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Lymphoma cells infected with Kaposi's sarcoma-associated herpesvirus are 
autocrine dependent on virus-derived interleukin-6 (IL-6), but not on cellular 
IL-6. During viral infection, host cells induce the antiviral factor interferon (IFN) 
to up-regulate p21, initiate cell cycle arrest, and inhibit virus replication. Viral 
IL-6, however, blocks IFN signaling. A viral transcriptional program exists in 
which only the viral IL-6 gene is directly activated by IFN-a, allowing the virus 
to modify its cellular environment by sensing and responding to levels of 
intracellular IFN signaling. The human cytokine cannot mimic this effect be- 
cause IFN-a down-regulates the IL-6 receptor, gp80. Viral IL-6 bypasses the 
gp80 regulatory checkpoint by binding directly to the gp130 transducer mol- 
ecule, resulting in tumor cell autocrine dependence on the viral cytokine for 
proliferation and survival. 
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Viral inhibition of host defenses has been 
linked to the proliferative properties of 
some virus-infected tumors, because of the 
overlapping nature of immune and tumor- 
suppressor signaling pathways (1). Kapo- 
si's sarcoma herpesvirus (KSHV) is a non- 
integrated, episomal DNA virus possessing 
a virus-derived cytokine, vIL-6, that is ex- 
pressed in infected primary effusion lym- 
phoma (PEL) cells (2-4). These cells be- 
come autocrine dependent on vIL-6 but not 
on the human cell-derived cytokine hIL-6 
(5), a B cell proliferation factor. In the 
absence of vIL-6 or when vIL-6 signaling is 
blocked, these autocrine-dependent cells 
stop dividing and undergo apoptosis. vIL-6 
induces B cell proliferation and contributes 
to in vitro cell transformation, and thus may 
play a critical role in KSHV-related hema- 
topoietic tumors such as PEL and multicen- 
tric Castleman's disease (CD) (6-8). It 
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probably does not appreciably contribute to 
Kaposi's sarcoma (KS), in which alterna- 
tive viral transcription programs are oper- 
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ative, because vIL-6 is variably expressed 
in this endothelial cell tumor. 

The reasons why a human cell would 
become dependent on an exogenous, virus- 
derived, IL-6-like cytokine are puzzling. De- 
spite intensive study, no major differences in 
downstream signaling have been found for 
vIL-6 and hIL-6 (9, 10). The viral and human 
cytokines, however, differ in their receptor 
interactions. hIL-6 binds to a specific recep- 
tor, gp80, which forms a complex with the 
transmembrane gpl30 transducer molecule 
responsible for carrying the IL-6 signal 
across plasma membranes (11). Unlike hIL-6, 
vIL-6 directly engages gpl30, but once 
gpl30 is activated, downstream signaling for 
the two cytokines is similar (12-14). 

We hypothesized that KSHV-infected 
cells would become autocrine dependent on 
vIL-6 if the viral cytokine protects cells 
against innate immune defenses triggered by 
viral infection. Interferons (IFNs) are cyto- 
kines induced during viral infection to gen- 
erate an antiviral cellular state and can initiate 
cell type-dependent growth arrest and apo- 
ptosis (15, 16). Under low-serum conditions, 
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expression (lane 3) that is antagonized by vIL-6 (lane 4) but not by hIL-6 (lane 5) or GST (lane 6). 
p21CIPl/WAF1 protein induced by 0.4 M doxorubicin is unaffected on addition of exogenous 
cytokines or GST (lanes 7 to 10). P-actin is shown for loading comparison. 
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vIL-6 initiated cell cycle entry and prevented 
cell death of BCP-1 cells (a B cell line 
infected with KSHV alone). This effect was 
partially antagonized by IFN-a (Fig. 1A) 
(17). Treatment of BCP-1 cells with hIL-6 
or an irrelevant control protein, glutathio- 
ne-S-transferase (GST), failed to reinitiate 
cell proliferation even though gpl30 and 
gp80 receptors are constitutively expressed 
on these cells (fig. Si). The proliferative 
properties of vIL-6 on PEL cells in the 
absence of IFN-al were demonstrated by a 
25-fold increased [3H]thymidine uptake in 
vIL-6-treated cells compared with cells 
treated with GST alone. A similar but less 
pronounced effect [four- to fivefold in- 
creased uptake (18)] occurs when PEL cells 
are treated with vIL-6 in the presence of 
20% fetal calf serum. Direct evidence for 
vIL-6 antagonism of IFN signaling was 
obtained from electrophoretic mobility- 
shift assays in which vIL-6 treatment 
blocked IFN-stimulated gene factor 3 
(ISGF3) binding to IFN-stimulated re- 
sponse element (ISRE) probes, whereas 
hIL-6 had no effect (fig. S2). vIL-6 block- 
ade of IFN signaling appears to be mediat- 

Fig. 2. The vIL-6 ORFK2 gene is 
induced by IFN-aL in an immedi- 
ate-early fashion. (A) Northern 
blotting for vIL-6 expression using 
polyadenylated-selected mRNA 
from BCP-1 cells shows vIL-6 gene 
activation after 12 hours of treat- 
ment with either 500 U/ml IFN-a 
(lane 2) or 20 ng/ml TPA (lane 3). 
IFN-a induction (lane 4) is mini- 
mally affected by 30 min of pre- 
treatment with 50 pLg/ml CHX, 
whereas TPA induction (through 
synthesis of the KSHV ORF50 
lytic transactivator) is abolished 
(lane 5). Reprobing with glyceral- 
dehyde phosphate dehydrogenase 
(GAPDH, lower panel) served as a 
control for loading. (B) ORFK2 en- 
coding vIL-6 is the only immedi- 
ate-early KSHV transcript induced 
by IFN-ac. Polymerase chain reac- 
tion products for 89 KSHV genes 
were arrayed on nitrocellulose 
membranes and hybridized to 
cDNA from BCP-1 cells. (Top) Fold 
gene activation of untreated cells 
compared with cells treated for 12 
hours with 500 U/ml of IFN-a. 
(Bottom) Fold gene activation at 
12 hours with 500 U/ml of IFN-a 
when cells are pretreated with 
CHX (50 pLg/ml for 30 min) to 
inhibit de novo protein synthesis. 
The dotted line shows the three- 
fold induction level. 
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ed through disruption of IFN receptor 
(IFNaR1 or IFNaR2) phosphorylation of 
Tyk2 kinase, leading to decoupling from 
the JAK-STAT signaling pathway (18). 
IFNs initiate G1/S cell cycle arrest in part 
by inducing the cyclin-dependent kinase 
inhibitor p21CIP1/WAF1 through an ISRE en- 
hancer present in the p21CIPl/WAF1 promot- 
er (19). IFN-a induction of p21cIPl/WAF in 
BCP-1 cells after 16 hours was blocked by 
vIL-6 treatment but not by hIL-6 treatment 
(Fig. 1B). This is achieved by interruption 
of IFN signaling, because no such effect is 
seen when cells are treated with doxorubi- 
cin to activate the p21CIP1/WAF1 promoter 

through a p53-dependent pathway (20). 
If vIL-6 itself is induced by IFN-a, then 

vIL-6 secretion could serve as an effector arm 
for a negative-feedback loop. IFN-ao treat- 
ment of PEL cell lines results in a rapid 
up-regulation of vIL-6 transcription in both 
BCP-1 [KSHV-positive, Epstein-Barr virus 
(EBV)-negative] and BC-1 (KSHV-positive, 
EBV-positive) cell lines (fig. S3). vIL-6 is 
also induced by 12-O-tetradecanoylphorbol 
13-acetate (TPA), a phorbol ester that ini- 
tiates lytic transcription through de novo syn- 
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thesis of the lytic transactivator protein Rta 
(ORF50) (21, 22). Because IFN treatment 
can initiate lytic virus replication (23), up- 
regulation of vIL-6 might be secondary to 
lytic virus replication rather than a direct 
effect of IFN signaling. To distinguish be- 
tween these two possibilities, we treated 
BCP-1 cells with TPA or IFN-a in the 
presence of the protein synthesis inhibitor 
cycloheximide (CHX). CHX completely 
blocks Rta-induced vIL-6 transcription, 
whereas IFN-a-induced vIL-6 transcrip- 
tion is only minimally inhibited (Fig. 2A). 

Additional evidence that transcriptional 
regulation of vIL-6 is unique comes from 
cDNA hybridization of KSHV gene probes 
arrayed on nitrocellulose membranes. 
mRNAs harvested in triplicate from BCP-1 
cells, with and without CHX pretreatment, 
were compared to mRNAs from cells treat- 
ed for 12 hours with 500 U/ml of IFN-a in 
the presence or absence of CHX (Fig. 2B). 
Of the 89 KSHV and 7 control gene probes 
examined (table Si), only vIL-6 transcrip- 
tion was activated (average 30-fold up-reg- 
ulation) by IFN-a in the presence of CHX. 
Two other viral genes, ORFI 7 and ORF62, 
reached a threefold or greater induction 12 
hours after IFN treatment, but both were 
blocked by CHX pretreatment. As expect- 
ed, prolonged exposure to IFN-ao (48 hours) 
resulted in activation of multiple viral 
genes because the virus enters lytic repli- 
cation through secondary transcriptional 
cascades (18). These results show that ad- 
ditional pathways, beyond the dichotomous 
latency-lytic pathways traditionally de- 
scribed for herpesviruses, regulate vIL-6 
gene transcription. 

The vIL-6 promoter has two potential 
ISRE sequences; ISRE-1 is located -509 to 
-496 base pairs (bp) upstream of the vIL-6 
translation start site [nucleotide position 
17,875 (24)] and ISRE-2 is located at -420 to 
-401 bp. Sequential deletions of the vIL-6 
promoter and site-directed mutagenesis of 
ISRE-1 or ISRE-2 demonstrated that both 
elements are required for maximal IFN-a- 
responsiveness of the promoter in BCP-1 
cells (Fig. 3A). 

To confirm that vIL-6 acts in an auto- 
crine manner to block the growth-inhibito- 
ry effects of IFN, we reconstituted vIL-6 
signaling in a heterologous cell line. Gene 
cassettes containing the vIL-6 coding re- 
gion under the control of its native promot- 
er, or promoters mutated at ISRE-1 and 
ISRE-2 sites, were stably introduced into 
IFN-sensitive, gp130-expressing Daudi 
C-1l cells that were not infected with 
KSHV (25). Basal levels of vIL-6 produc- 
tion between clones were comparable, sug- 
gesting similar gene dosages of the vIL-6 

expression cassette (18). C-11 cells ex- 
pressing vIL-6 from its wild-type promoter 
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Fig. 3. Promoter activation by IFN-oL allows KSHV cells to 
proliferate in the presence of IFN-oa. (A) IFN-a activates the 
vlL-6 promoter in BCP-1 cells through two ISRE sequences in 
its promoter. The 761-bp Nco I vlL-6 promoter fragment, or 
sequential deletions of ISRE-1 (Bgl II fragment) and ISRE-2 
(Nhe I fragment), were cloned into pGL3-basic luciferase 
reporter vector and treated with IFN-a (500 U/ml for 48 
hours). Mutations in both ISRE-1 and ISRE-2 abolish IFN 
responsiveness of the full-length promoter. (B) Endogenous 
expression of vlL-6 through its promoter protects heterol- 
ogous, KSHV- C-11 Daudi cells from IFN-a-induced prolif- 
eration arrest. IFN-a dose-response curves are shown for 
[3H]thymidine uptake in C-11 Daudi cells stably selected for 
vlL-6 gene cassettes containing wild-type (WT) or mutant 
(m) promoters or empty vector (pcDNA3). C-11 Daudi cells 
containing the WT promoter vlL-6 gene cassette are resis- 
tant to IFN-cx compared to cells with mutations in ISRE-1, 
ISRE-2, or both. Basal expression was comparable in all cell 
lines, indicating a similar gene dosage for all conditions (18). 
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Fig. 4. Differences in vlL-6 and hlL-6 inhibition of IFN-at signaling are due 
to down-regulation of IL-6 gp80 receptor. (A) Flow cytometry for cell 
surface protein expression; increasing fluorescence intensity (FL4-H) 
plotted against cell counts. IFN-oa (500 U/ml, green) down-regulates 
surface expression of the IL-6 receptor gp80 (upper panel) but not the 
signal transducer protein gp130 (lower panel), compared with untreated 
BCP-1 cells (red). Isotype secondary antibody control is shown in black. 
(B) hlL-6-induced gp130 phosphorylation is inhibited by IFN-oa. BCP-1 
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cells were treated with 100 ng/ml each of vlL-6, hlL-6, or GST (lanes 
2 to 4); 500 U/ml IFN-a alone (lane 5); or 500 U/ml IFN-a together 
with 100 ng/ml of vlL-6, hlL-6, or GST for 16 hours (lanes 6 to 8). 
Immunoprecipitates of gp130 from these cells were then immuno- 
blotted for phosphotyrosine (p-Y); membranes were stripped and 
reblotted for gp130. IP, immunoprecipitate. (C) Model for KSHV vlL-6 
inhibition of IFN-(x signaling, resulting in cellular autocrine depen- 
dence on vlL-6. 
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were resistant to the growth-inhibitory ef- 
fects of IFN-ot and proliferated in the pres- 
ence of 50 U/ml of IFN-ca at a rate compa- 
rable to that of untreated controls (Fig. 3B). 
Cells possessing mutations in the vIL-6 
promoter at either ISRE-1 or ISRE-2 had 
diminished IFN resistance and reduced pro- 
liferation at low concentrations of IFN-a. 

Feedback inhibition of IFN signaling by 
vIL-6 provides a clear example of how virus 
subversion of host cell defenses can lead to 
cell proliferation. Why does cellular IL-6 not 
achieve the same effect? Both hIL-6 and 
vIL-6 can initiate IL-6 signaling in BCP-1 
cells, as measured by electrophoretic mobili- 
ty-shift assays in which the gamma-inteferon 
activation sequence (GAS) element from the 
interferon regulatory factor 1 (IRF-1) pro- 
moter is used as a probe, although vIL-6 
signaling is more robust (18). The answer 
may lie in differences in receptor usage by 
the two cytokines. IFN-a treatment results in 
down-regulation of gp80 surface expression 
but has no effect on gpl30 surface expression 
(Fig. 4A), an effect previously noted for other 
B cell lines, including the IL-6-dependent 
U266 multiple myeloma cell line (26). IFN-ot 
also blocks hIL-6-induced but not vIL-6- 
induced gpl30 tyrosine phosphorylation (Fig. 
4B), demonstrating that the blockage occurs 
at the receptor level. gp80 mRNA expression 
is not markedly altered by IFN-at treatment, 
suggesting that gp80 blockade is largely due 
to posttranscriptional inhibition (fig. S4). 
This leads to a model (Fig. 4C) in which viral 
evolution has generated a modified cytokine 
that escapes regulatory control of IL-6 signal- 
ing by IFN-a. Infected cells that normally 
would either arrest or undergo apoptosis 
in response to IFN signaling continue to pro- 
liferate in the presence of vIL-6, resulting in 
a virus-human autocrine feedback circuit. 

vIL-6 inhibits tumor-suppressor path- 
ways activated during immune signaling, 
but it is important to emphasize that this is 
not solely responsible for PEL tumorigen- 
esis, which results from multiple, combined 
viral and host cell genetic influences. Vi- 
ruses have evolved a variety of ways to 
overcome host defenses against infection, 
including abrogating IFN signaling path- 
ways (27, 28). KSHV itself possesses an- 
other protein, vIRF-1, to inhibit IFN-medi- 
ated transcription. By sensing levels of 
IFN-a signaling, KSHV reacts to and mod- 
ifies its cellular environment through vIL- 
6, exhibiting a fundamental property of 
biological systems called irritability that 
has been previously used to distinguish vi- 
ruses from higher forms of life (29). In 
addition to immune evasion, it is possible 
that this mechanism plays a role in main- 
taining viral latency by preventing IFN in- 

were resistant to the growth-inhibitory ef- 
fects of IFN-ot and proliferated in the pres- 
ence of 50 U/ml of IFN-ca at a rate compa- 
rable to that of untreated controls (Fig. 3B). 
Cells possessing mutations in the vIL-6 
promoter at either ISRE-1 or ISRE-2 had 
diminished IFN resistance and reduced pro- 
liferation at low concentrations of IFN-a. 

Feedback inhibition of IFN signaling by 
vIL-6 provides a clear example of how virus 
subversion of host cell defenses can lead to 
cell proliferation. Why does cellular IL-6 not 
achieve the same effect? Both hIL-6 and 
vIL-6 can initiate IL-6 signaling in BCP-1 
cells, as measured by electrophoretic mobili- 
ty-shift assays in which the gamma-inteferon 
activation sequence (GAS) element from the 
interferon regulatory factor 1 (IRF-1) pro- 
moter is used as a probe, although vIL-6 
signaling is more robust (18). The answer 
may lie in differences in receptor usage by 
the two cytokines. IFN-a treatment results in 
down-regulation of gp80 surface expression 
but has no effect on gpl30 surface expression 
(Fig. 4A), an effect previously noted for other 
B cell lines, including the IL-6-dependent 
U266 multiple myeloma cell line (26). IFN-ot 
also blocks hIL-6-induced but not vIL-6- 
induced gpl30 tyrosine phosphorylation (Fig. 
4B), demonstrating that the blockage occurs 
at the receptor level. gp80 mRNA expression 
is not markedly altered by IFN-at treatment, 
suggesting that gp80 blockade is largely due 
to posttranscriptional inhibition (fig. S4). 
This leads to a model (Fig. 4C) in which viral 
evolution has generated a modified cytokine 
that escapes regulatory control of IL-6 signal- 
ing by IFN-a. Infected cells that normally 
would either arrest or undergo apoptosis 
in response to IFN signaling continue to pro- 
liferate in the presence of vIL-6, resulting in 
a virus-human autocrine feedback circuit. 

vIL-6 inhibits tumor-suppressor path- 
ways activated during immune signaling, 
but it is important to emphasize that this is 
not solely responsible for PEL tumorigen- 
esis, which results from multiple, combined 
viral and host cell genetic influences. Vi- 
ruses have evolved a variety of ways to 
overcome host defenses against infection, 
including abrogating IFN signaling path- 
ways (27, 28). KSHV itself possesses an- 
other protein, vIRF-1, to inhibit IFN-medi- 
ated transcription. By sensing levels of 
IFN-a signaling, KSHV reacts to and mod- 
ifies its cellular environment through vIL- 
6, exhibiting a fundamental property of 
biological systems called irritability that 
has been previously used to distinguish vi- 
ruses from higher forms of life (29). In 
addition to immune evasion, it is possible 
that this mechanism plays a role in main- 
taining viral latency by preventing IFN in- 
duction of lytic replication. The autocrine 
loop established by vIL-6 illustrates mech- 
duction of lytic replication. The autocrine 
loop established by vIL-6 illustrates mech- 
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anistically how interference with antiviral 
defenses can contribute to tumor cell pro- 
liferation and provides an attractive target 
for novel therapies directed against KSHV- 
related hematopoietic tumors. 
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53BP1, a Mediator of the DNA 

Damage Checkpoint 
Bin Wang,1 Shuhei Matsuoka,1 Phillip B. Carpenter,4 

Stephen J. Elledge1'.23* 

53BP1 binds to the tumor suppressor protein p53 and has a potential role in 
DNA damage responses. We used small interfering RNA (siRNA) directed 
against 53BP1 in mammalian cells to demonstrate that 53BP1 is a key trans- 
ducer of the DNA damage checkpoint signal. 53BP1 was required for p53 
accumulation, G2-M checkpoint arrest, and the intra-S-phase checkpoint in 
response to ionizing radiation. 53BP1 played a partially redundant role in 
phosphorylation of the downstream checkpoint effector proteins Brcal and 
Chk2 but was required for the formation of Brca1 foci in a hierarchical branched 
pathway for the recruitment of repair and signaling proteins to sites of DNA 
damage. 
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53BP1 was identified through its ability to bind 
to the tumor suppressor protein p53 through 
53BPl's COOH-terminal BRCT (Brcal car- 
boxyl-terminus) repeats (1, 2), which are found 
in many DNA damage response proteins (3-8). 
53BP1 responds to DNA double-strand breaks 
(9-12), quickly relocalizing to discrete nuclear 
foci upon exposure to ionizing radiation (IR). 
These foci colocalize with those of the Mrel 1- 
Nbsl-Rad50 complex and phosphorylated 
y-H2AX, which are thought to facilitate the 
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recruitment of repair factors to damaged DNA 
(9-11). In response to IR, 53BP1 is phospho- 
rylated in an ataxia telangiectasia mutated 
(ATM)-dependent manner (10-12), but its role 
in the DNA damage response is unclear. 

To determine 53BP1 's role, we used small 
interfering RNAs (siRNAs) in the form of 
two independent, nonoverlapping, 21-base 
pair RNA duplexes that target 53BP1 to in- 
hibit its expression (13, 14). U20S cells were 
transfected with these siRNA oligonucleo- 
tides (oligos) and, within 3 days posttransfec- 
tion, a portion of cells had undergone cell 
death (fig. S1). A similar phenotype was also 
observed in two other cell lines, Hctl 16 and 
Saos2 (15). 

To determine whether 53BP1 plays a role 
in DNA damage cell cycle checkpoints, we 
examined the response of 53BP1-inhibited 
cells to IR. IR induces the intra-S-phase 
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