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S1 Data and methods

S1.1 Phylogenetic comparative analysis

I used data on marriage and residence strategies from the Ethnographic Atlas (EA) database

(Gray 1999; Murdock 1967) for a sample of 27 societies speaking Indo-European (IE) languages

(Section S1.1.1). The cross-cultural data were mapped onto Pagel et al.’s (2007) sample of

phylogenetic trees (Section S1.1.2). On the cross-cultural data and tree sample, I used the

phylogenetic comparative method developed by Pagel and colleagues (Pagel and Meade 2005,

2006; Pagel et al. 2004) to test the hypothesis of co-evolution between monogamous marriage

and neolocal residence (Section S1.1.3).

S1.1.1 Cross-cultural data

I obtained the cross-cultural sample by matching societies in the EA database (Gray 1999;

Murdock 1967) with speech varieties in the Dyen et al.’s (1992) database, as described in

Fortunato (2011c). Variable identifiers in this section follow Gray’s (1999) EA codebook.

The method used for phylogenetic comparative analysis requires data in binary form (Sec-

tion S1.1.3). For marriage strategy I coded societies as polygynous (state 0) or monogamous

(state 1) based on EA variable 9, as described in Fortunato (2011a). For residence strategy I

first coded societies as neolocal, uxorilocal, or virilocal, separately for prevailing and alternative

modes of residence, based on EA variables 12 and 14, as described in Fortunato (2011b). Next,

I combined this information into one binary variable, with societies coded as non-neolocal (state

0) or neolocal (state 1). Theoretically, this coding is justified on the grounds that any degree of

neolocality is assumed to weaken extended family organization, even where the prevailing mode

of residence is non-neolocal (Murdock 1949, p. 208).

This produced a sample with monogamy present in 15 (93.8%) of 16 neolocal societies and

absent in 1 (6.2%), and with monogamy present in 3 (27.3%) of 11 non-neolocal societies and

absent in 8 (72.7%) (Table S1 and Figures S1b and S1c).
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Table S1: Recoded EA data

Key1 Speech variety2 EA identifiers3 Marriage strategy4 Residence strategy5

Code Name

1 Afghan Ea11 Afghans Polygynous Non-neolocal
2 Albanian G Ce1 Gheg Polygynous Non-neolocal
3 Armenian Mod Ci10 Armenians Monogamous Non-neolocal
4 Bengali Ef2 Bengali Polygynous Non-neolocal
5 Bulgarian Ch5 Bulgarians Monogamous Neolocal
6 Byelorussian Ch6 Byelorussians Monogamous Neolocal
7 Czech Ch3 Czechs Monogamous Neolocal
8 Dutch List Cg1 Dutch Monogamous Neolocal
9 Greek MD Ce7 Greeks Monogamous Neolocal

10 Gujarati Ef9 Gujarati Polygynous Non-neolocal
11 Hindi Ef11 Uttar Pradesh Polygynous Non-neolocal
12 Irish B Cg3 Irish Monogamous Neolocal
13 Italian Ce5 Neapolitans Monogamous Neolocal
14 Kashmiri Ef8 Kashmiri Polygynous Non-neolocal
15 Lithuanian ST Ch9 Lithuanians Monogamous Neolocal
16 Ossetic Ci6 Osset Polygynous Non-neolocal
17 Panjabi ST Ea13 Punjabi Monogamous Non-neolocal
18 Persian List Ea9 Iranians Polygynous Neolocal
19 Portuguese ST Ce2 Portuguese Monogamous Neolocal
20 Rumanian List Ch10 Romanians Monogamous Neolocal
21 Russian Ch11 Russians Monogamous Neolocal
22 Serbocroatian Ch1 Serbs Monogamous Neolocal
23 Singhalese Eh6 Sinhalese Monogamous Non-neolocal
24 Spanish Ce6 Spaniards Monogamous Neolocal
25 Ukrainian Ch7 Ukrainians Monogamous Neolocal
26 Walloon Cg5 Walloons Monogamous Neolocal
27 Waziri Ea2 Pathan Polygynous Non-neolocal

1 Refers to the numbers in Figure S1a.
2 After Dyen et al. (1992); see text for details.
3 After Gray (1999); see text for details.
4 Recoded from EA variable 9; see text for details.
5 Recoded from EA variable 12 for prevailing mode and 14 for alternative mode; see text for details.
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(a) Key

Figure S1: Map illustrating the geographic distribution of the recoded EA data in Table S1. Numbers correspond to entries in the relevant column in
Table S1.
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(b) Marriage strategy

Figure S1: Map illustrating the geographic distribution of the recoded EA data in Table S1. Colours express the marriage strategy (white: monogamous;
black: polygynous), as per Figure 3a in the main text.
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(c) Residence strategy (binary)

Figure S1: Map illustrating the geographic distribution of the recoded EA data in Table S1. Colours express the residence strategy (white: neolocal;
black: non-neolocal), as per Figure 3b in the main text.
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S1.1.2 Tree sample

I used Pagel et al.’s (2007) posterior probability sample of 750 phylogenetic trees to represent

how societies in the cross-cultural sample are related by way of descent from a common ancestor.

Trees are present in the sample in proportion to their posterior probabilities. The posterior

probability of a tree can be interpreted as the probability that the tree is correct (Huelsenbeck

et al. 2001). Pagel et al. (2007) inferred the posterior probability distribution of trees from

the linguistic database using the Bayesian Markov chain Monte Carlo (MCMC) phylogenetic

tree-building method developed by Pagel and Meade (2004). The tree-building analysis used

linguistic data for 87 speech varieties (Pagel et al. 2007).

I obtained the tree sample from the authors. I “pruned” the trees to retain only the speech

varieties corresponding to the 27 societies in the cross-cultural sample (Section S1.1.1), plus the

outgroup Hittite. Hittite was assigned no data on marriage and residence for the purpose of the

comparative analysis (Section S1.1.3). A comprehensive description of related data, methods,

and procedures is in Fortunato (2011a,c).

S1.1.3 Comparative analysis

Co-evolutionary analysis using the phylogenetic comparative method developed by Pagel and

colleagues (Pagel and Meade 2005, 2006; Pagel et al. 2004) is performed using BayesDiscrete,

available as part of the BayesTraits package (Pagel and Meade n.d.) from http://www.evolution.

rdg.ac.uk/BayesTraits.html. Unless otherwise specified, the information in this section is

based on Pagel and Meade (2005, 2006), Pagel et al. (2004), and on the BayesTraits manual

(Pagel and Meade n.d.). A detailed non-technical discussion of the method and its application

is in Fortunato (2009, Appendix C).

Models of trait evolution BayesDiscrete uses the cross-cultural data and tree sample to

estimate parameters in the model of trait evolution for two binary traits. In this case the

comparative data consists of one trait representing the marriage strategy, with states 0 (polyg-

ynous) and 1 (monogamous), and one trait representing the residence strategy, with states 0

(non-neolocal) and 1 (neolocal) (Section S1.1.1). This produces four combinations of states for

the two traits, e.g. combination 2 (0, 1) for polygynous marriage with neolocal residence, as

shown in Figure 1 in the main text. For ease of reference, the figure is included in this section
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Figure S2: Rate parameters describing the evolution of marriage and residence strategies.

as Figure S2.

A series of transition rate parameters qij describes the joint evolution of the two traits on

a tree. These rate parameters measure the instantaneous rate of change from combination “i”

to combination “j”, which corresponds to the rate of change between two states of one trait

while holding the state of the other trait constant. For example, rate parameter q12 describes

transitions from combination 1 (0, 0) to combination 2 (0, 1), that is, changes from non-neolocal

to neolocal residence against a background of polygynous marriage (Figure S2). Similarly, rate

parameter q34 describes transitions from combination 3 (1, 0) to combination 4 (1, 1), that is,

changes from non-neolocal to neolocal residence against a background of monogamous marriage.

Rate parameters describing simultaneous transitions in the two traits, corresponding to the

diagonals of the diagram in Figure S2, are set to zero: this amounts to assuming that the

probability of the two traits changing simultaneously is negligibly small.

The rate parameters are used to define the probabilities of the corresponding changes, the

probabilities of the two states at internal nodes on the tree, and the likelihood of the data. Tips

that are not assigned comparative data for a given trait are treated in the likelihood calculations

as taking either state for the trait with equal probability. This is the the case for the outgroup

Hittite (Section S1.1.2).

Independent vs. dependent trait evolution The eight rate parameters yield 21,146 model

categories, in which two or more rate parameters are set to take equal or distinct positive values,

or one or more of them can be set to zero. Of the 21,146 possible categories, 51 (0.24%) conform
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to independent trait evolution. In these categories the rate of change in one trait is not affected

by the state of the other trait, that is, q12 = q34, q13 = q24, q21 = q43, and q31 = q42 (Figure S2).

All other model categories conform to dependent trait evolution, because they assign rates

within one or more of these pairs to different rate classes; this means that the rate of change in

one trait does depend on the state of the other trait. For example, q12 = q34 specifies that the

rate of change from non-neolocal to neolocal residence does not depend on whether marriage is

polygynous or monogamous; q12 6= q34 indicates that it does.

Evidence for dependent vs. independent evolution I used BayesDiscrete in Bayesian

reversible jump (RJ) MCMC mode. In this mode BayesDiscrete uses RJ-MCMC methods to

estimate the posterior probability distributions of rate parameters, of ancestral states at internal

nodes on a tree, and of the possible models of trait evolution specified by the rate parameters.

The posterior probability of a parameter value is a quantity proportional to its likelihood of

having produced the observed data, and represents the probability of the parameter value given

the data and model of trait evolution. Schematically, the posterior probability distributions are

estimated by running RJ-MCMC chains that sample states in the model of trait evolution in

proportion to their posterior probability, across trees in the tree sample. A state in the model

consists of model category, values of the rate parameters, and ancestral state probabilities.

Combining estimates over the sample produced by a chain amounts to “averaging” inferences

over uncertainty in the phylogeny, in the parameters of the model of trait evolution, and in the

model itself.

The proportions of model categories conforming to dependent vs. independent evolution

sampled by a chain provide a direct estimate of the posterior probability that the traits evolved

dependently vs. independently. The theoretical prior odds is (21, 146 − 51)/51 = 413.63: this

means that if all model categories had equal posterior probability, the chain would sample

categories conforming to dependent evolution approximately 414 times more frequently than

categories conforming to independent evolution. The Bayes factor, obtained as the ratio of the

posterior odds returned by the chain to the prior odds, provides an estimate of the posterior

probability of the two evolutionary models. The Bayes factor for dependent vs. independent

evolution is denoted BDI. Values of BDI > 1 represent evidence for dependent trait evolution,

values of BDI < 1 evidence for independent trait evolution. Equivalently, the Bayes factor can
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Table S2: Scales for interpretation of the Bayes factor*

|BDI| |2 loge(BDI)| Evidence for evolutionary model

1 to 3 0 to 2 Weak
3 to 12 2 to 5 Positive
12 to 150 5 to 10 Strong
> 150 > 10 Very strong

* After Raftery (1996, p. 165).

be expressed on a logarithmic scale, with 2 loge(BDI) > 0 representing evidence for dependent

trait evolution and 2 loge(BDI) < 0 evidence for independent trait evolution. The strength of

the evidence in favour of one model over the other is assessed against the scales in Table S2.

This implementation of the Bayes factor assumes all model categories to be equally likely,

and it may thus result in conservative estimates of support for dependent trait evolution. This

is because, in practice, the processes underlying the evolution of the two traits may involve

fewer than the eight transitions specified by rate parameters qij. If the “true” number of rate

parameters is less than eight, then the number of possible model categories will be less than

21,146. Since model categories conforming to independent evolution require a maximum of

four distinct rate classes, they will represent a higher proportion of all the possible categories,

compared to the theoretical value (51 of 21,146). As a result, the “true” prior odds will be

lower than the theoretical value of (21, 146 − 51)/51 = 413.63. Consequently, the posterior to

prior odds Bayes factor obtained using this value will be lower than the “true” Bayes factor,

potentially underestimating support for dependent evolution.

This issue can be circumvented through an alternative implementation of the Bayes fac-

tor. This involves running a separate chain that is constrained to visit model categories con-

forming to independent evolution. The Bayes factor is obtained by comparing the posterior

probability distribution of loge(likelihood) values returned by this chain to the distribution

returned by an unconstrained chain (having removed visits to model categories conforming

to independent evolution). In this case, 2 loge(BDI) is approximated as twice the difference

between loge[H(likelihood)] for the unconstrained chain and loge[H(likelihood)] for the con-

strained chain, where loge[H(likelihood)] is the natural logarithm of the harmonic mean of the

likelihood values. The strength of the evidence in favour of one model over the other is assessed

against the logarithmic scale in Table S2. Because loge[H(likelihood)] may be unstable, Pagel
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and Meade (n.d.) recommend taking a conservative approach, which disregards any evidence

for either model given by |2 loge(BDI)| < 2.

Implementation I estimated support for dependent trait evolution using both implemen-

tations of the Bayes factor. This involved running two sets of analyses: one, termed RJ-

unconstrained, in which chains were free to visit all possible model categories, and one, termed

RJ-constrained, in which chains were constrained to visit categories conforming to independent

trait evolution. Each set of analyses comprised five separate chains started from random seeds.

I determined the RJ-MCMC chain specifications through preliminary maximum-likelihood

and MCMC runs. These specifications ensure that the RJ-MCMC chains sample parameter

space adequately and ultimately converge to the posterior probability distribution of states in

the model of trait evolution. I ran the RJ-MCMC chains for 108 iterations, sampling every 103,

with an additional burn-in of 106, and rate deviation set to 60. Under maximum-likelihood the

covarion model for trait evolution improved the mean loge(likelihood) by between 0.6 and 3.7

units, depending on the model specifications, and was therefore implemented by all RJ-MCMC

chains; this model allows rates to vary within and between branches of a tree. All chains used

a uniform prior on the models and an exponential prior on the rate parameters; the mean of

the exponential prior was seeded from a uniform hyperprior on the interval 0–10. The shape of

the prior distribution (exponential or gamma) and the interval of the hyperprior (0–10 or 0–20)

only marginally affected the mean of the posterior probability distributions of loge(likelihood)

values and of ancestral states, returning qualitatively similar results.

For each set of analyses, convergence to the posterior probability distribution of states in

the model of trait evolution was assessed by comparing the samples returned by the separate

chains, through visual inspection of (i) time-series plots of loge(likelihood) values, (ii) the pos-

terior probability distributions of model categories, and (iii) the average deviation of parameter

estimates across runs. The near-independence of sampling events was judged from the autocor-

relation of the loge(likelihood) values of successive states sampled by the chains. In all cases,

these diagnostics indicated that the chains sampled the target distributions adequately.
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S2 Results

S2.1 Phylogenetic comparative analysis

For each sets of analyses, I compared loge[H(likelihood)] values for the states in the model of

trait evolution sampled by the separate chains at convergence; I present results for the chain

that returned the median value of loge[H(likelihood)].

I discuss separately the posterior probability distribution of model categories returned by

the RJ-unconstrained chain (Section S2.1.1) and the estimates of support for dependent trait

evolution obtained from the two implementations of the Bayes factor (Section S2.1.2).

S2.1.1 Posterior probability distribution of model categories

At convergence, the RJ-unconstrained chain sampled states in the model of trait evolution

with mean loge(likelihood) ± SD = −18.86 ± 1.34 (range: −30.67 to −14.65; auto-correlation

coefficient: r = 0.055; mean acceptance rate: 33.2%).

The chain sampled 2,855 model categories, with rates assigned to 1.86±0.45 non-zero classes

(mean ± SD; range: 1–4 non-zero classes). This indicates that the processes underlying the

evolution of the two traits likely involved fewer than the eight transitions specified by rate

parameters qij. For example, Table S3 shows the ten model categories sampled most frequently

by the chain; the hundredth most frequently sampled category is included for comparison. The

top ten categories, which account for 18.2% of the 105 sampled points, include only one or

two non-zero rate classes. Of these, the fifth sets all rates equal to each other, conforming to

independent evolution, while the other nine conform to dependent evolution.

S2.1.2 Estimation of support for dependent trait evolution

Of the 105 points sampled by the RJ-unconstrained chain, 98.67% corresponded to model cat-

egories conforming to dependent evolution and 1.33% to categories conforming to independent

evolution, yielding a posterior odds of 74.36. Comparison of the posterior odds to the prior odds

yields BDI = 74.36
413.63 = 0.18 or, on a logarithmic scale, 2 loge(BDI) = −3.43. This corresponds to

no evidence for dependent trait evolution or, equivalently, to positive evidence for independent

trait evolution (Table S2).
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Table S3: Rate classes and frequencies for selected model categories

Model category Rate class* Frequency†

q12 q13 q21 q24 q31 q34 q42 q43 Absolute Relative cumulative

1 0 0 0 Z 0 0 Z 0 5471 0.055
2 0 0 0 0 0 0 Z 0 4636 0.101
3 Z 0 0 0 0 0 0 Z 1987 0.121
4 0 1 1 Z 1 1 Z 0 1069 0.132
5 0 0 0 0 0 0 0 0 912 0.141
6 0 1 1 1 1 1 Z 0 864 0.149
7 Z 0 0 0 0 0 0 0 837 0.158
8 0 0 0 0 0 Z 0 0 832 0.166
9 0 0 0 Z 0 0 0 0 790 0.174
10 0 0 0 Z 0 0 Z 1 779 0.182
...

...
100 0 1 0 1 0 1 Z 0 242 0.531

* “Z” denotes rates assigned to the zero class. “0” and “1” denote two distinct non-zero rate classes; rates
with the same value are assigned to the same non-zero rate class. For example, under model category 1
q12, q13, q21, q31, q34, and q43 are assigned to the same non-zero rate class, that is, they take the same
positive value, while q24 and q42 are assigned to the zero rate class, that is, they are set to zero.
† The relative cumulative frequency of a model category is obtained by summing the absolute frequency
of sampled points in the model category to the absolute frequencies of sampled points in all preceding
categories, and then dividing by the total number of sampled points in all categories [e.g. (5471 +
4636)/105 = 0.101 for model category 2].

Because the RJ-unconstrained chain sampled a restricted sub-set of all possible model cat-

egories, with no categories including five or more distinct non-zero rate classes, the posterior

to prior odds BDI may underestimate the evidence for dependent trait evolution. The al-

ternative implementation of the Bayes factor may provide a more accurate estimate of sup-

port for dependent trait evolution. In this case, the posterior probability distribution sampled

by the RJ-unconstrained chain, having excluded categories conforming to independent evo-

lution, is compared to the posterior probability distribution sampled by the RJ-constrained

chain (Section S1.1.3). At convergence, the RJ-constrained chain sampled states with mean

loge(likelihood) ± SD = −20.12 ± 0.79 (range: −27.94 to −16.37; auto-correlation coefficient:

r = 0.003; mean acceptance rate: 35.8%). Comparison of the loge[H(likelihood)] values yields

2 loge(BDI) ≈ 2[(−20.56)− (−20.78)] = 0.44, and thus no evidence for dependent evolution by

the conservative criteria used (Table S2). This reflects the substantial overlap in the distribu-

tions of loge(likelihood) values for the states in the model of trait evolution sampled by the two

chains, as shown in Figure 2 in the main text.
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