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Role of ANC-1 in Tethering Nuclei 

to the Actin Cytoskeleton 
Daniel A. Starr and Min Han* 

Mutations in anc-1 (nuclear anchorage defective) disrupt the positioning of 
nuclei and mitochondria in Caenorhabditis elegans. ANC-1 is shown to consist 
of mostly coiled regions with a nuclear envelope localization domain (called the 
KASH domain) and an actin-binding domain; this structure was conserved with 
the Drosophila protein Msp-300 and the mammalian Syne proteins. Antibodies 
against ANC-1 localized cytoplasmically and were enriched at the nuclear 
periphery in an UNC-84-dependent manner. Overexpression of the KASH 
domain or the actin-binding domain caused a dominant negative anchorage 
defect. Thus, ANC-1 may connect nuclei to the cytoskeleton by interacting with 
UNC-84 at the nuclear envelope and with actin in the cytoplasm. 
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A wide variety of organisms have syncytia, 
formed either when multiple nuclear divi- 
sions occur without cell divisions or when 
cells fuse together. Normally, syncytial nu- 
clei are located in specific regions or are 
evenly spaced throughout the cytoplasm. Nu- 
clear positioning is also essential to a variety 
of singlely nucleated polar cells and even in 
single-celled organisms (1). Microtubules 
and associated dynein and kinesin motors 
play a central role in the positioning of nuclei 
(2). Less is known about the role of actin in 
the process of nuclear positioning. However, 
a defect in the actin cytoskeleton of nurse 
cells of Drosophila oocytes disrupts nuclear 
anchorage during cytoplasmic dumping (3). 
Actin is also required for plant nuclear mi- 
grations (4). We used the large syncytial cells 
of C. elegans as a model to study the mech- 
anism of nuclear anchorage. Most of the body 
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of an adult worm is covered by four large 
syncytial hypodermal cells that contain more 
than 100 nuclei (5). Normally, nuclei are 
evenly spaced throughout the syncytia. How- 
ever, mutations in either anc-1 or unc-84 
cause an Anc phenotype, in which nuclei 
float freely within the cytoplasm of syncytial 
cells and often group together (6, 7). The Anc 
phenotype is observed in all somatic, postem- 
bryonic syncytial cells, even in binucleated 
intestinal cells (7). 

We determined the molecular identity of 
anc-1 (8). RNA interference (RNAi) experi- 
ments and the identification of a molecular le- 
sion in the predicted open reading frame of 
anc-l(e1873) confirmed that we had cloned 
anc-1 (8) (Fig. 1, A to D, and fig. S1). The 
full-length cDNA of anc-1 was predicted to be 
25,639 base pairs (bp) encoding an 8546-residue 
protein. The bulk of ANC-1 (the anc-1 gene 
product) consisted of mostly predicted coiled 
regions, including six repeats of 903 residues 
that are essentially identical at the nucleotide 
level (supporting online text). The length of the 
repeat region may be maintained because of a 
selective advantage of keeping ANC-1 large. 
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L1 larvae and was observed through adult stages 
where antibodies localized to the cytoplasm of 
all postembryonic somatic cells (Fig. 2, B and 
C). Peripheral nuclear localization of ANC-1 
was observed in a variety of cells, including 
uterine cells. The nuclear envelope component 
UNC-84 is required for nuclear migration and 
anchorage (6, 19, 20). We tested whether 
ANC-1 localized properly in a collection of 
unc-84 mutant backgrounds. ANC-1 failed to 
localize to the nuclear periphery in the null 
unc-84 allele and in alleles that have missense 
mutations in or near the conserved SUN (for 
Sadlp, UNC-84 homology) domain of UNC-84 
and that disrupt both nuclear migration and an- 
chorage (6) (Fig. 2E). In contrast, ANC-1 was 
detected at the nuclear envelope in unc-84 al- 
leles that have missense mutations or small de- 
letions in the NH2-terminus of UNC-84 and that 
disrupt only migration (6) (Fig. 2F). ANC-1 
was still detected at normal levels in the cyto- 
plasm in all unc-84 mutants. Thus the UNC-84 
SUN domain is required for ANC-1 localization 
to the nuclear envelope but not for overall 
ANC-1 levels. UNC-83, a component required 
for nuclear migration, also localizes to the nu- 
clear envelope in an UNC-84-dependent man- 
ner (21). The predicted transmembrane domains 
in both ANC-1 and UNC-83 may play impor- 
tant roles in localization or maintenance of the 
proteins at the nuclear envelope, as appears to be 
the case for Syne-1 (13). 

There may be a limited number of ANC-1 
docking sites at the nuclear envelope. To test 
this possibility, we bred animals that overex- 
pressed the COOH-terminal 346 residues of 
ANC-1, including the KASH domain, using a 
heat shock promoter. Heat shock of these trans- 
genic animals for 2 hours caused a strong nu- 
clear anchorage defect in 100% of larval ani- 
mals (Fig. 3C). In addition, staining with hem- 
agglutinin (HA) epitope antibodies showed that 
the COOH-terminal domain of ANC-1 localized 
to the nuclear envelope (Fig. 3, H to J). As a 
control, overexpression of an 1887-amino acid 
fragment in the middle of ANC-1 did not cause 
any detectable mutant phenotype (Fig. 3B). 
Thus, multiple ANC-1 molecules are required to 
bind to a limited number of docking sites at the 
nuclear envelope, suggesting that the overex- 
pressed domain blocks endogenous ANC-1 
from docking at the nuclear envelope. This is 
likely to occur by disrupting the interaction be- 
tween UNC-84 and ANC-1. However, we were 
unable to detect a direct physical interaction 
between the SUN domain of UNC-84 and the 
COOH-terminal domain of ANC-1 using the 
two-hybrid system or by glutathione S-trans- 
ferase pull-down assays. Thus, UNC-84 may 
function through other proteins to recruit or 
maintain ANC-1 at the nuclear envelope. 

To determine whether ANC-1 could bind 
directly to actin, an in vitro F-actin binding 
assay was performed. The NH2-terminal do- 
main of ANC-1 was shown to bind to fila- 

D 
ANC-1 NH3 ANC-1 COOH 

no actin F-actin no actin F-actin 
P S S P S P S 

Fig. 3. (A to C) Hypodermal nuclei (green) of L4 animals were identified by the coinjection marker 
protein SUR-5::GFP. Schematic figures of the constructs are shown at the bottom of the panels. 
Overexpression of (A) the NH2-terminus or (C) the COOH-terminus, but not (B) a middle region, of 
ANC-1 caused a nuclear anchorage defect. (D) An autoradiograph is shown detecting [35S]methionine- 
labeled end domains of ANC-1. Lanes with equally loaded pellets (P) and supernatants (S) are coupled. 
The presence of actin filaments (F actin) is noted above. The left-hand lanes show that the NH2- 
terminal 700 residues of ANC-1 bound to filamentous actin. The right-hand lanes show that the 
COOH-terminal 346 residues of ANC-1 did not bind to actin filaments. (E to G) An adult body wall 
muscle is shown in a worm expressing the NH2-terminal 566 residues of ANC-1 fused to GFP, expressed 
from a heat shock promoter after 2 hours at 33?C. (E) GFP fluorescence and (F) actin filaments stained 
with phalloidin colored red. (G) Colocalization is shown in yellow. (H to J) An embryo overexpressing the 
COOH-terminal domain of ANC-1 stained with (H) antibodies against the HA epitope, pseudocolored 
red, or (I) DAPI, colored blue, to show nuclei. (J) The merged image. Scale bars, 10 .m. 

mentous actin but not to monomeric actin 
(Fig. 3D). The NH2-domains of MSP-300 
and Syne-2 also bind actin in vitro (14, 15). 
The conserved nature of the NH2-terminus of 
ANC-1 suggests that ANC-1 binds actin in 
vivo. To test this, the NH2-terminal 566 res- 
idues of ANC-1 were fused to green fluores- 
cent protein (GFP) and expressed in worms 
from a heat shock promoter. When subjected 
to a short heat shock at 33?C for 2 hours, the 
NH2-terminal ANC-1::GFP completely colo- 
calized with actin in body wall muscles (Fig. 
3, E to G), suggesting that the in vitro actin- 
binding activity is functional in the cell. The 
analogous construct of human Syne-2 also 
binds actin in vitro and colocalizes with actin 
in tissue culture (14). Long-term overexpres- 
sion of NH2-terminal ANC-1::GFP led to a 
paralyzed and arrested elongation at twofold 
(Pat) phenotype, in which embryos failed to 
elongate because of blocked muscle develop- 

ment (supporting online text and fig. S3). 
Overexpression of the NH2-terminus of 
ANC-1 by a stronger heat shock caused a 
weak Anc phenotype; clumps of at least three 
hypodermal nuclei were observed in 23% of 
larval animals (n = 77), whereas 4% of 
worms had a severe Anc phenotype (Fig. 
3A). The lack of a more severe dominant Anc 
phenotype in the syncytial hypodermis may 
be due to the lower expression level of the 
transgene in hypodermal cell lineages, as 
judged by GFP expression, or due to an abun- 
dance of actin-binding sites available for 
ANC-1 in these cells. 

Mutations in anc-l disrupt the positioning 
and shape of mitochondria (7). We examined 
this phenotype in live animals using a GFP 
construct targeted to the mitochondria of body 
wall muscles (22). In wild-type animals, mito- 
chondria appeared long and string-like (Fig. 
4A). The mitochondria also remained anchored 
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Fig. 4. GFP-labeled mitochondria are shown in the body wall muscle cells of L4 animals of the 
following genotypes: (A) wild-type N2, (B) anc-1(e1873), (C) unc-84(n369), and (D) cofilin 
unc-60(r398). The severely abnormal mitochondria in anc-1(e1873) are not anchored. In live 
animals, they were seen moving throughout the muscle as the animal moved. Scale bar, 10 rIm. 
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and spread throughout the cell as the worm 
moved. In contrast, mitochondria in anc- 
1 (el873) animals were spherically shaped, often 
clustered together, and were pushed around 
within the cytoplasm as the animal moved (Fig. 
4B). Mitochondria were not shaped or posi- 
tioned properly in an unc-60(r398) mutant back- 

ground (Fig. 4D). A partial loss-of-function al- 
lele in the C. elegans cofilin homolog, unc- 

60(r398), disrupts actin filaments in the body 
wall muscle of adult hermaphrodites (23). 
Therefore, actin filaments are required for prop- 
er positioning of mitochondria. The anchorage 
of mitochondria in unc-84(n369) was normal 

(Fig. 4C), suggesting that ANC-1 does not re- 

quire UNC-84 to anchor mitochondria as it does 
for nuclear anchorage. 

Our model (fig. S4) suggests that ANC-1 
functions to anchor nuclei by tethering the nu- 
cleus to the actin cytoskeleton and predicts that 
the KASH domain of ANC-1 is localized to the 
outer nuclear envelope by UNC-84. Digitonin 
extraction experiments show that human Syne-2 
localizes to the outer nuclear envelope (14). 
ANC-1 would then extend away from the nu- 

cleus, where its NH2-terminus binds to the sta- 
ble actin cytoskeleton. As a result, ANC-1 mol- 
ecules function to directly attach the actin cy- 
toskeleton to the nuclear envelope. Before a 
nucleus can migrate through the cytoplasm of 
the cell, the nuclear anchor must be released. 
The SUN domain of UNC-84 is likely to be 

intimately involved with this switch in nuclear 

behavior, because it is required for both ANC-1 
and UNC-83 localization at the nuclear enve- 

lope (21) (Fig. 2). UNC-83 is required for nor- 
mal nuclear migration but not for nuclear an- 

chorage (21). It is not known whether ANC-1 
and UNC-83 can interact with UNC-84 simul- 

taneously, although both antigens are detected at 
the nuclear envelope of adult hypodermal cells. 

Overexpression of UNC-83 did not cause any 
obvious anchorage phenotype, eliminating a 

competition model. 

Dystrophin and the associated dystro- 
phin-glycoprotein complex function to con- 
nect the actin cytoskeleton to the extracellular 

matrix; mutations in these components lead 
to Duchenne or Becker muscular dystrophies 
(24). Although ANC-1 and Syne connect the 
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phin-glycoprotein complex function to con- 
nect the actin cytoskeleton to the extracellular 

matrix; mutations in these components lead 
to Duchenne or Becker muscular dystrophies 
(24). Although ANC-1 and Syne connect the 

actin cytoskeleton to the nuclear matrix 
whereas dystrophin connects actin to the ex- 
tracellular matrix, there are some similarities 
between these two mechanisms. ANC-1 and 
associated proteins, including UNC-84 and 
lamin A/C (12), are likely to create a bridge 
across the nuclear envelope. Mutations in the 

gene encoding lamin A/C lead to Emery- 
Dreifuss muscular dystrophy (24), which 

suggests a potential link between the ANC-1 
and Syne proteins and muscular dystrophy. 
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Neural Correlates for Perception of 
3D Surface Orientation from 

Texture Gradient 
Ken-lchiro Tsutsui,'* Hideo Sakata,1 2 Tomoka Naganuma,1'3 

Masato Taira1t 

A goal in visual neuroscience is to reveal how the visual system reconstructs the 
three-dimensional (3D) representation of the world from two-dimensional retinal 
images. Although the importance of texture gradient cues in the process of 3D 
vision has been pointed out, most studies concentrate on the neural process based 
on binocular disparity. We report the neural correlates of depth perception from 
texture gradient in the cortex. In the caudal part of the lateral bank of intraparietal 
sulcus, many neurons were selective to 3D surface orientation defined by 
texture gradient, and their response was invariant over different types of 
texture pattern. Most of these neurons were also sensitive to a disparity 
gradient, suggesting that they integrate texture and disparity gradient 
signals to construct a generalized representation of 3D surface orientation. 

The real world is three-dimensional (3D), but kinds of depth cues, binocular disparity has 
when projected to the retina it is reduced to a been suggested to be critical in many psycho- 
two-dimensional (2D) image. Nevertheless, physical studies (1-3). Neurons in striate (4- 
what we see and what we perceive is all 3D. 7) and extrastriate (6-10) visual areas are 
Therefore, the brain must be reconstructing sensitive to binocular disparity signals. Re- 
the 3D representation of the real world from cently, neurons that code 3D features of a 
the 2D images on the retinae. Among many visual surface by higher-order processing of 
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