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We have determined how most of the transcriptional regulators encoded in the 
eukaryote Saccharomyces cerevisiae associate with genes across the genome in 
living cells. Just as maps of metabolic networks describe the potential pathways 
that may be used by a cell to accomplish metabolic processes, this network of 
regulator-gene interactions describes potential pathways yeast cells can use to 
regulate global gene expression programs. We use this information to identify 
network motifs, the simplest units of network architecture, and demonstrate 
that an automated process can use motifs to assemble a transcriptional reg- 
ulatory network structure. Our results reveal that eukaryotic cellular functions 
are highly connected through networks of transcriptional regulators that reg- 
ulate other transcriptional regulators. 
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Genome sequences specify the gene expression 
programs that produce living cells, but how 
cells control global gene expression programs is 
far from understood. Each cell is the product of 
specific gene expression programs involving 
regulated transcription of thousands of genes. 
These transcriptional programs are modified as 
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cells progress through the cell cycle, in re- 
sponse to changes in environment, and during 
organismal development (1-5). 

Gene expression programs depend on rec- 
ognition of specific promoter sequences by 
transcriptional regulatory proteins (6-9). Be- 
cause these regulatory proteins recruit and reg- 
ulate chromatin-modifying complexes and 
components of the transcription apparatus, 
knowledge of the sites bound by all the tran- 
scriptional regulators encoded in a genome can 
provide the information necessary to nucleate 
models for transcriptional regulatory networks. 
With the availability of complete genome se- 
quences and development of a method for ge- 
nome-wide binding analysis (also known as 
genome-wide location analysis), investigators 
can identify the set of target genes bound in 
vivo by each of the transcriptional regulators 
that are encoded in a cell's genome. This 
approach has been used to identify the 
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genomic sites bound by nearly a dozen reg- 
ulators of transcription (10-13) and several 
regulators of DNA synthesis (14) in yeast. 

Experimental design. We used genome- 
wide location analysis to investigate how 
yeast transcriptional regulators bind to pro- 
moter sequences across the genome (Fig. 
1A). All 141 transcription factors listed in the 
Yeast Proteome Database (15) and reported 
to have DNA binding and transcriptional ac- 
tivity were selected for study. Yeast strains 
were constructed so that each of the transcrip- 
tion factors contained a myc epitope tag. To 
increase the likelihood that tagged factors 
were expressed at physiologic levels, we in- 
troduced epitope tag coding sequences into 
the genomic sequences encoding the COOH 
terminus of each regulator, as described in 
(16). We confirmed appropriate insertion of 
the tag and expression of the tagged protein 
by polymerase chain reaction and immuno- 
blot analysis. Introduction of an epitope tag 
might be expected to affect the function of 
some transcriptional regulators; for 17 of the 
141 factors, we were not able to obtain viable 
tagged cells, despite three attempts to tag each 
regulator. Not all the transcriptional regulators 
were expected to be expressed at detectable 
levels when yeast cells were grown in rich 
medium, but immunoblot analysis showed that 
106 of the 124 tagged regulator proteins could 
be detected under these conditions. 

We performed a genome-wide location 
analysis experiment (10) for each of the 106 
yeast strains that expressed epitope-tagged 
regulators (17, 18). Each tagged strain was 
grown in three independent cultures in rich 
medium (yeast extract, peptone, dextrose). 
Genome-wide location data were subjected to 
quality control filters and normalized, and the 
ratio of immunoprecipitated to control DNA 
was determined for each array spot. We cal- 
culated a confidence value (P value) for each 
spot from each array by using an error model 
(19). The data for each of the three samples in 
an experiment were combined by a weighted 
average method (19); each ratio was weight- 
ed by P value and then averaged. Final P 
values for these combined ratios were then 
calculated (17, 18). 

Given the properties of the biological sys- 
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Fig. 1. Systematic genome-wide location analysis for yeast transcription 
regulators. (A) Methodology. Yeast transcriptional regulators were 
tagged by introducing the coding sequence for a c-myc epitope tag into 
the normal genomic locus for each regulator. Of the yeast strains 
constructed in this fashion, 106 contained a single epitope-tagged reg- 
ulator whose expression could be detected in rich growth conditions. 
Chromatin immunoprecipitation (ChIP) was performed on each of these 

tem studied here (cell populations, DNA bind- 
ing factors capable of binding to both specific 
and nonspecific sequences) and the expectation 
of noise in microarray-based data, it was im- 
portant to use error models to obtain a proba- 
bilistic assessment of regulator location data. 
The total number of protein-DNA interactions 
in the location analysis data set, using a range of 
P value thresholds, is shown in Fig. lB. We 
selected specific P value thresholds to facilitate 
discussion of a subset of the data at a high 
confidence level, but note that this artificially 
imposes a "bound or not bound" binary deci- 
sion for each protein-DNA interaction. 

We generally describe results obtained at 
a P value threshold of 0.001 because our 
analysis indicates that this threshold maxi- 
mizes inclusion of legitimate regulator-DNA 
interactions and minimizes false positives. 
Various experimental and analytical methods 
indicate that the frequency of false positives 
in the genome-wide location data at the 0.001 
threshold is 6% to 10% (17, 18). For exam- 

ple, conventional, gene-specific chromatin 
immunoprecipitation experiments have con- 
firmed 93 of 99 binding interactions (involv- 
ing 29 different regulators) that were identi- 
fied by location analysis data at a threshold P 
value of 0.001. Use of a high-confidence 
threshold should underestimate the regulator- 
DNA interactions that actually occur in these 
cells. We estimate that about one-third of the 
actual regulator-DNA interactions in cells are 
not reported at the 0.001 threshold (17, 18). 

Regulator density. We observed nearly 
4000 interactions between regulators and 
promoter regions at a P value threshold of 
0.001. The promoter regions of 2343 of 
6270 yeast genes (37%) were bound by one 
or more of the 106 transcriptional regula- 
tors in yeast cells grown in rich medium. 
Many yeast promoters were bound by mul- 
tiple transcriptional regulators (Fig. 2A), a 
feature previously associated with gene 
regulation in higher eukaryotes (20, 21), 
suggesting that yeast genes are also fre- 
quently regulated through combinations of 
regulators. More than one-third of the pro- 
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106 strains. Promoter regions enriched through the ChIP procedure were 
identified by hybridization to microarrays containing a genome-wide set 
of yeast promoter regions. (B) Effect of P value threshold. The sum of all 
regulator-promoter region interactions is displayed as a function of 
varying P value thresholds applied to the entire location data set for the 
106 regulators. More stringent P values reduce the number of interac- 
tions reported but decrease the likelihood of false-positive results. 
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Fig. 2. Genome-wide distribution of transcriptional regulators. (A) Plot of the number of regulators 
bound per promoter region. The distribution for the actual location data (red circles) is shown 
alongside the distribution expected from the same set of P values randomly assigned among 
regulators and intergenic regions (white circles). At a P value threshold of 0.001, significantly more 
intergenic regions bind four or more regulators than expected by chance. (B) Distribution of the 
number of promoter regions bound per regulator. 

moter regions that are bound by regulators 
were bound by two or more regulators (P 
value threshold = 0.001), and, relative to 
the expected distribution from randomized 
data, a disproportionately high number of 
promoter regions were bound by four or 
more regulators. Because of the stringency 
of the P value threshold, we expect that this 
represents an underestimate of regulator 
density. 

The number of different promoter regions 
bound by each regulator in cells grown in rich 
medium ranged from 0 to 181 (P value 
threshold = 0.001), with an average of 38 
promoter regions per regulator (Fig. 2B). The 
regulator Abfl bound the largest number 
(181) of promoter regions. Regulators that 
should be active under growth conditions oth- 
er than yeast extract, peptone, and dextrose 
were typically found, as expected, to bind the 
smallest number of promoter regions. For 
example, Thi2, which activates transcription 
of thiamine biosynthesis genes under condi- 
tions of thiamine starvation (22, 23), was 
among the regulators that bound the smallest 

number (3) of promoters. Identification of a 
set of promoter regions that are bound by 
specific regulators allowed us to predict se- 
quence motifs that are bound by these regu- 
lators (17, 18). 

Network motifs. The simplest units of 
commonly used transcriptional regulatory 
network architecture, or network motifs, pro- 
vide specific regulatory capacities such as 
positive and negative feedback loops. We 
used the genome-wide location data to iden- 
tify six regulatory network motifs: autoregu- 
lation, multicomponent loops, feedforward 
loops, single-input, multi-input, and regulator 
chain (Fig. 3). These motifs suggest models 
for regulatory mechanisms that can be tested. 
Descriptions of the algorithms used to iden- 
tify motifs and a complete compilation of 
motifs can be obtained in (18). 

An autoregulation motif consists of a regu- 
lator that binds to the promoter region of its 
own gene. We identified 10 autoregulation mo- 
tifs with genome-wide location data for the 106 
regulators (P value threshold = 0.001), which 
suggests that about 10% of yeast genes encod- 
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Fig. 3. Examples of network motifs in the yeast regulatory network. Regulators are represented by 
blue circles; gene promoters are represented by red rectangles. Binding of a regulator to a promoter 
is indicated by a solid arrow. Genes encoding regulators are linked to their respective regulators by 
dashed arrows. For example, in the autoregulation motif, the Stel2 protein binds to the STE12 
gene, which is transcribed and translated into Ste12 protein. These network motifs were uncovered 
by searching binding data with various algorithms. For details on the algorithms used and a full list 
of motifs found, see (18). 

ing regulators are autoregulated. This percent- 
age does not change substantially at less strin- 
gent P value thresholds. In contrast, studies of 
Escherichia coli genetic regulatory networks 
indicate that most (52% to 74%) prokaryotic 
genes encoding transcriptional regulators are 
autoregulated (24, 25). 

Autoregulation is thought to provide sev- 
eral selective growth advantages, including 
reduced response time to environmental stim- 
uli, decreased biosynthetic cost of regulation, 
and increased stability of gene expression 
(24-28). For example, upon exposure to mat- 
ing pheromone, the concentrations of the 
pheromone-responsive Ste12 transcriptional 
regulator rapidly increase because Ste12 
binds to and up-regulates its own gene (10, 
29) (Fig. 3). The consequent increase in 
Ste12 protein leads to the binding of other 
genes required for the mating process (10). 

A multicomponent loop motif consists of a 
regulatory circuit whose closure involves two 
or more factors (Fig. 3). We observed three 
multicomponent loop motifs in the location 
data for 106 regulators (P value threshold = 

0.001). The closed-loop structure provides the 
capacity for feedback control and offers the 
potential to produce bistable systems that can 

switch between two alternative states (30). The 
multicomponent loop motif has yet to be iden- 
tified in bacterial genetic networks (24, 25). 

Feedforward loop motifs contain a regulator 
that controls a second regulator and have the 
additional feature that both regulators bind a 
common target gene (Fig. 3). The regulator 
location data reveal that feedforward loop ar- 
chitecture has been highly favored during the 
evolution of transcriptional regulatory networks 
in yeast. We found that 39 regulators are in- 
volved in 49 feedforward loops potentially con- 
trolling 240 genes in the yeast network (about 
10% of genes that are bound in the genome- 
wide location data set). 

In principle, a feedforward loop can pro- 
vide several features to a regulatory circuit. 
The feedforward loop may act as a switch 
that is designed to be sensitive to sustained 
rather than transient inputs (25). Feedfor- 
ward loops have the potential to provide 
temporal control of a process, because ex- 
pression of the ultimate target gene may 
depend on the accumulation of adequate 
levels of the master and secondary regula- 
tors. Feedforward loops may provide a 
form of multistep ultrasensitivity (31), as 
small changes in the level or activity of the 

master regulator at the top of the loop 
might be amplified at the ultimate target 
gene because of the combined action of the 
master regulator and a second regulator that 
is under the control of the master regulator. 

Single-input motifs contain a single regu- 
lator that binds a set of genes under a specific 
condition. Single-input motifs are potentially 
useful for coordinating a discrete unit of bi- 
ological function, such as a set of genes that 
code for the subunits of a biosynthetic appa- 
ratus or enzymes of a metabolic pathway. For 
example, several genes of the leucine biosyn- 
thetic pathway are controlled by the Leu3 
transcriptional regulator (Fig. 3). 

Multi-input motifs consist of a set of reg- 
ulators that bind together to a set of genes. 
We found 295 combinations of two or more 
regulators that could bind to a common set of 
promoter regions. This motif offers the po- 
tential for coordinating gene expression 
across a wide variety of growth conditions. 
For example, each of the regulators bound to 
a set of genes can be responsible for regulat- 
ing those genes in response to a unique input. 
In this manner, two different regulators re- 
sponding to two different inputs would allow 
coordinate expression of the set of genes 
under these two different conditions. 

Regulator chain motifs consist of chains of 
three or more regulators in which one regulator 
binds the promoter for a second regulator, the 
second binds the promoter for a third regulator, 
and so forth (Fig. 3). This network motif is 
observed frequently in the location data for 
yeast regulators; we found 188 regulator chain 
motifs, which varied in size from 3 to 10 reg- 
ulators. The chain represents the simplest cir- 
cuit logic for ordering transcriptional events in a 
temporal sequence. The most straightforward 
form of this appears in the regulatory circuit of 
the cell cycle, where regulators functioning at 
one stage of the cell cycle regulate the expres- 
sion of factors required for entry into the next 
stage of the cell cycle (13). 

The regulatory motifs described above 
suggest models for gene regulatory mecha- 
nisms whose predictions can be tested with 
experimental data. One regulatory motif that 
caught our attention involved ribosomal pro- 
tein genes; ribosomes are important protein 
biosynthetic machines, but transcriptional 
regulation of ribosomal protein genes is not 
well understood. Fhll, a protein whose func- 
tion was not previously known, forms a sin- 
gle-input regulatory motif consisting of es- 
sentially all ribosomal protein genes, but little 
else. No other regulator studied here exhibit- 
ed this behavior. This predicts that loss of 
Fhll function should have a profound effect 
on ribosome biosynthesis if no other regula- 
tors are capable of taking its place. Indeed, a 
mutation in Fhll causes severe defects in 
ribosome biosynthesis (32), an observation 
that was difficult to interpret previously in the 
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absence of the genome-wide location data. 
Many ribosomal protein genes are also com- 
ponents of a multi-input motif involving Fhll 
and additional regulators (Fig. 3), which sug- 
gests that expression of these genes may be 
coordinated by multiple regulators under var- 
ious growth conditions. This model and oth- 
ers suggested by regulatory motifs can be 
addressed with future experiments. 

Assembling motifs into network struc- 
tures. We assume that regulatory network 
motifs form building blocks that can be com- 
bined into larger network structures. An al- 
gorithm was developed that explores all the 
genome-wide location data together with the 
expression data from over 500 expression 
experiments to identify groups of genes that 
are both coordinately bound and coordinately 
expressed. In brief, the algorithm begins by 
defining a set of genes, G, that are bound by 
a set of regulators, S, with a P value threshold 
of 0.001. We find a large subset of genes in G 

that are similarly expressed over the entire set 
of expression data, and we use those genes to 
establish a core expression profile. Genes are 
then dropped from G if their expression pro- 
file is significantly different from this core 
profile. The remainder of the genome is 
scanned for genes with expression profiles 
that are similar to the core profile. Genes with 
a significant match in expression profiles are 
then examined to see if the set of regulators S 
are bound. At this step, the probability of a 
gene being bound by the set of regulators is 
used instead of the individual probabilities of 
that gene being bound by each of the individ- 
ual regulators. Because we are assaying the 
combined probability of the set of regulators 
being bound and are relying on similarity of 
expression patterns, we can relax the P value 
for individual binding events and thus recap- 
ture information that is lost because of the 
use of an arbitrary P value threshold. The 
process is repeated until all combinations 

of genes bound by regulators have been 
considered. Additional details of the algo- 
rithm are available upon request. The re- 
sulting sets of regulators and genes are 
essentially multi-input motifs refined for 
common expression (MIM-CE). We expect 
these to be robust examples of coordinate 
binding and expression and therefore useful 
for nucleating network models. 

We used the refined motifs to construct a 
network structure for the yeast cell cycle by 
an automatic process that requires no prior 
knowledge of the regulators that control tran- 
scription during the cell cycle. We selected 
the cell cycle regulatory network because of 
the importance of this biological process, the 
availability of extensive genome-wide ex- 
pression data for the cell cycle (2, 3), and the 
extensive literature that can be used to ex- 
plore features of a network model. Our goal 
was to determine whether the computation- 
al approach would construct the regulatory 

Fig. 4. Model for the yeast cell cycle 
transcriptional regulatory network. 
A transcriptional regulatory net- 
work for the yeast cell cycle was 
derived from a combination of 
binding and expression data (see 
text). Yeast cell morphologies are 
depicted during the various stages 
of the cell cycle. Each blue box rep- 
resents a set of genes bound by a 
common set of regulators and co- 
expressed throughout the cell cycle. 
Text inside each blue box identifies 
the common set of regulators that 
bind to the set of genes represented 
by the box. Each box is positioned 
in the cell cycle according to the 
time of peak expression levels for 
the genes represented by the box. 
Regulators, represented by ovals, 
are connected to the sets of genes 
they regulate by solid lines. The arc 
associated with each regulator ef- 
fectively defines the period of ac- 
tivity for the regulator. Dashed lines 
indicate that a gene in the box en- 
codes a regulator found in the outer 
rings. 

Fig. 5. (Right) Network of tran- 
scriptional regulators binding to 
genes encoding other transcription- 
al regulators. All 106 transcriptional 
regulators that were subjected to 
location analysis in rich medium are 
displayed in a circle and segregated 
into functional categories on the 
basis of the primary functions of 
their target genes, as indicated by 
the color key. Lines with arrows de- 
pict binding of a regulator (P value 
threshold = 0.001) to the gene en- 
coding another regulator. Circles 
with arrows depict binding of a reg- 
ulator to the promoter region of its 
own gene. 

25 OCTOBER 2002 VOL 298 SCIENCE www.sciencemag.org 

I 
I 

I 
I I 

I 
I 

I 
I I 

I 

"---,.I I 

802 



Developmental Processes 

DNA/RNA/Protein Biosynthesis Environmental Response Metabolism 

M Cell Cycle M Developmental Processes M DNA/RNA/Protein Biosynthesis M Environmental Response M Metabolism 

All Factors Cell Cycle 

(D C) 

:3 
n 
(D 
2 
0) 

m 

0; 

m m 

0 
I- 

I\J 
ItD 
00 

N) 

-I Ln 

0 
m 

0 
0 
N) 



RESEARCH ARTICLES 

logic of the cell cycle from the location and 

expression data without previous knowledge 
of the regulators involved. We reasoned that 
MIM-CEs that are significantly enriched in 

genes whose expression oscillates through 
the cell cycle (3) would identify the regula- 
tors that control these genes. We identified 11 

regulators with this approach. To construct 
the cell cycle network, we generated a new 
set of MIM-CEs by using only the 11 regu- 
lators and the cell cycle expression data (3). 

To produce a cell cycle transcriptional 
regulatory network model, we aligned the 
MIM-CEs around the cell cycle on the basis 
of peak expression of the genes in the group 
by means of an algorithm described in (33) 
(Fig. 4). Three features of the resulting net- 
work model are notable. First, the computa- 
tional approach correctly assigned all the reg- 
ulators to stages of the cell cycle, where they 
were shown to function in previous studies 

(34). Second, two regulators that have been 

implicated in cell cycle control but whose 
functions were ill-defined (35-37) could be 

assigned within the network on the basis of 
direct binding data. Third, and most impor- 
tant, reconstruction of the regulatory archi- 
tecture was automatic and required no prior 
knowledge of the regulators that control tran- 

scription during the cell cycle. This approach 
should represent a general method for con- 

structing other regulatory networks. 
Coordination of cellular processes. 

Transcriptional regulators were often bound to 

genes encoding other transcriptional regulators 
(Fig. 5). For example, there were many instanc- 
es in which transcriptional regulators within a 
functional category (for example, cell cycle) 
bound to genes encoding regulators within the 
same category. We have noted that cell cycle 
regulators bound to other cell cycle regulators 
(13), and this phenomenon was also apparent 
among transcriptional regulators that fall into 
the metabolism and environmental response cat- 

egories. For example, the metabolic regulator 
Gcn4 bound to promoters for PUT3 and UGA3, 
genes that encode transcriptional regulators for 
amino acid and other metabolic functions. The 
stress response activator Yap6 bound to the gene 
encoding the Roxl repressor, and vice versa, 
which suggests positive and negative feedback 

loops. 
We also found that multiple transcriptional 

regulators within each category were able to 
bind to genes encoding regulators that are re- 

sponsible for control of other cellular processes. 
For example, the cell cycle activators bind to 

genes for transcriptional regulators that play 
key roles in metabolism (GAT1, GAT3, NRG1, 
and SFL1); environmental responses (ROX1, 
YAP1, and ZMS1); development (ASH1, SOK2, 
and MOT3); and DNA, RNA, and protein bio- 

synthesis (ABF1). These observations are likely 
to explain, in part, how cells coordinate tran- 
scriptional regulation of the cell cycle with 

other cellular processes. These connections are 

generally consistent with previous experimental 
information about the relationships between 
cellular processes. For example, the develop- 
mental regulator Phdl has been shown to reg- 
ulate genes involved in pseudohyphal growth 
during certain nutrient stress conditions; we 
found that Phdl also binds to genes that are key 
to regulation of general stress responses 
(MSN4, CUP9, and ZMS1) and metabolism 

(HAP4). 
These observations have several impor- 

tant implications. The control of most, if not 

all, cellular processes is characterized by net- 
works of transcriptional regulators that regu- 
late other regulators. It is also evident that the 
effects of transcriptional regulator mutations 
on global gene expression, as measured by 
expression profiling (1, 4, 5, 19, 38-48), are 
as likely to reflect the effects of the network 
of regulators as they are to identify the direct 

targets of a single regulator. 
Significance of regulatory network in- 

formation. This study identified network 
motifs that provide specific regulatory capac- 
ities for yeast, revealing the regulatory strat- 

egies that were selected during evolution for 
this eukaryote. These motifs can be used as 

building blocks to construct large network 
structures through an automated approach 
that combines genome-wide location and ex- 

pression data in the absence of prior knowl- 

edge of regulator functions. The network of 

transcriptional regulators that control other 

transcriptional regulators is highly connected, 

suggesting that the network substructures for 
cellular functions such as cell cycle and de- 

velopment are themselves coordinated at a 

transcriptional level. 
It is possible to envision mapping the regu- 

latory networks that control gene expression 
programs in considerable depth in yeast and in 
other living cells. More complete understanding 
of transcriptional regulatory networks in yeast 
will require knowledge of regulator binding 
sites under various growth conditions (17, 18) 
and experimental testing of models that emerge 
from computational analysis of regulator bind- 

ing, gene expression, and other information. 
The approach described here can also be used 
to discover transcriptional regulatory networks 
in higher eukaryotes. Knowledge of these net- 
works will be important for understanding hu- 
man health and designing new strategies to 
combat disease. 
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