
Cl concentrations in the Sajama ice core, and to 
a number of other pedological and geomorpho- 
logical features indicative of long-term dry cli- 
mates (8, 11-14, 18). This decline in human 
activity around the Altiplano paleolakes is seen 
in most caves, with early and late occupations 
separated by largely sterile mid-Holocene sed- 
iments. However, a few sites, including the 
caves of Tulan-67 and Tulan-68, show that 
people did not completely disappear from the 
area. All of the sites of sporadic occupation 
are located near wetlands in valleys, near 
large springs, or where lakes turned into wet- 
lands and subsistence resources were locally 
still available despite a generally arid climate 
(7, 8, 19, 20). 

Archaeological data from surrounding ar- 
eas suggest that the Silencio Arqueologico 
applies best to the most arid areas of the 
central Andes, where aridity thresholds for 
early societies were critical. In contrast, a 
weaker expression is to be expected in the 
more humid highlands of northern Chile 
(north of 20?S, such as Salar Huasco) and 
Peru (21). In northwest Argentina, the Silen- 
cio Arqueologico is found in four of the six 
known caves (22) [see review in (23)]. It is 
also found on the coast of Peru in sites that 
are associated with ephemeral streams (24). 
The southern limit in Chile and northwest 
Argentina has yet to be explored. 
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Network Motifs: Simple Building 
Blocks of Complex Networks 

R. Milo,1 S. Shen-Orr,1 S. Itzkovitz,1 N. Kashtan,1 D. Chklovskii,2 
U. Alonl* 

Complex networks are studied across many fields of science. To uncover their 
structural design principles, we defined "network motifs," patterns of inter- 
connections occurring in complex networks at numbers that are significantly 
higher than those in randomized networks. We found such motifs in networks 
from biochemistry, neurobiology, ecology, and engineering. The motifs shared 
by ecological food webs were distinct from the motifs shared by the genetic 
networks of Escherichia coli and Saccharomyces cerevisiae or from those found 
in the World Wide Web. Similar motifs were found in networks that perform 
information processing, even though they describe elements as different as 
biomolecules within a cell and synaptic connections between neurons in Cae- 
norhabditis elegans. Motifs may thus define universal classes of networks. This 
approach may uncover the basic building blocks of most networks. 
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Many of the complex networks that occur in 
nature have been shown to share global statis- 
tical features (1-10). These include the "small 
world" property (1-9) of short paths between 
any two nodes and highly clustered connec- 
tions. In addition, in many natural networks, 
there are a few nodes with many more connec- 
tions than the average node has. In these types 
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of networks, termed "scale-free networks" (4, 
6), the fraction of nodes having k edges, p(k), 
decays as a power law p(k) - k1~ (where y is 
often between 2 and 3). To go beyond these 
global features would require an understanding 
of the basic structural elements particular to 
each class of networks (9). To do this, we 
developed an algorithm for detecting network 
motifs: recurring, significant patterns of inter- 
connections. A detailed application to a gene 
regulation network has been presented (11). 
Related methods were used to test hypotheses 
on social networks (12, 13). Here we generalize 
this approach to virtually any type of connec- 
tivity graph and find the striking appearance of 
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motifs in networks representing a broad range 
of natural phenomena. 

We started with networks where the inter- 
actions between nodes are represented by di- 
rected edges (Fig. 1A). Each network was 
scanned for all possible n-node subgraphs (in 
the present study, n = 3 and 4), and the number 
of occurrences of each subgraph was recorded. 
Each network contains numerous types of n- 
node subgraphs (Fig. iB). To focus on those 
that are likely to be important, we compared the 
real network to suitably randomized networks 
(12-16) and only selected patterns appearing in 
the real network at numbers significantly higher 
than those in the randomized networks (Fig. 2). 
For a stringent comparison, we used random- 
ized networks that have the same single-node 
characteristics as does the real network: Each 
node in the randomized networks has the same 

B A 
Areal network 

4 

number of incoming and 
corresponding node has 
The comparison to this 
accounts for patterns tha 
of the single-node charac 
(e.g., the presence of nod 
of edges). Furthermore, 
works used to calculate 
node subgraphs were ger 
same number of appearar 
subgraphs as in the real ] 
ensures that a high sig] 
signed to a pattern only 1 
significant subpattern. 1 
are those patterns for whi 
appearing in a randomize 
greater number of times t 
is lower than a cutoff v; 
Patterns that are function 

randomized netw 

12 

motif: . 
4 . 

Fig. 2. Schematic view of network motif detection. Network motifs are pat 
more frequently (A) in the real network than (B) in an ensemble of randc 
node in the randomized networks has the same number of incoming and o 
the corresponding node in the real network. Red dashed lines indicate edges 
feedforward loop motif, which occurs five times in the real network. 

Fig. 3. Concentration C of 0.015- 
the feedforward loop motif I 
in real and randomized 
subnetworks of the E. coli 
transcription network (11). 
C is the number of appear- I 
ances of the motif divided 2 0.01 - 
by the total number of ap- e 

pearances of all connected *? ? ? ~ 1????? 
three-node subgraphs (Fig. - I * ? 

1B). Subnetworks of size S -_I 
were generated by choos- .? 
ing a node at random and 0 005? o I - 

adding to it nodes con- 0 ?0o 1O -_ 8 0 
nected by an incoming or ?0o 
outgoing edge, until S - -- -- 
nodes were obtained, and --- 
then including all of the 
edges between these S 
nodes present in the full 150 200 250 300 
network. Each of the sub- 

Subnetwork size networks was randomized 
(17, 18) (shown are mean and SD of 400 subnetworks of each size). 

outgoing edges as the statistically significant could exist, which 
in the real network. would be missed by our approach. 

randomized ensemble We applied the algorithm to several net- 
it appear only because works from biochemistry (transcriptional gene 
teristics of the network regulation), ecology (food webs), neurobiology 
es with a large number (neuron connectivity), and engineering (elec- 
the randomized net- tronic circuits, World Wide Web). The network 

the significance of n- motifs found are shown in Table 1. Transcrip- 
nerated to preserve the tion networks are biochemical networks re- 
ices of all (n - 1)-node sponsible for regulating the expression of genes 
network (17, 18). This in cells (11, 19). These are directed graphs, in 
nificance was not as- which the nodes represent genes (Fig. 1A). 
because it has a highly Edges are directed from a gene that encodes for 
'he "network motifs" a transcription factor protein to a gene transcrip- 
ich the probability P of tionally regulated by that transcription factor. 
ed network an equal or We analyzed the two best characterized tran- 
han in the real network scriptional regulation networks, corresponding 
alue (here P = 0.01). to organisms from different kingdoms: a eu- 
lally important but not karyote (the yeast Saccharomyces cerevisiae) 

(20) and a bacterium (Escherichia coli) (11, 
19). The two transcription networks show the 

forks same motifs: a three-node motif termed "feed- 
forward loop" (11) and a four-node motif 

5 4 3 termed "bi-fan." These motifs appear numerous 

J. /y 2 times in each network (Table 1), in nonhomolo- 

.....1 gous gene systems that perform diverse biolog- 
16 ical functions. The number of times they appear 

5 is more than 10 standard deviations greater than 
4their mean number of appearances in random- 

**^^3*a ~ ized networks. Only these subgraphs, of the 13 
4 3 possible different three-node subgraphs (Fig. 

2 IB) and 199 different four-node subgraphs, are 
significant and are therefore considered net- 
work motifs. Many other three- and four-node 
subgraphs recur throughout the networks, but at 

15 numbers that are less than the mean plus 2 
14 standard deviations of their appearance in ran- 

11 12 13 domized networks. 
We next applied the algorithm to ecosystem 

food webs (21, 22), in which nodes represent 
:terns that recur much groups of species. Edges are directed from a 
,mized networks. Each node representing a predator to the node repre- 
utgoing edges as does 

senting its prey. We analyzed data collected by 
different groups at seven distinct ecosystems 
(22), including both aquatic and terrestrial hab- 
itats. Each of the food webs displayed one or 

* Real two three-node network motifs and one to five 
o Random four-node network motifs. One can define the 

"consensus motifs" as the motifs shared by 
networks of a given type. Five of the seven food 
webs shared one three-node motif, and all seven 
shared one four-node motif (Table 1). In con- 
trast to the three-node motif (termed "three 

*? ? ? ? ? ? ? chain"), the three-node feedforward loop was 

underrepresented in the food webs. This sug- 
gests that direct interactions between species at 
a separation of two layers [as in the case of 
omnivores (23)] are selected against. The bi- 
parallel motif indicates that two species that are 

3I41TT4 IT P prey of the same predator both tend to share the 
same prey. Both network motifs may thus rep- 
resent general tendencies of food webs (21, 22). 

350 400 We next studied the neuronal connectivity 
network of the nematode Caenorhabditis ele- 
gans (24). Nodes represent neurons (or neuron 
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classes), and edges represent synaptic connec- 
tions between the neurons. We found the feed- 
forward loop motif in agreement with anatomi- 
cal observations of triangular connectivity struc- 
tures (24). The four-node motifs include the 
bi-fan and the bi-parallel (Table 1). Two of 
these motifs (feedforward loop and bi-fan) were 

REPORTS 

also found in the transcriptional gene regulation 
networks. This similarity in motifs may point to 
a fundamental similarity in the design con- 
straints of the two types of networks. Both net- 
works function to carry information from sen- 
sory components (sensory neurons/transcription 
factors regulated by biochemical signals) to ef- 

Table 1. Network motifs found in biological and technological networks. The numbers of nodes and edges 
for each network are shown. For each motif, the numbers of appearances in the real network (Nreai) and 
in the randomized networks (Nrand SD, all values rounded) (1 7, 18) are shown. The P value of all motifs 
is P < 0.01, as determined by comparison to 1000 randomized networks (100 in the case of the World 
Wide Web). As a qualitative measure of statistical significance, the Z score = (Nrea - Nrand)/SD is shown. 
NS, not significant. Shown are motifs that occur at least U = 4 times with completely different sets of 
nodes. The networks are as follows (18): transcription interactions between regulatory proteins and genes 
in the bacterium E. coli (71) and the yeast S. cerevisiae (20); synaptic connections between neurons in 
C. elegans, including neurons connected by at least five synapses (24); trophic interactions in ecological 
food webs (22), representing pelagic and benthic species (Little Rock Lake), birds, fishes, invertebrates 
(Ythan Estuary), primarily larger fishes (Chesapeake Bay), lizards (St. Martin Island), primarily inverte- 
brates (Skipwith Pond), pelagic lake species (Bridge Brook Lake), and diverse desert taxa (Coachella 
Valley); electronic sequential logic circuits parsed from the ISCAS89 benchmark set (7, 25), where nodes 
represent logic gates and flip-flops (presented are all five partial scans of forward-logic chips and three 
digital fractional multipliers in the benchmark set); and World Wide Web hyperlinks between Web pages 
in a single domain (4) (only three-node motifs are shown). e, multiplied by the power of 10 (e.g., 1.46e6 
= 1.46 x 106). 

Network Nodes Edges Nreal Nrand?SD Zscore Nreal Nrand SD Zscore Nreal Nrand SD Zscore 

Gene regulation -X Feed- Bi-fan 
(transcription) NV forward I 

Y loop ~.V 
\V Z W 

>z 
E. coli 424 519 40 7 3 10 203 47 + 12 13 
S. cerevisiae* 685 1,052 70 11 4 14 1812 300 40 41 
Neurons - X Feed- X Bi-fan X Bi- 

V forward I parallel 
Y loop 
V/ Z W 

Z 

>z w 
C. eleganst 252 509 125 90 ? 10 3.7 127 55 ? 13 5.3 227 35 + 10 20 
Food webs X Three X Bi- 

TV chain r 4 parallel 
Y Y Z 
NV 
Z W 

Little Rock 92 984 3219 3120 ?50 2.1 7295 2220 210 25 
Ythan 83 391 1182 1020 ? 20 7.2 1357 230 50 23 
St. Martin 42 205 469 450 ? 10 NS 382 130 + 20 12 
Chesapeake 31 67 80 82 4 NS 26 5 2 8 
Coachella 29 243 279 235 12 3.6 181 80 ? 20 5 
Skipwith 25 189 184 150 + 7 5.5 397 80 ? 25 13 
B. Brook 25 104 181 130 ? 7 7.4 267 30 + 7 32 
Electronic dcircts x Feed- X Y Bi-fan Bi- 
(forward logic chips) V forward parall 

Y loop \NV z w 

s15850 10,383 14,240 424 2 2 285 1040 1?1 1200 480 2 1 335 
s38584 20,717 34,204 413 10 3 120 1739 6 ?2 800 711 9 2 320 
s38417 23,843 33,661 612 3 ?2 400 2404 11 2550 531 2 2 340 
s9234 5,844 8,197 211 2 1 140 754 1 1 1050 209 1 1 200 
s13207 8,651 11,831 403 2 ? 1 225 4445 1 ? 1 4950 264 2 1 200 
Electronic circuits X Three- X Y Bi-fan X Y Four- 
(digital fractional multipliers) / \ node node 

feedback \ \ feedback 
Y- Z loop Z W Z<--W loop 

s208 122 189 10 1 1 9 4 1 ? 1 3.8 5 1 1 5 
s420 252 399 20 1?1 18 10 1?1 10 11 1?1 11 
s838t 512 819 40 1 ?1 38 22 1?1 20 23 1 1 25 

World Wide Web - Feedback X Fully X Uplinked 
O with two / connected mutual 

_ Ymutual triad dyad 
v 

dyads 

nd.edu? 325,729 1.46e6 1.1e5 2e3 ? le2 800 6.8e6 5e4?4e2 15,000 1.2e6 le4 ? 2e2 5000 

*Has additional four-node motif: (X--Z, W; Y->Z, W; Z--W), Nrea = 150, Nrand = 85 + 15, Z = 4. tHas additional 
four-node motif: (X->Y, Z; Y--Z; Z--W), Nre, = 204, Nrand = 80 ? 20, Z = 6. The three-node pattern (X-*Y, Z; Y->Z; 
Z--Y) also occurs significantly more than at random. It is not a motif by the present definition because it does not 
appear with completely distinct sets of nodes more than U = 4 times. $Has additional four-node motif: (X->Y; 
Y->Z, W; Z->X; W->X), Nrea = 914, Nrand = 500 70, Z = 6. ?Has two additional three-node motifs: (X->Y, Z; 
Y--Z; Z->Y), Nreat = 3e5, Nrand = 1.4e3 ? 6el, Z = 6000, and (X->Y, Z; Y--Z), Nreat = 5e5, Nrand = 9e4 ? 1.5e3, 
Z = 250. 

fectors (motor neurons/structural genes). The 
feedforward loop motif common to both types 
of networks may play a functional role in infor- 
mation processing. One possible function of this 
circuit is to activate output only if the input 
signal is persistent and to allow a rapid deacti- 
vation when the input goes off (11). Indeed, 
many of the input nodes in the neural feedfor- 
ward loops are sensory neurons, which may 
require this type of information processing 
to reject transient input fluctuations that are 
inherent in a variable or noisy environment. 

We also studied several technological net- 
works. We analyzed the ISCAS89 benchmark 
set of sequential logic electronic circuits (7, 25). 
The nodes in these circuits represent logic gates 
and flip-flops. These nodes are linked by direct- 
ed edges. We found that the motifs separate the 
circuits into classes that correspond to the cir- 
cuit's functional description. In Table 1, we 
present two classes, consisting of five forward- 
logic chips and three digital fractional multipli- 
ers. The digital fractional multipliers share three 
motifs, including three- and four-node feedback 
loops. The forward logic chips share the feed- 
forward loop, bi-fan, and bi-parallel motifs, 
which are similar to the motifs found in the 
genetic and neuronal information-processing 
networks. We found a different set of motifs in 
a network of directed hyperlinks between 
World Wide Web pages within a single domain 
(4). The World Wide Web motifs may reflect a 
design aimed at short paths between related 
pages. Application of our approach to nondi- 
rected networks shows distinct sets of motifs in 
networks of protein interactions and Interet 
router connections (18). 

None of the network motifs shared by the 
food webs matched the motifs found in the gene 
regulation networks or the World Wide Web. 
Only one of the food web consensus motifs also 
appeared in the neuronal network. Different 
motif sets were found in electronic circuits with 
different functions. This suggests that motifs 
can define broad classes of networks, each with 
specific types of elementary structures. The 
motifs reflect the underlying processes that gen- 
erated each type of network; for example, food 
webs evolve to allow a flow of energy from the 
bottom to the top of food chains, whereas gene 
regulation and neuron networks evolve to pro- 
cess information. Information processing seems 
to give rise to significantly different structures 
than does energy flow. 

We further characterized the statistical sig- 
nificance of the motifs as a function of network 
size, by considering pieces of various sizes 
(subnetworks) of the full network. The concen- 
tration of motifs in the subnetworks is about the 
same as that in the full network (Fig. 3). In 
contrast, the concentration of the corresponding 
subgraphs in the randomized versions of the 
subnetworks decreases sharply with size. In 
analogy with statistical physics, the number of 
appearances of each motif in the real networks 
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appears to be an extensive variable (i.e., one 
that grows linearly with the system size). These 
variables are nonextensive in the randomized 
networks. The existence of such variables may 
be a unifying property of evolved or designed 
systems. The decrease of the concentration C 
with randomized network size S (Fig. 3) qual- 
itatively agrees with exact results (2, 26) on 
Erdos-Renyi random graphs (random graphs 
that preserve only the number of nodes and 
edges of the real network) in which C - 1/S. In 
general, the larger the network is, the more 
significant the motifs tend to become. This 
trend can also be seen in Table 1 by comparing 
networks of different sizes. The network motif 
detection algorithm appears to be effective even 
for rather small networks (on the order of 100 
edges). This is because three- or four-node sub- 
graphs occur in large numbers even in small 
networks. Furthermore, our approach is not 
sensitive to data errors; for example, the sets of 
significant network motifs do not change in any 
of the networks upon addition, removal, or 
rearrangement of 20% of the edges at random. 

In information-processing networks, the 
motifs may have specific functions as elemen- 
tary computational circuits (11). More general- 
ly, they may be interpreted as structures that 
arise because of the special constraints under 
which the network has evolved (27). It is of 
value to detect and understand network motifs 
in order to gain insight into their dynamical 
behavior and to define classes of networks and 
network homologies. Our approach can be 
readily generalized to any type of network, 
including those with multiple "colors" of edges 
or nodes. It would be fascinating to see what 
types of motifs occur in other networks and to 
understand the processes that yield given motifs 
during network evolution. 
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Distal limb development and specification of digit identities in tetrapods are 
under the control of a mesenchymal organizer called the polarizing region. Sonic 
Hedgehog (SHH) is the morphogenetic signal produced by the polarizing region 
in the posterior limb bud. Ectopic anterior SHH signaling induces digit dupli- 
cations and has been suspected as a major cause underlying congenital mal- 
formations that result in digit polydactyly. Here, we report that the polydactyly 
of Gli3-deficient mice arises independently of SHH signaling. Disruption of one 
or both Gli3 alleles in mouse embryos lacking Shh progressively restores limb 
distal development and digit formation. Our genetic analysis indicates that SHH 
signaling counteracts GLI3-mediated repression of key regulator genes, cell 
survival, and distal progression of limb bud development. 
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The Hedgehog (Hh) signaling pathway con- 
trols many key developmental processes dur- 
ing animal embryogenesis (1). In Drosophila 
embryos, all known functions of Hh signaling 
are mediated by the transcriptional effector 
Cubitus interruptus (Ci) (2). Several ho- 
mologs of Hh and Ci have been identified in 
higher vertebrates. In particular, Sonic 
Hedgehog (SHH) and the Ci homolog GLI3 
are required for vertebrate limb development 
(3-6). GLI3 acts first during the initiation of 
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limb bud development and before the activa- 
tion of SHH signaling in posterior restriction 
of the basic helix-loop-helix transcription 
factor dHAND. dHAND in turn prevents 
Gli3 expression from spreading posteriorly 
(Fig. 1A, panel 1) (7). In addition, GLI3 
restricts the SHH-independent early expres- 
sion of 5'HoxD genes and Gremlin to the 
posterior mesenchyme (8). Subsequently, 
dHAND functions in the activation of Shh 
expression (9). Limb bud morphogenesis is 
then controlled by reciprocal interactions of 
two signaling centers (Fig. 1A, panel 2): the 
polarizing region, an instructive organizer lo- 
cated in the posterior limb bud mesenchyme, 
and the apical ectodermal ridge (AER). SHH 
signaling by the polarizing region in combi- 
nation with bone morphogenetic proteins 
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