohio
State University.

The queuing discipline used at the bottleneck router R2
is RIO [4]. As mentioned earlier RIO is a simple variant
of the RED (Random Early Gateway) algorithm[5]. The
RIO algorithm (“RED with In and Out”) uses the same
RED algorithm for “IN” packets and “OUT” packets, al-
beit with a different set of parameters for each. We use
the following RIO parameters :

� min threshold for “OUT” packets(min th out) = 1

� max threshold for “OUT” packets(maxth out) = 20

� max probability of packet loss for “OUT” pack-
ets(maxp out) = 0.2

� min threshold for “IN” packets(min th in) = 150

� max threshold for “IN” packets(maxth in) = 200

� max probability of packet loss for “IN” pack-
ets(maxp in) = 0.005

� queue weight(w q) = 0.002

All our simulations used ”long TCP flows” simulating in-
finite FTP transfers. All flows start simultaneously and
therefore we did not repeat simulations multiple times to
get an average. Given the different variants of TCP im-
plementations in practice, these simulations should only
be interpreted as representative cases of absolute perfor-
mance improvements, and not as exact percentage im-
provements.

5 SIMULATION RESULTS

The TCP-friendly traffic marker is designed to protect
small windows from drops and maintain optimal spac-
ing between “IN” and “OUT” packets. The effects of
the marker are evaluated under various scenarios and de-
scribed in detail. In all the scenarios we compare the per-
formance of the TCP-friendly marker to a token bucket
marker. We also present results with no marking i.e. best-
effort service.

6

7

10

R 1

1

2

9

 1

 2

5

10

R 2 R3

R 0

ALL LINKS 1.5 Mbps

DATA
ACKS

, 1000km (unless otherwise mentioned)

10 Mbps

10 Mbps

1.5 Mbps

 BOTTLENECK

SOURCES DESTINATIONS

MARKER

MARKER

DEFAULT PACKET SIZE = 1024 bytes

MARKER INTERVAL T = 250ms

Figure 2: Base Configuration

Table 1: COMPARISON OF MARKERS FOR THE BASE CONFIGURATION : 10 FLOWS, SIMULATION TIME
= 100s, BOTTLENECK BANDWIDTH = 1.5Mbps

Operator Metrics User Metrics
Configuration Timeouts Packet Losses Avg Goodput CoV

packets/sec bps
TCP Friendly Marker 11 1.46 18503 0.12
Token Bucket Marker 18 2.28 17858 0.09

No Marker 18 4.24 18257 0.15

5.1 Simulation results with the Baseline
Configuration

We use the baseline configuration, and compare the met-
rics obtained with the TCP-friendly marker with those ob-
tained using a simple token bucket marker. Table 1 sum-
marizes the results. The TCP-friendly marker has a ben-
eficial effect on all the metrics as compared to a simple
token bucket marker. We observe a smaller packet loss
rate (1.46 as compared to 2.28) and a significantly fewer
number of timeouts (11 as compared to 18). Changes
in the other metrics are insignificant. Though the gains
are small in this baseline configuration, the TCP-friendly
marker still does better. A smaller coefficient of variance
for the token bucket marker can be attributed to the lower
average goodput obtained.

5.2 Simulations with large number of flows

In this section, we test the performance of the TCP-
friendly marker with a large number of flows. We modify
the baseline configuration to have 100 flows. We still have
a TCP-friendly marker for a set of five flows. Bottleneck
speed is 15 Mbps and link lengths 1000 km. The sim-
ulation results are summarized in Table 2. We observe
that deployment of the TCP-friendly marker causes a dra-
matic improvement in most of our metrics. Specifically
we observe a smaller packet loss rate (23.26 as compared
to 31.96) and fewer timeouts (348 as compared to 399)
when compared to the token bucket marker. We also ob-
serve improved fairness and hence improved predictabil-
ity of service (Coefficient of Variation in goodput of 0.09
as compared to 0.16). There is also a marginal decrease
in average goodput (20377 as compared to 20449).

Table 2: COMPARISON OF MARKERS : 100 FLOWS, SIMULATION TIME = 100s, BOTTLENECK BAND-
WIDTH = 15Mbps

Operator Metrics User Metrics
Configuration Timeouts Packet Losses Avg Goodput CoV

packets/sec bps
TCP Friendly Marker 348 23.26 20377 0.09
Token Bucket Marker 399 31.96 20449 0.16

No Marker 2145 100.27 20213 0.07

Table 3: COMPARISON OF MARKERS : 100 FLOWS, SIMULATION TIME = 100s, BOTTLENECK BAND-
WIDTH = 150Mbps

Operator Metrics User Metrics
Configuration Timeouts Packet Losses Avg Goodput CoV

packets/sec bps
TCP Friendly Marker 1261 240.48 194795 0.03
Token Bucket Marker 4254 311.65 134952 0.05

No Marker 2954 322.07 151162 0.04

5.3 Simulations with large number of flows
and high speed links

In this section, we test the performance of the TCP-
friendly marker with a large number of flows. We mod-
ify the baseline configuration to have 100 flows. Also all
source to marker links have a 15 Mbps bandwidth. Bot-
tleneck speed is 150 Mbps. We still have a TCP-friendly
marker for a set of five flows. Link lengths are 1000 km.
The simulation results are summarized in Table 3. We ob-
serve that deployment of the TCP-friendly marker causes
a dramatic improvement in most of our metrics. Specif-
ically we observe a smaller packet loss rate (240.48 as
compared to 311.65), fewer timeouts (1261 as compared
to 4254) and higher average goodput (19475 as compared
to 134952) when compared to the token bucket marker.
We also observe improved fairness and hence improved
predictability of service (Coefficient of Variation in good-
put of 0.03 as compared to 0.05).

5.4 Simulations with Different TCP Imple-
mentations

In this section, we examine the effect of the TCP-friendly
marker with different TCP implementations. In the ear-
lier sections we demonstrated the usefulness of the TCP
marker with TCP Reno, the largest currently installed

base of TCP implementations. However new TCP imple-
mentations aimed at solving Reno’s problems have been
proposed and investigated. The most popular among the
newer TCP implementations are New Reno [7] and SACK
[6].

� SACK : The main weakness of Reno is that multiple
(three or more) packet drops from window of data
may result in the source incurring a timeout. With
the limited information that cumulative acknowledg-
ments provide the source is unable to detect multiple
packet drops from the same window. SACK avoids
this problem by using Reno with selective acknowl-
edgments and selective retransmission. The receiv-
ing TCP sends back SACK packets to the sender “se-
lectively” acknowledging only received data. The
sender then need only send the missing data seg-
ments.

The results of using a TCP-friendly marker as com-
pared to a simple token bucket marker in conjunction
with SACK as the TCP implementation are shown in
Table 4. Comparison of Tables 4 and 1 shows that in
general SACK reduces the total number of timeouts.
We also note that the TCP-friendly marker reduces
the total number of timeouts to a greater degree (1 as
opposed to 5) as compared to a token bucket marker.
We also observe improved fairness (as indicated by
a smaller coefficient of Variation in goodput) and

hence greater predictability of service (0.10 as op-
posed to 0.16). We again observe a smaller packet
loss rate (1.76 as compared to 1.82), and a marginally
higher average goodput (18421 vs 18329).

� NewReno : The NewReno algorithm proposes a
modification to Reno’s fast recovery algorithm. In
the absence of SACK, there is little information
available to the TCP sender in making retransmis-
sion decisions during Fast Recovery. In NewReno,
during Fast Recovery an acknowledgment that ac-
knowledges some but not all of the packets outstand-
ing is called a “partial ack”. With NewReno, partial
acks do not take the source out of fast recovery. In-
stead a partial ack is understood to indicate a packet
loss immediately after the last acknowledged packet.
This packet is then retransmitted.

As opposed to SACK, NewReno, does not require
both the sender and receiver TCP support. The re-
sults of using a TCP-friendly marker as compared
to a simple token bucket marker in conjunction with
NewReno as the TCP implementation are shown in
Table 5. We again observe improved fairness and
hence improved predictability of service (coefficient
of variation of goodput of 0.11 as compared to 0.14).
We also observe a smaller packet loss rate (1.49 as
compared to 1.77), fewer timeouts (17 as compared
to 26) when compared to the token bucket marker.
There is also a marginal increase in average goodput
(18513 as compared to 18472).

5.5 Evaluation of Assured Service

Ibanez et al.[8] pointed out some serious performance
issues with assured services. In particular, the authors
pointed out that in many cases assured service may not
give the “guarantees” it is aiming to provide. Specifi-
cally, in configurations where the assured traffic has to
compete with unbounded best-effort traffic, this effect is
pronounced.

We investigate the performance of the TCP-friendly
marker in such scenarios where assured traffic is com-
peting with unbounded best-effort traffic. A performance
evaluation of the TCP-friendly marker is done against the
simple token bucket marker. In this configuration a single
source is provided with increasing levels of assurance up
until the entire bottleneck bandwidth and the assurance
it actually gets from the network is observed. The per-
formance of the TCP-friendly marker is contrasted with a
simple token bucket marker.

Table 6 shows the performance improvement that the
TCP-friendly marker provides as compared to the token
bucket marker in terms of providing assurances. It is ob-
served that both the token bucket and the TCP-friendly
markers fall short of providing the assurance they aim to
provide. For example for a assured bandwidth of 0.49
Mbps, the token bucket marker can only get a bandwidth
of 0.26 Mbps as compared to 0.44 Mbps got by the TCP-
friendly marker. However the TCP-friendly marker is able
to provide the guarantees to a far greater extent. This
means that in order to provide “assured” service for TCP,
some kind of over-provisioning is required in both cases.
This over-provisioning could be in the form of provid-
ing more tokens than contracted for at the marker and
having excess capacity at the bottleneck. For example if
we wanted to guarantee approximately 0.5Mbps of band-
width on a 1.5Mbps bottleneck, we need to give 20 to-
kens per interval in the case of a TCP-friendly marker
and 40 tokens per interval for a token bucket marker.
However the TCP-friendly marker reduces the degree of
token over-provisioning required to provide guarantees.
Over and above thistoken over-provisioning, we also need
bandwidth over-provisioningas observed from the ratio
of bandwidth obtained to bandwidth assured in Table 6.
Thus the service realized by an application is a function
of the assured rate, the token over-provisioning, the mark-
ing scheme and TCP dynamics.

5.6 Evaluation of Assured Service over
High Speed Links and Large Number of
Flows

In this set of simulations we extend the configuration from
section 5.5 to 100 flows and link speeds of 15Mbps. Again
only one source is given increasing levels of assurance.
All other flows are best-effort. The links connecting the
assured source to the network have a speed of 150Mbps.

Table 7 reaffirms the results we observed in Table 6.
We observe again that both markers fall short of providing
the assurance they aim to provide. For example for an
assured bandwidth of 49 Mbps, the token bucket marker
can only get a bandwidth of 12.86 Mbps as compared to
22.92 Mbps got by the TCP-friendly marker. The TCP-
friendly marker is able to provide the guarantees to a far
greater extent.

Table 4: COMPARISON OF MARKERS FOR SACK : 10 FLOWS, SIMULATION TIME = 100s, BOTTLENECK
BANDWIDTH = 1.5Mbps

Operator Metrics User Metrics
Configuration Timeouts Packet Losses Avg Goodput CoV

packets/sec bps
TCP Friendly Marker 1 1.76 18421 0.10
Token Bucket Marker 5 1.82 18329 0.16

No Marker 5 3.16 18309 0.17

Table 5: COMPARISON OF MARKERS FOR NEWRENO : 10 FLOWS, SIMULATION TIME = 100s, BOTTLE-
NECK BANDWIDTH = 1.5Mbps

Operator Metrics User Metrics
Configuration Timeouts Packet Losses Avg Goodput CoV

packets/sec bps
TCP Friendly Marker 17 1.49 18513 0.11
Token Bucket Marker 26 1.77 18472 0.14

No Marker 30 3.31 18452 0.17

5.7 Other Simulations

The performance of the TCP-friendly marker was ob-
served in various other configurations. Some of the other
configurations we looked at were short transfers, hetero-
geneous rtt flows and high speed links. We do not present
the results for all the above configurations because of
space constraints. The results are consistent with the find-
ings from the earlier sections. The TCP-friendly marker
is seen to provide performance enhancements in all of the
above configurations.

6 CONCLUSION AND FUTURE
WORK

In summary, we looked at generic TCP performance prob-
lems which remain in differentiated services, and demon-
strate that enhancements are needed in traffic condition-
ers. Specifically, in this paper we observe the performance
improvements we are able to produce by the deployment
of a TCP-friendly traffic marker. The service realized by
an application is seen to be a function of the assured rate,
the marking scheme and TCP dynamics. By using our
TCP-friendly marker we can get better predictability of
service, lower token provisioning requirements, improved
fairness, fewer TCP timeouts and fewer packet losses.

Further ongoing work includes implementing the TCP-
friendly marker in linux-diffserv to experimentally vali-
date the results and moving towards a more comprehen-
sive TCP-friendly assured service solution. These direc-
tions include integration with TCP rate control [11], pro-
tection against parameter sensitivity issues in RIO, and
stateful differentiated buffer management schemes at the
core.

References

[1] J. Heinanen, F. Baker, W.Weiss and J.Wroclawski,
Assured forwarding PHB group. IETF Internet draft
draft-ietf-diffserv-af-05.txt, February 1999.

[2] S. Blake, D.Black, M.Carlson, E.Davies, Z.Wang
and W.Weiss, “An architecture for differentiated ser-
vices”, Internet RFC 2475, December 1998.

[3] S.Blake, Y.Bernet, J.Binder, M.Carlson,
B.Carpenter, S.Keshav, E.Davies, B.Ohlman,
D.Verma, Z.Wang and W.Weiss, “A framework for
differentiated services”, IETF Internet Draft,draft-
ietf-diffserv-framework-01.txt, October 1998.

[4] D.D. Clark and W. Fang, “Explicit allocation of best-
effort packet delivery service”,IEEE/ACM Transac-
tions on Networking, 6(4):362-373, Aug. 1998.

Table 6: COMPARISON OF MARKERS FOR ASSURED SERVICE : 11 FLOWS, SIMULATION TIME = 100s,
BOTTLENECK BANDWIDTH = 1.5Mbps

Tokens/Interval BW Assured BW Obtained BW Obtained/Assured
packets Mbps Mbps Mbps percent percent

Friendly TokenBucket Friendly TokenBucket
15 0.49 0.44 0.26 90 53
20 0.66 0.52 0.34 79 52
25 0.82 0.57 0.36 70 44
30 0.98 0.7 0.42 71 43
35 1.15 0.73 0.46 63 40
40 1.31 0.89 0.49 68 37
45 1.47 0.99 0.59 68 40

Table 7: COMPARISON OF MARKERS FOR ASSURED SERVICE : 100 FLOWS, SIMULATION TIME = 100s,
BOTTLENECK BANDWIDTH = 150Mbps

Tokens/Interval BW Assured BW Obtained BW Obtained/Assured
packets Mbps Mbps Mbps percent percent

Friendly TokenBucket Friendly TokenBucket
1500 49 22.92 12.86 47 26
3000 98 45.77 30.51 47 30
4500 147 61.08 32.24 41 21

[5] S. Floyd, and V. Jacobson, “Random early detection
gateways for congestion avoidance,”IEEE/ACM
Transactions on Networking, Vol. 1, No. 4, August
1993, pp.397-413.

[6] M.Mathis, J.Madhavi, S.Floyd and A.Romanov,
“TCP selective acknowledgement options”Internet
RFC 2018, October 1996.

[7] S.Floyd, and T. Henderson “The NewReno modi-
fication to TCP’s fast recovery algorithm”Internet
RFC 2582, April 1999.

[8] J. Ibanez, K. Nichols, “Preliminary simulation
evaluation of an assured service”, IETF Internet
Draft, draft-ibanez-diffserv-assured-eval-00.txt, Au-
gust, 1998.

[9] Kevin Fall and Sally Floyd, “Comparisons of Tahoe,
Reno and SACK TCP”, Computer Communication
Review, V. 26 N. 3, July 1996,

[10] A. Charny, “An algorithm for rate allocation in a
packet-switching network with feedback”, Masters
thesis, MIT 1994

[11] S.Karandikar,
S.Kalyanaraman, P.Bagal and B.Packer, “TCP rate
control”, Computer Communication Review, V. 30
N. 1, January 2000,

