
(BrH3O)+. The calculated IP of this species is 
-10.3 eV, which is lower than the IP of the 
molecular complex by 0.7 eV. Such a dramatic 
change in the energetics with solvent rearrange- 
ment implies that the ability to detach the elec- 
tron from the fully solvated complex (solvent- 
separated ion pair) should increase. 

In agreement with this expectation, the 
data in Fig. 1 show that as the degree of 
solvation increases, so does the rise time of 
the pump-probe response. Because the rise in 
the pump-probe response is sensitive to the 
solvent reorganization about the contact ion 
pair, the amount of time it will take for the 
molecules to reorganize to form the solvent- 
separated ion pair will increase with the num- 
ber of solvent molecules surrounding the ion 
pair core. Similar results were observed for 
protonated HBr clusters, which indicate that 
self-solvation can induce ion pair formation 
in the excited state by a mechanism analo- 
gous to solvation by water molecules (12). 

According to theoretical predictions (1-3), 
ion pair formation should begin in mixed clus- 
ters [HBr(H2O)n with n = 3]; and in clusters 
with n = 4 or higher, complete dissolution 
should occur. If the ion pair forms in these 
species as suggested, upon sufficient hydration 
it should become observable in the ground state 
without being photon-mediated. Formation of 
the ion pair should also alter the potential ener- 
gy surface so that photon absorption should not 
occur in the same way as it does in the case of 
the hydrated complex, in which the molecular 
nature of HBr is retained. The ion intensity at 
the zero delay time decreases with increasing 
cluster size. This decrease in intensity is attrib- 
uted to the formation of the ion pair in the 
ground state. An increase in the H-Br intemu- 
clear separation accompanies the formation of 
the ion pair and is expected to result in a 
decrease in the absorption cross sections for 
photons of the same frequency. The observed 
rise in the signal of the H+(H20)4 cluster shows 
that a substantial population rearranges on the 
picosecond time scale to form the fully solvated 
ion pair H+(H2O)4Br- in the excited state. 
Thus, complete ion pair formation could not 
have occurred in the ground state at n = 4, and 
a portion of the species in the molecular beam 
exists in the molecular HBr(H20)4 form rather 
than the ion pair form. 

In the mass spectra, we observed H+(H20)n 
with n = 1 to 4, whereas HBr clusters were 
readily observed with sizes ranging up to 10. 
We found that water replacement in the acid 
clusters was facile at all cluster sizes; therefore, 
failure to observe the n = 5 cluster was not due 
to intensity issues. From the large change in the 
cross section at n = 4, and particularly from the 
lack of observation of an n = 5 protonated 
water cluster (despite observing the larger clus- 
tered HBr species), we conclude that this rep- 
resents evidence that the cluster size for com- 
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clusters smaller than this, ion pair forma- 
tion can be induced by electronic excita- 
tion. The theoretical predictions (1-3) of 
HBr dissolution were determined for equi- 
librium structures, whereas the experiments 
were performed at a finite temperature, 
though accurate knowledge of the molecu- 
lar beam temperature was not known. 
Therefore, our experimental findings of 
complete dissolution of HBr by water at the 
n = 5 cluster size can be considered to be 
in reasonably good agreement with the the- 
oretical predictions. 
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paper release coatings, and pressure-sensitive 
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catalyst (H2PtCl6/iPrOH) and the Karstedt 
catalyst 8 (Fig. 1C), have found widespread 
use in the silicone industry (8). 

Unfortunately, hydrosilylation by Karstedt 
catalyst 8 suffers from a number of drawbacks, 
including the formation of significant amounts 
(20 to 40%) of the isomeric olefins 4 and 5, the 
reduced alkene 6, and the dehydrocondensation 
adduct 7 (Fig. 1A) (9). If these impurities are not 
removed in a subsequent postreaction treatment, 
they lead to deleterious effects on the quality or 
properties of the final materials. In addition, the 
formation of colloidal Pt species during the 
course of the hydrosilylation reaction often re- 
sults in undesired side reactions and coloration 
of the final product (10, 11). We now report that 
readily available platinum(0)-carbene complex- 
es catalyze the hydrosilylation reaction with re- 
markable efficiency and exquisite selectivity 
and, in many cases, produce almost exclusively 
adduct 3 (12). 
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Initial experiments with the commercial 
monomer silane 9, the model alkene 10, and 
Karstedt catalyst (Fig. 1B) showed that, al- 
though catalyst 8 was highly active (30 ppm, 
72?C, 30 min, 80% yield), the products 4 
through 7 (R1 = C4H9) were also generated in 
significant quantity (up to 20% overall). The 
appearance of by-products 4 through 7 is con- 
comitant with the formation of adduct 11 and 
coincides with the generation of colloidal Pt 
species (10, 11). The divinyltetramethylsiloxane 
(dvtms) ligand appears to be too labile and 
dissociates rapidly, leading to colloidal Pt spe- 
cies and undesired side products. To stabilize 

Fig. 1. (A) The hy- 
drosilylation reaction 
along with by-prod- 
ucts. (B) The model 
hydrosilylation reac- 
tion. (C) Schematics 
and x-ray structures 
for catalysts 8, 12c, 
and 14a. 

A 
R3Si-H +" R1 

REPORTS 

the catalyst, we appended more strongly bind- 
ing, electron-rich ligands onto the Pt and pre- 
pared the corresponding monophosphine com- 
plexes (13, 14). 

Addition of several phosphines to Karstedt 
catalyst in toluene led to the quantitative for- 
mation of the corresponding monophosphine- 
dvtms complexes 12a to 12e (Table 1). These 
highly soluble catalysts could be purified by 
crystallization in moderate to good yields (15). 
The ORTEP (Oak Ridge thermal ellipsoid plot) 
x-ray structure of the tris-furyl phosphine ad- 
duct 12c is shown in Fig. 1C. 

Organoplatinum derivatives 12a to 12e 

Catalyst 

2 
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were next tested in the model hydrosilylation 
reaction. Some selected results are summa- 
rized in Fig. 2A, which also includes a con- 
trol experiment using Karstedt catalyst. The 
amount of isomerized alkenes formed during 
these experiments is shown in Fig. 2B. 

The Karstedt catalyst is superior to com- 
plexes 12 in terms of rate of reaction (Fig. 
2A). However, the amount of by-products is 
higher with 8 than with any of the derivatives 
12a to 12e (16). Unfortunately, and depend- 
ing upon the nature of the phosphine ligand, 
colloidal platinum species are still produced, 
indicating that the phosphorus substituent is 
displaced to some extent during the course of 
the reaction (17). 

In order to circumvent this problem, we 
decided to use more robust (r-donor ligands and 
selected the corresponding imidazolyl carbenes 
(18). The desired Pt-carbene complexes were 
readily prepared by treatment of Karstedt cata- 
lyst with the imidazolyl carbenes, generated by 
deprotonation of the corresponding imidazo- 
lium salts (Table 1) (19). Complexes 14a to 
14c proved to be highly crystalline solids that 
were readily stored for extended periods of 
time without particular precautions (20). 

Table 1. Synthesis of phosphine-bound Pt com- 
plexes 12 and Pt-carbene complexes 14. R indi- 
cates functional group. All yields are for pure, 
isolated products. 

Product 
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12e 
14a 
14b 
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Fig. 2. (A) Hydrosilylation with Pt-phosphine complexes. (B) 
complexes. 
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The ortep x-ray structure of 14a (Fig. IC) 
shows the trigonal planar environment of the 
Pt atom with the carbene ligand bisecting the 
plane of the dvtms substituent. This siloxane 
ligand wraps around the Pt center and exists 
in an almost perfect chair conformation. The 
C19-C20 and C28-C29 bond lengths are indic- 
ative of a Tr-backdonation from Pt to each of 
the siloxane double bonds. The 195Pt nuclear 
magnetic resonance (NMR) spectrum of all 
these complexes reveals that the oxidation 
state of platinum is zero (21) in these mono- 
carbene complexes (22). 

Having obtained the desired organometal- 
lic catalysts 14a to 14c, we engaged them in 
the model hydrosilylation reaction. In all cas- 
es, hydrosilylation took place to afford the 
desired adduct 11 in good to excellent yields 
(Fig. 2C). 

Although these complexes are slightly less 
reactive than the Karstedt catalyst, good reaction 
rates were still obtained at a loading of 30 ppm 
or less. More remarkably, the amount of unde- 
sired by-products was greatly reduced with 14a 
to 14c, and no colloidal Pt species were formed 
during the reaction. The reactivity and selectiv- 
ity of these catalysts also appeared to depend 
upon the steric hindrance provided around the Pt 
center by the carbene substituents; an optimum 
was reached with the cyclohexyl moiety. It is 
noteworthy that the hydrosilylation of alkenes, 
catalyzed by 14b, is completely regioselective; 
only the primary alkylsilane is obtained. 

In order to further optimize the process, we 
performed the coupling by using an inverse 
addition (23) of 9 to a mixture of olefin 10 and 
catalyst 14b (Fig. 3). From this, we isolated the 
desired adduct 11 in 96% yield. Less than 1% 
impurity was detected in the crude reaction 
mixture. Under similar conditions, Karstedt cat- 
alyst provided 11 in only 78% yield, accompa- 
nied by 13 to 15% of isomerized products and 
5 to 7% of reduced material. 

The usefulness of these Pt-carbene catalysts 
is further exemplified by their chemoselectivity 
and tolerance toward reactive functionalities, 
such as free alcohols, protected alcohols, silyl 
ethers, ketones, esters, and epoxides. For exam- 
ple, hydrosilylation of epoxide 15 with Karstedt 
catalyst generated, besides adduct 16 (<50%), 
large amounts of decomposition material 

b (30 ppm) 

9 

Toluene 

72?C 

Me 
I /OSiMe3 

C6H13 -l 'vOSiMe3 

11 (96%); Karstedt: 78% 

Me 
I .OSiMe3 

ON- n 
^ 

81'OSiMe3 
Toluene 

72?C 0 

16 (>95%); Karstedt: <50% 

(>35%) resulting from the opening/polymer- 
ization of the sensitive epoxide function. How- 
ever, hydrosilylation of 15, using Pt-carbene 
14b, afforded the desired product 16 in >95% 
isolated yield. No decomposition of the epoxide 
is detected under these conditions (24), which 
were easily applied to the preparation of an 
industrially relevant polyepoxy silicone oil (25) 
from alkene 15 and Me3SiO-(Me2SiO)80- 
(MeHSiO)7-SiMe3. 
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Fig. 3. Regio- and 
chemoselectivity of 
the Pt-carbene cata- 
lyzed hydrosilylation. 
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