
ings regarding the emerging complexity of pu- 
tatively simple metals under pressure (1, 2, 5, 
16, 17). Despite its apparent deviations from a 
textbook "simple metal," Li remains an ideal 
candidate for further theoretical understanding 
of the origin of this complexity because of its 
low atomic number. Although there is a possi- 
bility that the low-temperature phases are dis- 
tinct from those considered in (6), the discrep- 
ancies between theory and experiment may be 
resolved by assuming very high values of the 
Anderson-Morel Coulomb pseudopotential p* 
or by invoking spin fluctuation effects (6). The 
first possibility may require a full treatment of 
electrons and ions on the same footing similar 
to the approach proposed by Richardson and 
Ashcroft (14). Such a treatment is likely to be 
very important for understanding the behavior 
(including possible high-temperature supercon- 
ductivity) in the predicted metallic phases of 
hydrogen at higher pressures (14, 18, 19). This 
study shows the power of pressure as a variable 
in uncovering phenomena in condensed matter, 
findings made possible by continued advances 
in experimental high-pressure techniques. 
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Fatigue Failure in Polysilicon 
Not Due to Simple Stress 

Corrosion Cracking 
H. Kahn, R. Ballarini,* J. J. Bellante, A. H. Heuer* 

In the absence of a corrosive environment, brittle materials such as silicon should 
be immune to cyclic fatigue. However, fatigue effects are well known in microme- 
ter-sized polycrystalline silicon (polysilicon) samples tested in air. To investigate 
the origins of this phenomenon in polysilicon, we developed a fixed-grip fracture 
mechanics microspecimen but could find no evidence of static stress corrosion 
cracking. The environmental sensitivity of the fatigue resistance was also inves- 
tigated under cyclic loading. For low-cycle fatigue, the behavior is independent of 
the ambient conditions, whether air or vacuum, but is strongly influenced by the 
ratio of compressive to tensile stresses experienced during each cycle. The fatigue 
damage most likely originates from contact stresses at processing-related surface 
asperities; subcritical crack growth then ensues during further cyclic loading. 
The lower far-field stresses involved in high-cycle fatigue induce reduced levels 
of fatigue damage. Under these conditions, a corrosive ambient such as lab- 
oratory air exacerbates the fatigue process. Without cyclic loading, polysilicon 
does not undergo stress corrosion cracking. 
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Silicon is a "fully" brittle material at room 
temperature. In the absence of hydrostatic con- 
fining pressures to suppress fracture, silicon 
displays no stress-induced dislocation activity 
under ambient conditions, even under high 
stresses, and undergoes no stress-induced phase 
transformations, except at extremely high pres- 
sures (1). In addition, stress corrosion cracking 
(2) has not been conclusively detected in silicon 
(3, 4). We thus do not expect silicon to display 
any time-dependent cracking (neither crack ini- 
tiation nor crack extension) when subjected to 
monotonic or cyclic loading conditions. Exper- 
imental results, however, have shown other- 
wise. Precracked micrometer-sized specimens 
of both single-crystal (4) and polycrystalline 
silicon (polysilicon) (5) exhibit crack extension 
when subjected to cyclic fatigue loading. Crack 
initiation and growth have also been observed 
in micrometer-sized silicon specimens without 
precracks under fatigue loading (6-11). Both 
single-crystal silicon (6, 7) and polysilicon (8- 
11) have been studied. Most of the investiga- 
tions (6-10) used equal tension/compression 
cycling, for a load ratio R = -1. (The load ratio 
R is the ratio of the minimum stress to the 
maximum stress in the cycle; tension is taken as 
positive and compression as negative.) Fatigue 
has also been observed in zero/tension stress 
cycling tests (R = 0) (11). Muhlstein et al. (9, 
10) have attributed the limited lifetime to "re- 
action-layer fatigue." This fatigue mechanism 
involves the surface oxide (12) on the silicon 
undergoing damage through stress corrosion 
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cracking; the oxide is postulated to thicken 
because of continued chemical reaction with 
the ambient, and the cracks lengthen until the 
stress intensity factor reaches the critical frac- 
ture toughness KIc (Eq. 1), whereupon cata- 
strophic crack propagation ensues. Bagdahn et 
al. (11), however, showed that the lifetime of 
polysilicon specimens subjected to tensile fa- 
tigue loading was dependent only on the num- 
ber of cycles and not on the cycling frequency. 

In fact, stress corrosion is not a prerequi- 
site for fatigue behavior in brittle materials. 
Suresh (13) showed that brittle ceramics dis- 
play crack initiation and propagation at 
notches under compression/compression fa- 
tigue loading. He attributed the fatigue to 
confined damage at the notch tip during com- 
pression loading, which generates tensile 
stresses and microcracking upon unloading. 
Further, Wiederhom et al. (14) reported tem- 
perature-dependent subcritical crack growth 
in a variety of inorganic glasses subjected to 
constant tensile loads in vacuum (10-2 Pa). 

For our investigation, the test structure 
shown in Fig. 1 was used to investigate the 
static (constant load) stress corrosion of poly- 
silicon in micrometer-sized specimens. The 
fracture mechanics microspecimen, a doubly 
clamped beam with a residual tensile stress 
and containing a sharp precrack produced by 
a Vickers microindent, was fabricated with 
standard micromachining techniques (15). 
Upon release of the structure, the residual 
tensile stress in the film produced a nearly 
uniform tensile stress in the doubly clamped 
beam and, in turn, a well-defined stress in- 
tensity at the crack tip. The residual stress in 
the film was measured with microstrain gaug- 
es, which were micromachined on the same 
substrate and placed near the test devices. We 
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have characterized the residual (growth) 
stresses generated in low-pressure chemical 
vapor deposition (LPCVD) polysilicon films 
in considerable detail (16), and we produced 
films with residual tensile stresses suitable 
for this experiment (17). Because of the sto- 
chastic nature of microindentation, the crack 
length (a in Fig. 1A) varied from specimen to 
specimen, even though essentially identical 
indentation conditions were used. As a result, 
a range of stress intensities was produced. 
Upon release of the microdevices, growth 
occurred in cracks whose stress intensity fac- 
tor K was greater than Kic, whereas growth 
did not occur in cracks whose K was lower 
than KiC. For our experiment, three polysili- 
con films were used, with residual stresses of 
69, 56, and 44 MPa. K versus a curves for 
each film were determined from finite ele- 
ment analyses and are shown in Fig. 1D, 
along with the experimental data (18). Except 
for one outlier at a crack length of 38 ILm in 
the film with a residual stress of 44 MPa, the 
three sets of data show upper and lower 
bounds for KiC. The combined results give 
KI =0.81 + 0.05 MPa ? m'12. This value is 
consistent with previously reported data for 

B 

indent 

bulk polysilicon (19) and is slight 
our previously reported data (20). 

The beams represented by squ 
1D contain cracks whose stress inte] 
to 0.82 MPa * ml2) are slightly le, 
The loads due to the residual stress 
cracks are constant, and these bean 
fore ideal specimens for studying 
corrosion cracking. These polysili 
were placed in a 90% relative hum 
ber for 30 days. None of the cracks i 
grew. The spatial resolution in im, 
length with scanning electron micro 
jLm. Therefore, subcritical crack gi 
not have involved crack velocities 
4 10-14 m/s. 

We also investigated crack in 
growth during both monotonic and 
ing, with the polysilicon microdevic 
Fig. 2. Devices were fabricated frc 
ferent polysilicon films, with thickn 
and 6.0 ILm. After release, a 10-nn 
of palladium was sputtered onto th< 
create sufficient conductivity for 
loading. For this experiment, the 
films were annealed before pattemir 
residual stresses to near zero. 

pre-crack 

SiO2 anchors 

silicon substrate 

C 

Fig. 1. Images of the doubly clamped tensile 
beam used to measure fracture toughness 
and stress corrosion. (A) Schematic top view 
showing the dimensions. (B) Schematic side 
view. (C) Scanning electron micrograph 
(SEM) of a 60-1jm-wide beam with an indent 
placed near its center, with a higher magni- 
fication SEM of the area near the indent 
showing the precrack traveling from the sub- 
strate into the beam. The indent was made 
on the SiO2 release layer, which was subse- 
quently removed by the HF release acid. (D) 
Plot of stress intensity K versus crack length 
a for polysilicon doubly clamped tensile 
beams. The solid lines show the relation be- 
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Initial crack length (L 
tween K and a for three values of residual stress; the data points are shown as symbc 
cracks that did not grow upon release; circles, cracks that did grow). The dotted line ir 
fracture toughness Kic, determined from these data. 

ly less than The electrostatic comb-drive actuator 
shown in Fig. 2 has been described previous- 

ares in Fig. ly (8). It allows constant, monotonically in- 
nsities (0.49 creasing, or cyclic loading, depending on 
ss than KIc. whether dc or ac voltages are applied. (The 
ses on these resonance frequencies of these devices are 
is are there- -10 kHz.) Further, cyclic loading can be 
static stress superimposed on a mean stress by adding an 
icon beams ac voltage to a dc bias. 
Lidity cham- With the single edge-notched microspeci- 
n the beams men shown in Fig. 2B, a dc voltage applied to 
aging crack the actuator generated a tensile stress at the 
scopy is 0.1 notch tip. As the dc voltage was increased, 
rowth could the tensile stress increased until it exceeded 
greater than the strength of the polysilicon, at which point 

a crack was initiated and catastrophically 
itiation and propagated through the uncracked ligament. 
cyclic load- The stresses at the notch tip were determined 
:es shown in with finite element analysis of the microde- 
>m two dif- vice, in conjunction with direct measure- 
lesses of 3.5 ments of the actuator displacement. The av- 
n-thick film erage bend strength in air (nominally 23?C at 
e devices to 25 to 35% relative humidity under monotonic 
electrostatic loading) taken from nine specimens was 4.0 
polysilicon GPa, with a standard deviation of 0.6 GPa. 

ng to reduce To determine whether "natural" flaws (as 
opposed to the indent-induced microcracks) 
(Fig. 1C) could undergo environmentally assist- 
ed subcritical crack growth, we subjected 10 
specimens to a constant tensile stress in air of 

olysicon 3.6 GPa (21). (The relevance of this stress level 
will become clear in the context of Fig. 3D.) 
The devices were exposed to laboratory air for 
2 hours and then placed in a 90% relative 
humidity chamber for 200 hours. No failures 
were observed. Combined with the very low 

,^ r2 ~ crack velocities implied by the doubly clamped 
'jjj' i beam experiments (Fig. 1), this negative result 

-i , demonstrates that silicon is not susceptible to 
F; 
'" static stress corrosion cracking. 

b | ~ We next investigated the relative impor- 
rl j tance of compressive and tensile stresses during 

fRi1 cyclic loading and subjected polysilicon speci- 
* . rl mens to fatigue tests with varying R values. 
* -M ~ Because the electrostatic actuator can apply 
! 

i ^ monotonic loading in only one direction (down- 
. ||l ward, as oriented in Fig. 2), the two different 

single edge-notched fracture mechanics mi- 
crospecimens shown in Fig. 2, B and C, were 
designed. The notch root radius was 1.1 Lm for 
both specimens. For the specimen in Fig. 2B, as 

Pa - described above, the monotonic component of 
,^-^ ~ the load created a tensile stress at the notch tip, 

APa and for the specimen shown in Fig. 2C, it 
/pN~ 4 - created a compressive stress. Depending on the 

^** a_- choice of specimen and the magnitude of 
monotonic load, fatigue tests can be performed 
with varying R values. 

For both specimen types, we applied a dc 
bias voltage and a small ac voltage and deter- 

50 60 mined the resonance frequency (22). Holding 
Lm) the frequency of the ac signal at resonance, we 

ls (squares, slowly increased the amplitude of the applied ac 
idicates the voltage until fracture occurred. Typically, the 

entire test lasted less than 1 min. This test 
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revealed the conditions that result in low-cycle 
fatigue (23). Because brittle materials such as 
silicon have a much lower strength in tension 
than in compression, bend specimens invariably 
fail from cracks nucleated at or near the tensile 
side of the beam. We therefore presume that the 
maximum tensile stress experienced at the 
notch tip during the fatigue cycle is the low- 
cycle fatigue strength and is equal to the critical 
tensile stress required for catastrophic crack 
propagation crit. Tests were performed at at- 

mospheric pressure (105 Pa) and in vacuum (10 
Pa). The results are shown in Fig. 3A, where 
fatigue strength is plotted versus R. 

It is evident that the polysilicon specimens 
are susceptible to fatigue; in the absence of 
fatigue damage, the fatigue strength would be 
constant, equal to the monotonic bend strength, 
and independent of R. On the contrary, as R 
increases from large negative values, crnt in- 
creases. The failure stress is related to the frac- 
ture toughness of the material by the standard 
relation 

is strongly affected by the compressive stresses 
experienced during fatigue loading. This sug- 
gests that the mechanism responsible for fatigue 

is similar to that proposed by Suresh (13) for 
compression/compression fatigue of brittle ce- 
ramics. A likely origin of the microcracks that 

K,c = koc,t(Trc)1/2 (1) 

where c is the size of the crack-initiating flaw 
and k is a constant of order unity (24). Because 
KiC has been shown to be a microstructure- 
independent constant for polysilicon (25), the 
decrease in (cnt with decreasing R must be due 
to increasing flaw sizes (26). All specimens 
from a given polysilicon film were fabricated 
simultaneously, so the flaw populations should 
be identical. It therefore follows that the speci- 
mens subjected to fatigue loading with the larg- 
er negative R values experienced enhanced sub- 
critical crack growth. 

To confirm that more extensive subcritical 
crack growth occurred at the lower R values, we 
examined fracture surfaces of several speci- 
mens (Fig. 3, B and C). The specimen in Fig. 
3B was fatigued with R = -0.4 and fractured at 

cnt- = 3.4 GPa, and the specimen in Fig. 3C 
was fatigued with R = -2.1 and fractured at 

(crit 
= 1.7 GPa. The fracture surfaces exhibit 

the classic morphology of brittle fracture: a 
relatively smooth, semicircular "mirror" region 
emanating from the fracture origin and a rough- 
er surface characteristic of branching cracks 
beyond the mirror zone. The mirror radius is 
directly proportional to the crack-initiating flaw 
size. The mirror radius in Fig. 3C is roughly 
four times the mirror radius in Fig. 3B, consis- 
tent with the factor of 2 difference in measured 
strength (Eq. 1). This confirms that a greater 
amount of subcritical crack growth occurred in 
the specimen loaded with the larger negative R. 

The data taken at the two different ambient 
pressures are indistinguishable (Fig. 3A), indi- 
cating that environmental effects, including 
possible oxidation-induced stress corrosion, do 
not affect the low-cycle fatigue behavior. Rath- 
er, the fatigue behavior must reflect irreversible 
processes occurring at the notch tip during cy- 
clic loading. The severity of the fatigue damage 

Fig. 2. SEMs of the polysilicon device used for monotonic and fatigue investigations. (A) The fracture 
mechanics specimen attached to the electrostatic comb-drive microactuator. (B and C) Higher mag- 
nification images of the two different single edge-notched fracture mechanics specimens used. The 
specimen in (B) allows monotonic tensile loads at the notch tip, producing R ratios greater than -1; the 
specimen in (C) allows monotonic compressive loads at the notch tip, producing R ratios less than -1. 
The inset in (B) shows a higher magnification view of the vicinity of the micromachined notch. 
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Cycles to failure average value, and the error bars indicate the 
standard deviation. The circles were taken from 5.7-pLm-thick specimens tested at atmospheric 
pressure. The triangles were taken from 5.7-pLm-thick specimens tested in vacuum (10 Pa). (B and 
C) SEMs showing the fracture surfaces of two specimens. The specimen in (B) is of the type shown 
in Fig. 2B; it was subjected to a tensile bias stress (R = -0.4) when resonated, and it fractured at 
a maximum stress of 3.4 GPa. The specimen in (C) is of the type shown in Fig. 2C; it was subjected 
to a compressive bias stress (R = -2.1) when resonated, and it fractured at a maximum stress of 
1.7 GPa. (D) Histogram showing high-cycle fatigue results. Testing was done both in vacuum and 
in air, at two different relative humidities. Test conditions were R = -0.5, with a maximum stress 
of 3.6 GPa. No failures were observed in the six vacuum tests. Five of these tests were stopped after 
108 cycles, and one was stopped after 3 x 108 cycles. 
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undergo subcritical crack growth in our speci- 
mens is the asperities on the notch surfaces, 
which can come into contact during the com- 
pressive cycles and which then act as "wedges" 
to create areas of local tension. The morpholo- 
gy of the micromachined inner notch surfaces is 
determined by the plasma etching of the poly- 
silicon in the final stages of microelectrome- 
chanical systems (MEMS) processing (15) 
(Fig. 3, B and C). These surfaces display visible 
roughness, including surface asperities, al- 
though no microcracking could be observed by 
scanning electron microscopy. However, any 
microcracks would likely be closed after spec- 
imen fracture and therefore difficult to image. 
Accumulation of fatigue damage from this 
mechanism could be expected to depend on the 
number of cycles and not on the cycling fre- 
quency, as has been observed (11). 

We were able to demonstrate the effects of 
environment on this fatigue mechanism during 
long-term, high-cycle fatigue tests. We mea- 
sured the high-cycle fatigue life of specimens of 
the type shown in Fig. 2B, using the method- 
ology just described, except that the amplitude 
of the applied ac voltage was held constant at a 
level slightly below that required for low-cycle 
fatigue failure; we tested in both laboratory air 
(105 Pa) and in vacuum (10 Pa). The specimens 
were tested with R = -0.5 and a maximum 
tensile stress of 3.6 GPa. All of the specimens 
tested in air failed catastrophically at 3.0 x 
107 cycles or less (1.1 hours or less), whereas 
all of the specimens tested in vacuum sur- 
vived at least 10 cycles (3.5 hours or more), 
when the vacuum tests were terminated (Fig. 
3D). The ambient air clearly exacerbated the 
compression-induced (mechanical) fatigue 
mechanism. The presence of air may have 
caused an additional thickness of surface ox- 
ide to grow on existing asperities or on newly 
formed (subcritical) crack surfaces, which 
generated additional wedging and crack ex- 
tension during the compressive portions of 
the loading cycle. When fatigue experiments 
are conducted involving compressive stresses 
that are less severe than those used in the 
lowcycle fatigue tests, the severity of cyclic 
fatigue damage depends sensitively on the 
ambient. 

We demonstrated that without cyclic load- 
ing, stress corrosion cracking does not occur 
in polysilicon. Low-cycle fatigue damage in 
polysilicon is not affected by ambient condi- 
tions and most likely involves local micro- 
cracking at the notch tip owing to compres- 
sive stresses during the loading cycles. The 
extent of such damage is sensitive to the 
type and extent of surface roughness intro- 
duced during device fabrication. Under the 
low-cycle fatigue conditions, the fatigue 
damage occurs so quickly that it is not 
sensitive to ambient conditions. For high- 
cycle fatigue, a corrosive ambient, labo- 
ratory air, exacerbates the fatigue process. 
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