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Recently, we showed that antibodies catalyze the generation of hydrogen 
peroxide (H202) from singlet molecular oxygen (102*) and water. Here, we 
show that this process can lead to efficient killing of bacteria, regardless of the 
antigen specificity of the antibody. H202 production by antibodies alone was 
found to be not sufficient for bacterial killing. Our studies suggested that the 
antibody-catalyzed water-oxidation pathway produced an additional molecular 
species with a chemical signature similar to that of ozone. This species is also 
generated during the oxidative burst of activated human neutrophils and during 
inflammation. These observations suggest that alternative pathways may exist 
for biological killing of bacteria that are mediated by potent oxidants previously 
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generated during the oxidative burst of activated human neutrophils and during 
inflammation. These observations suggest that alternative pathways may exist 
for biological killing of bacteria that are mediated by potent oxidants previously 
unknown to biology. 

A central concept of immunology is that anti- 
bodies perform the sole function of marking 
antigens for destruction by effector systems 
such as complement and phagocytic cells (1). 
Work on antibody catalysis has demonstrated 
that the antibody molecule is capable of carry- 
ing out highly sophisticated chemistry, al- 
though there has been no direct evidence that 
this catalytic potential is used in nature (2). This 
view is consistent with the known organization 
of the humoral immune system, in that simple 
antigen binding is sufficient to activate more 
sophisticated effector systems and, thus, killing 
of pathogens can be achieved without the need 
to invoke any chemistry within the antibody 
molecule itself. Recently however, we found 
that all antibodies, regardless of source or anti- 
genic specificity, can catalyze redox chemistry 
that is independent of antibody binding (3) and 
appears to be highly analogous to that carried 
out by the effector mechanism of phagocytic 
cells (4). When exposed to singlet molecular 
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oxygen (O02*), antibodies oxidize water to pro- 
duce H202 via the postulated intermediacy of 
H203 (5). In the present study, we examined 
whether this pathway might play any role in 
immune protective function of antibodies 
against bacteria and in inflammation. 

Initial bactericidal studies focused on the 
gram-negative bacteria Escherichia coli 
(XL -blue and 0-112a,c) (6). Given the 
known bactericidal action of O02* itself (7), 
these studies required a 102* generating sys- 
tem that would not, on its own, kill E. coli (8) 
but would activate the water-oxidation path- 
way of antibodies. Negligible bactericidal ac- 
tivity against the two E. coli serotypes (- 107 
cells/ml) was observed when hematoporphy- 
rin IX (HPIX, 40 FLM), an efficient sensitizer 
of 302 (9), was irradiated with white light 
(light flux 2.7 mW cm-2) for 1 hour in 
phosphate buffered saline (PBS, pH 7.4) at 4? 
+ 1 C. However, addition of antigen-specific 
or nonspecific monoclonal antibodies (20 
JM) to this system resulted in killing of 
>95% of the bacteria (Fig. 1A) (6). This bac- 
tericidal action seems to be a general property 
of antibodies, in that regardless of origin or 
antigen specificity, all antibodies display this 
activity. This bactericidal activity was a func- 
tion of antibody concentration (Fig. 1B), irradi- 
ation time (Fig. 1C), and HPIX concentration 
(at a given light flux) (Fig. ID). These obser- 

oxygen (O02*), antibodies oxidize water to pro- 
duce H202 via the postulated intermediacy of 
H203 (5). In the present study, we examined 
whether this pathway might play any role in 
immune protective function of antibodies 
against bacteria and in inflammation. 

Initial bactericidal studies focused on the 
gram-negative bacteria Escherichia coli 
(XL -blue and 0-112a,c) (6). Given the 
known bactericidal action of O02* itself (7), 
these studies required a 102* generating sys- 
tem that would not, on its own, kill E. coli (8) 
but would activate the water-oxidation path- 
way of antibodies. Negligible bactericidal ac- 
tivity against the two E. coli serotypes (- 107 
cells/ml) was observed when hematoporphy- 
rin IX (HPIX, 40 FLM), an efficient sensitizer 
of 302 (9), was irradiated with white light 
(light flux 2.7 mW cm-2) for 1 hour in 
phosphate buffered saline (PBS, pH 7.4) at 4? 
+ 1 C. However, addition of antigen-specific 
or nonspecific monoclonal antibodies (20 
JM) to this system resulted in killing of 
>95% of the bacteria (Fig. 1A) (6). This bac- 
tericidal action seems to be a general property 
of antibodies, in that regardless of origin or 
antigen specificity, all antibodies display this 
activity. This bactericidal activity was a func- 
tion of antibody concentration (Fig. 1B), irradi- 
ation time (Fig. 1C), and HPIX concentration 
(at a given light flux) (Fig. ID). These obser- 

www.sciencemag.org SCIENCE VOL 298 13 DECEMBER 2002 www.sciencemag.org SCIENCE VOL 298 13 DECEMBER 2002 



REPORTS 

Fig. 1. Killing of bacteria by antibodies. (A) Bar graph showing survival of E. coli 
XL1-blue and 0112a,c strains [reported as percent recovered colony forming 
units (CFUs) at the start of the experiment (t = 0 min)]. Black and light gray bars 
correspond to the same experimental conditions, except that the light gray 
groups (2, 4, 6, 8, 10, and 12) were exposed to visible light for 60 min, whereas 
the black groups (1, 3, 5, 7, 9, and 11) were placed in the dark for 60 min. The 
bacterial cell density was - 107 cells/mL Each data point is reported as the 
mean + S.E.M. (n = 6) of E. coli XL1-blue (groups 1 to 6) and 0112a,c (groups 
7 to 12) are as follows, in PBS at 4?C Groups 1 and -2: XL1-blue cells Groups 
3 and 4: HPIX, XL1-blue cells . Groups 5 and 6: XL-blue-speific monodonal 
antibody (25D11, 20 ,iM), HPIX XL1-blue cells. Groups 7 and 8: 0112a,c cells. 
Groups 9 and 10: HPIX, 0112a,c cells. Groups 11 and 12: 0112a,c-specific 
monodonal antibody (15404; 20 ,IM), HPIX, 0112a,c cells. (B) Concentration 
effect of 0112a,c-specific monoclonal antibody, 15404, on the survival of E. coli 
0112a,c Each data point is reported as the mean value ? S.E.M (n = 3). The 
[15404] that corresponds to killing of 50% of the cells (ECo) = 81 ? 6 nM (C) 
Effect of irradiation time on the bactericidal action of E. col XL1-blue-specific 
murine monodonal antibody 12B2. Graph of irradiation time (2.7 mW cm-2) 
versus survival of E. coli XL1-blue in the presence of HPIX and 12B2 (20 ,IM). 
Each data point is reported as the mean value ? S.E.M (n = 3). The time of 
irradiation that corresponds to killing of 50% of the cells = 30 + 2 min (D) 
[HPIX]-dependence of E. coli XL1-blue-specific murine monodonal antibody 
25D11 bactericidal action. Graph of survival of E.coi XL1-blue versus exposure to 
a range of HPIX concentrations in PBS at 4?C under the following conditions. (U), 
XL1-blue cells in the dark, 60 min. (A), XL1-blue cells in white light (A), 25D11 (20 
,IM), XL1-blue cells in the dark, 60 min. (*), 25D11 (20 ,IM), XL1-blue cells in 
white light for 60 min. (E) Effect of catalase on the bactericidal action of antibodies 
against E. coi XL1-blue [reported as percent recovered colony forming units 
(CFUs) at the start of the experiment (t = 0 min)]. Each group was irradiated with 
white light for 60 min at 4?C The bacterial cell density was - 107 cells/ml in PBS 
The experimental groups (1 to 7) were treated were as follows. Group 1: E. coli 
XL1-blue and HPIX. Group 2: E. coi XL1-blue and nonspecific murine monodonal 
antibody 84G3 (20 ,iM). Group 3: E. col/XLl-blue HPIX and 84G3 (20 ,uM). Group 
4: E. coli XL1-blue HPIX, 84G3 (20 ,uM) and catalase (13mU/ml). Group 5: E. coli 
XL1-blue and specific rabbit polydonal antibody (20 ,iM). Group 6: E. coi XL1-blue 
HPIX) and specific rabbit polydonal antibody (20 ,iM). Group 7: E. coli XL1-blue, 
HPIX, specific rabbit polydonal antibody (20 ,uM) and catalase (13mU/ml). Each 
point is reported as the mean value ? S.E.M. of multiple experiments (n = 6). 
**Denotes a P value < 0.01 relative to controls at the same time point No 
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bactericidal activity was observed in any of the dark controls (data not shown) 
(F) Concentration-dependent toxicity of HzOz on the viability of E. coli XL1-blue 
and 0112a,c serotypes. The vertical hatched line is the concentration of H2zO 
expected to be generated by antibodies during a 60 min incubation using the 
conditions described in Fig. 1 and (18). The value of 35 + 5 !iM HzO2 is the 
mean value determined from 12 different monodonal antibodies from at least 
duplicate measurements. 

/ 

Fig. 2. E. coli 0112a,c cell after exposure to 
antigen-specific murine monoclonal IgG (15404, 
20 pIM), HPIX in PBS and visible light for 1 hour at 
4?C (<5% viable). To visualize the sites of anti- 
body attachment gold-labeled goat anti-mouse 
antibodies were added after completion of the 
bactericidal assay (6). The arrow points to a punc- 
ture in the cell and plasma membrane. 

vations support the key role of both 102* and 
the water-oxidation pathway of antibodies in 
this bactericidal activity. 

Given that H202 is the ultimate product of 
the antibody-catalyzed water-oxidation path- 
way (3, 5), we reasoned that this was the 
principal killing agent observed in our assays. 
Consistent with this notion, catalase com- 
pletely protected against the bactericidal ac- 
tivity of nonspecific antibodies (Fig. IE) 
(10). However, quantification of H202 toxic- 
ity on the two E. coli cell lines revealed that 
levels of H202 generated by nonspecific an- 
tibodies (35 ? 5 piM) were between 1 and 4 
orders of magnitude below that required to 
kill 50% of the bacteria (Fig. IF) (6, 11). 

Gold-labeled secondary antibodies and 
electron microscopy were used to correlate 
the morphological damage to sites on the 
bacterial cell wall where antibodies were 
bound (6). In the bactericidal pathway, there 
are clear stages in which oxidative damage 
leads to an increased permeability of the cell 
wall and plasma membrane to water where 
killing is associated with the production of 
holes in the bacterial cell wall at the sites of 
antigen-antibody union (Fig. 2). The ob- 
served morphologies induced by antibody- 
mediated killing are similar to those seen 
when bacteria are destroyed by phagocytic 
cells (12). 

The finding that the toxicity of H202 to E. 
coli was below that generated by antibodies 

forced us to re-examine the implication of the 
experiments with catalase, discussed above. 

H202 could potentially react with some other 
chemical species also generated by the anti- 
body to produce the bactericidal molecule(s). 
Thus, by destroying H202, catalase prevents 
the formation of these species. Alternatively, 
other species formed on the way to H202 may 
also be substrates for catalase. In the course 
of exploring which bactericidal agents might 
contribute to H202-mediated killing, we ob- 
served that one of the antibody-generated 
oxidants possesses the chemical signature of 
ozone (03). 

Theoretical calculations have shown that 
ozone is a plausible intermediate that could 
be produced during the water-oxidation path- 
way (13). Although ozone itself is highly 
bactericidal, there also exists a reaction be- 
tween H202 and 03 that is termed the perox- 
one process. This process is exploited at the 
industrial scale for water purification, where 
it has been reported that a combination of 
H202 and 03 is far more toxic to bacteria 
than either alone (14, 15). 

Under the aqueous conditions used in our 
assays, ozone is quite long lived [half-life 
(t112) = 66 s] (6). Therefore, we began a 
search for 03 production during the water- 
oxidation pathway by antibodies using indigo 
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Fig. 3. (A) Oxidation A 
reaction of indigo car- H 
mine 1 to isatin sulfonic - N SO3H 
acid 2. (B) Progress of I = 2 
isatin sulfonic acid 2 HO3S N 
production from indigo H HO3S 
carmine 1 (1 mM) dur- 
ing UV irradiation (312 B 5 . . 
nm, 0.8 mW cm-2) of 
antibodies in PBS in the 4- ' 

presence and absence of 
catalase (6). Each point 3 
is reported as the 
mean ? SEM. of at least 2 

duplicate determina- 1- 
tions. Linear regression 
analysis was performed1 0 , - , ^ 
with Graphpad Prism 20 40 60 80 100 120 
v.3.0 software; v = rate Time/mn 
of formation of 2. (V), C 6.0x10?5 
Sheep polydonal IgG. 
(20 FM) v = 34.8 ? 1.8 
nM/min; (L); murine 4.0x1005- 
monodonal antibody 
33F12 (20 iM) v =226 HO3S 
40.5 ? 1.5 nm/min; (?); 2.0x105- 

sheep polyclonal IgG (20. [M-F 
piM) and soluble cata- /N 
lase (13 mU/ml) v - 0.0x10=-0 I I I I 

33.5 ?.23 nM/min; () 224 226 228 230 232 234 33.5 ? 2.3 nM/min; (m),_ 
murine monoclonal an- D 3.0x10-06 

tibody 33F12 (20 ,uM) 228 
and soluble catalase (13 -. 230 
mU/ml) v = 41.8 ? 1.2 C 2-0x1006- 
nM/min. (C to E) Elec- . 
trospray ionization (neg- C I 
ative polarity) mass 1.Oxi06- 

226 
I 

spectra of isatin sulfonic 2 H03S 
acid 2 [(M-H)- 226, (M-- 
H)- 228 (180), and (M- 0.0x10i00 
H)- (2 x 180)] produced 224 226 228 230 232 234 [M-H 

during the oxidation of E 4.0x1006 

indigo carmine 1 (1 mM) 226 228 
in H2180 (> 95% 180) 3.0x106- 

phosphate buffer (PB, - H03S 100 mM) at room tem- 2.0x1006 - 

perature under condi- [ 
tions as follows: (C) 1.OX0 [M- 
Conventional ozonolysis 
(600 pM in PB) for 5' 
min. (D) Irradiation of 00X10~? ", 224 226 228 230 232 234 
HPIX with white light6 

228 230 232 234 

and sheep polyclonal 
IgG (20 ,uM) with white light for 4 hours. (E) Irradiation of HPIX with white light for 4 hours. 

carmine 1, a sensitive probe for 03 detection 
in aqueous systems (16, 17). Conventional 
ozonolysis of 1 in aqueous solution leads to 
bleaching of the characteristic absorbance of 
1 (Xmax = 610 nm; e = 20,000 M-'cm-1) 
and the formation of isatin sulfonic acid 2 
(Fig. 3A). 

When antibody solutions in PBS were 
irradiated with ultraviolet (UV) light, under 
conditions where the water-oxidation path- 
way was functioning, in the presence of 1 (1 
mM), catalase-independent bleaching of 1 
and formation of 2 was observed. (6) (Fig. 
3B). The initial rate of antibody-mediated 
conversion of 1 into 2 was linear, indepen- 
dent of the antibody preparation [sheep poly- 
clonal immunoglobulin G (IgG) = 34.8 + 
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1.8 nM min-1; 33F12 = 40.5 ? 1.5 nM 

min-1] and equivalent to 12% of H202 for- 
mation (3). 

Though the oxidative cleavage of the C-C 
double bond of indigocarmine 1 is a sensitive 
probe for ozone detection, it is not a specific 
one. We have confirmed that 1O2* also 
bleaches solutions of 1 to form 2 by oxidative 
double-bond cleavage (6). Given that 02'* is 
generated by antibodies upon UV irradiation 
(3, 5), we sought a means of analytically 
differentiating between oxidative cleavage of 
1 to 2 by 102* as opposed to one cleaved by 
03. We observed that cleavage by 03 can be 
distinguished from cleavage by 102* through 
the different behavior of these two oxidation 
processes by observing 180 incorporation 

from the reaction solvent H2180 into the 
cleavage product 2 (18). Experimentally, 
conventional ozonolysis of 1 in phosphate 
buffer (10 mM, prepared with H2180) leads 
to the mass peak [M-H]- 230 for 2 being 
obtained (Fig. 3D), a result of exchange of 
80 of water into the amide carbonyl of 2 

during the oxidation process. This mass frag- 
ment is not detected when 1 is oxidized by 
102* (Fig. 3E) (19, 20). However, when 
sheep IgG (20 FxM) and HPIX were irradiated 
with visible light (2.8 mW cm-2) in the 
presence of 1, oxidized product 2 was formed 
that possesses the mass peak [M-H]-230, 
suggesting that an oxidant with the chemical 
signature of ozone was among the reaction 
intermediates formed along the antibody-me- 
diated water oxidation pathway (Fig. 3C). 

Given the importance of the claim that 
ozone may be being generated during this 
process, we sought to further substantiate this 
observation with a chemical probe that con- 
tains a normal carbon-carbon double bond. 
The choice of the probes, 3- and 4-vinyl- 
benzoic acid (3 and 4, respectively), was 
guided by their aqueous solubility coupled 
with ease of detecting the putative reaction 
products 3- and 4-carboxybenzaldehyde (5a, 
and 5b, respectively) and 3- and 4-oxiranyl- 
benzoic acid (6a and 6b, respectively) (fig. 
S3) by high-performance liquid chromatog- 
raphy (HPLC) (6, 21). 

When a solution of sheep polyclonal an- 
tibody (20 JLM) in PBS was irradiated with 
UV light (312 nm, 0.8 mW cm-2), conditions 
where the water-oxidation pathway was acti- 
vated in the presence of 3 and 4 (1 mM) 
formed the oxidation products 3-carboxybenz- 
aldehyde 5a and 3-oxiranyl benzoic acid 6a 
(ratio 15:1, 1.5% conversion of 3 after 3 h) 
and 4-carboxybenzaldehyde 5b and 4-oxira- 
nyl-benzoic acid 6b (ratio of 10:1, 2% con- 
version to 4 after 3 hours), respectively. 
These products are also observed when 3 and 
4 are ozonolized in PBS in a conventional 
way (6). In sharp contrast, 02* generated by 
HPIX and visible light does not cause any 
detectable oxidation of either 3 or 4 under 
these conditions. These observations with the 
orthogonal ozone probes 3 and 4 directly 
parallel the experimental observations with 
indigo carmine 1 and add further support to 
the notion that an oxidant with the chemical 
signature of 03 is generated during the anti- 
body-catalyzed water-oxidation pathway. 

Neutrophils are central to a host's defense 
against bacteria and have been shown to have 
antibodies on their cell surface (6, 22) and to 
have the ability, upon activation, to generate 
a cocktail of powerful oxidants that have 
been suggested to include O02* (23, 24). 
Thus, these cells may offer a nonphotochemi- 
cal biological source of 102* that, with anti- 
bodies, might be capable of processing this 
substrate via the water-oxidation pathway. 
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Also, utilization of a cellular source of 102 by 
antibodies offers a broader potential biologi- 
cal context for physiological conditions that 
go beyond those that require light activation. 

After activation with phorbol myristate (1 
,xg/ml), human neutrophils (1.5 x 10 7 cells/ 
ml) produce an oxidant that cleaves indigo 
carmine 1 and generates isatin sulfonic acid 2 
(Fig. 4A) (25-27). Between 40 and 50% of 
the possible yield of isatin sulfonic acid 2 
(25.1 ? 0.3 ,LM of a potential 60 JLM) from 
1 occurs during the neutrophil cascade, re- 
vealing that a high concentration of this oxi- 
dant is generated during the oxidative path- 
way. When this same experiment is carried 
out with nuetrophils in H2180 water, between 
50 and 75% of the amide carbonyl oxygen of 
2 incorporates 180, as shown by the intensity 
of the [M-H]- 230 mass peak in the mass 
spectrum (MS) of the isolated cleaved prod- 
uct 2 (Fig. 4B). This 180 incorporation with 
neutrophils parallels the observation with 
both conventional ozonolysis and antibody- 
mediated oxidative cleavage of 1. Work must 
continue in order to determine whether the 
formation of this oxidant with the chemical 
signature of ozone by neutrophils is solely 
due to the antibody-mediated water oxidation 
pathway, or whether neutrophils are also ca- 
pable of forming this oxidant when activated. 

To put these experiments into a physio- 
logical context, we studied an inflammatory 
model in vivo. The Arthus reaction is the 
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Fig. 4. (A) Oxidation of 1 (30 ,JM) (1) and 
formation of 2 (A) by human neutrophils 
(PMNs) activated with phorbol myristate in PBS 
at 37?C. No oxidation of 1 occurs with PMNs 
that are not activated (data not shown). Neu- 
trophils were prepared as previously described 
(25). (B) Negative-ion electrospray MS of the 
isatin sulfonic acid 2 produced during the oxi- 
dation of 1 by activated human neutrophils, 
under the conditions described in (A). 
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Fig. 5. Analytical evidence for the 
an oxidant with the chemical 
ozone during the reversed passive 
tion (6). A reversed passive Arthus 
in Sprague-Dawley rats (150 to 
travenous (i.v.) injection of BSA 
mg/ml) and a simultaneous intra 
tion of a polyclonal anti-BSA Ig( 
mg/ml). For control purposes, Spl 
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clonal non-BSA-specific IgG (10( 
ml) preparation or PBS (100 PLl) in 
sites. Eight hours after the i.v. adn 
BSA (100 ,X, 10 mg/ml), the ani 
killed, and areas of injection we 
using an 8-mm punch biopsy. Biof 
from each reaction were added 
homogenizer containing indigo 
ilM). (A) HPLC traces of tissue 
generated from rat skin biopsies. 
is an analysis of the oxidation p 
generated from a control skin 
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(B) Electrospray MS of the tissue 
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that occurs cascade, which includes the release of che- 
:curs in a tis- mokines and granulocyte migration to the site 
ly competent where the immune complexes are formed. 
:tivates com- A reversed passive Arthus reaction was gen- 
inflammatory erated in the skin of Sprague-Dawley rats using 

a bovine serum albumin (BSA)-antibody to 
BSA system (6). The inflammatory response at 
the site of antibody-antigen union peaked at 
approximately 8 hours and was associated with 
the classical gross and histological features of 
an Arthus reaction. Analytical studies were car- 
ried out on punch biopsies of either the inflam- 
matory lesion or control skin samples from 
adjacent sites. These tissue samples were rap- 
idly isolated and homogenized in a solution of 
indigo carmine (200 jiM) in either PBS or PBS 
containing >95% H2180. Bleaching of the in- 

* (2) digo carmine solution was observed in the in- 
flammatory lesion but not with any control 
samples. The oxidation of 1 by the Arthus 
tissue was immediate and corresponded to 
-10% of the starting concentration (20 IjM) of 

K\i ~ 1, as determined by UV absorbance at 610 nm. 
HPLC analysis confirmed that the oxidation of 
1 was accompanied by formation of 2 as oc- 

l i curred in the experiments with purified antibod- 
'F~- ~ ies and isolated neutrophils (Fig. 5A). MS anal- 

ysis of 2 formed by the Arthus biopsies that had 
been placed into H2,80-containing PBS re- 
vealed that the [M-H]- 230 fragment was 
present, confirming that this inflammatory le- 
sion contains an oxidant with the chemical sig- 
nature of ozone (Fig. 5B). 
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tory response by the production of nuclear 
factor kappa B (NF-KB), interleukin-6 (IL-6), 
and tumor necrosis factor-a (TNF-a) (29, 
30). Lastly, the catalytic antibody field has 
shown that antibodies are capable of much 
more complex chemistry than simple bind- 
ing. It has not been previously thought that 
this potential for complex chemistry plays a 
role in their in vivo function. However, in 
light of our data, one must now consider that 
all antibodies have an innate catalytic poten- 
tial that may be exploited for host protection. 
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Production of antibodies can last for a lifetime, through mechanisms that 
remain poorly understood. Here, we show that human memory B lymphocytes 
proliferate and differentiate into plasma cells in response to polyclonal stimuli, 
such as bystander T cell help and CpG DNA. Furthermore, plasma cells secreting 
antibodies to recall antigens are produced in vivo at levels proportional to the 
frequency of specific memory B cells, even several years after antigenic stim- 
ulation. Although antigen boosting leads to a transient increase in specific 
antibody levels, ongoing polyclonal activation of memory B cells offers a means 
to maintain serological memory for a human lifetime. 
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Stimulation by antigen through the B cell 
receptor (BCR) followed by cognate T cell 
help drives proliferation and differentiation 
of antigen-specific naive B lymphocytes into 
memory B cells and plasma cells (1, 2). 
Memory B cells carrying somatically mutated 
immunoglobulin (Ig) genes survive in sec- 
ondary lymphoid organs in the absence of 
antigen (3) and mediate secondary immune 
responses upon rechallenge. In contrast, plas- 
ma cells are terminally differentiated, nondi- 
viding cells that home to spleen and bone 
marrow and are the main source of antibody, 
which they secrete at a high rate. Mouse 
plasma cells can be long-lived and are able to 
sustain antibody production for several 
months in the absence of memory B cells or 
antigen (4, 5). However, it is less likely that 
long-lived plasma cells produced during an 
immune response will maintain a constant 
supply of specific antibody over a human 
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antigen (4, 5). However, it is less likely that 
long-lived plasma cells produced during an 
immune response will maintain a constant 
supply of specific antibody over a human 
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life-span, because even long-lived plasma 
cells would eventually need to be replenished 
over a human lifetime. 

Whether persisting antigen is required to 
maintain serological memory remains debat- 
ed (6-8). Antigen-driven proliferation and 
differentiation of memory B cell to short- 
lived plasma cells induces high levels of pro- 
tective antibodies (9). Yet, if persistence of 
antigen was the only mechanism available to 
maintain antibody production, immunologi- 
cal memory would be limited to persisting 
antigens. We therefore searched for altera- 
tive mechanisms that might ensure sustained 
proliferation and differentiation of memory B 
cells, independently of persisting antigen. 

Two types of polyclonal stimuli exist that 
can trigger B lymphocyte proliferation and 
differentiation in the absence of antigen: (i) 
those derived from microbial products, such 
as lipopolysaccharide or unmethylated sin- 
gle-stranded DNA motifs (CpG oligonucleo- 
tides), which stimulate B cells via TLR4 
(Toll-like receptor 4) and TLR9, respectively 
(10, 11); and (ii) T cells activated by a third- 
party antigen, which stimulate B cells in a 
noncognate fashion via CD40 ligand and cy- 
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