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Fig. 3. Schematic representation of the 50S 
ribosomal subunit with TnaC-peptidyl-tRNAPro 
in the P site and a decoding Trp-tRNATrP in the 
A site. A segment of the peptidyl portion of 
TnaC-peptidyl-tRNAPro and the tryptophanyl 
moiety of Trp-tRNATrP are placed in the pepti- 
dyltransferase center. We assume the narrow- 
est part of the exit tunnel formed with ribo- 
somal proteins L4 and L22 (1, 28, 30) responds 
to the segment of TnaC containing the crucial 
residue W12 (enlarged circle) by altering fea- 
tures of the peptidyltransferase center, creating 
a tryptophan induction site. 

gation factor Tu, guanosine triphosphate, 
and/or the associated tRNATrP contribute to 

Trp-tRNATrP binding in the ribosomal A site; 
this would account for the effectiveness of 

Trp-tRNATrP at lower concentrations than 
free tryptophan. The induction site could be a 

newly created site that specifically recognizes 
tryptophan. Alternatively, the peptidyltrans- 
ferase center could be displaced or altered 

during synthesis of TnaC-peptidyl-tRNAPr?; 
thus, when tryptophan enters the center, pep- 
tidyltransferase activity is inhibited. It is un- 

likely that the induction site is formed in the 
ribosomal D site, a newly identified site pro- 
posed to participate in the initial step in de- 

coding (23). Our findings strongly suggest 
that information inherent in the sequence of 
the nascent TnaC peptide chain is communi- 
cated to the translating ribosome and that this 
information is used to mediate a response to 

tryptophan binding at the ribosomal A site. 

Peptide-ribosome interactions of this type 
could regulate the rate of peptide chain elon- 

gation, facilitate cotranslational protein fold- 

ing (24), or, as in the tna operon, allow 

tryptophan to compete with a release factor 
and force ribosome stalling at a transcript site 

required for Rho factor binding. 
Our findings and those of other investiga- 

tors therefore attribute to the translating ribo- 
some the ability to sense features of a nascent 

peptide and of responding by altering one or 
more events in ribosome action (Fig. 3). In- 
hibition of peptidyl-tRNA transfer or cleav- 

age may also occur during translation of the 
uORF (upstream open reading frame) preced- 
ing an arg gene of fungi (25), the uORF2 
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age may also occur during translation of the 
uORF (upstream open reading frame) preced- 
ing an arg gene of fungi (25), the uORF2 

preceding a gene of the human cytomegalo- 
virus (26), and the uORF preceding the cod- 

ing region for mammalian S-adenosylmethi- 
onine decarboxylase (27). Nascent peptides 
have also been described that inhibit transla- 
tion elongation (6, 28, 29). These examples 
illustrate ribosomal versatility in mediating 
regulatory decisions. 
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Antigen-presenting cells (APCs) can induce tolerance or immunity. We describe 
a subset of human APCs that express indoleamine 2,3-dioxygenase (IDO) and 
inhibit T cell proliferation in vitro. IDO-positive APCs constituted a discrete 
subset identified by coexpression of the cell-surface markers CD123 and CCR6. 
In the dendritic cell (DC) lineage, IDO-mediated suppressor activity was present 
in fully mature as well as immature CD123+ DCs. IDO+ DCs could also be 
readily detected in vivo, which suggests that these cells may represent a 
regulatory subset of APCs in humans. 
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Professional APCs, in particular DCs, are key 
regulators of the choice between tolerance and 

immunity (1). It has been proposed that imma- 
ture or resting (steady state) DCs may present 
antigen in a tolerogenic fashion, whereas ma- 
ture (activated) DCs drive T cell immunity. 
Immature DCs may promote tolerance in part 
by presenting antigens without the costimula- 
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tory signals required for full T cell activation 

(2). Alternatively, it has been hypothesized that 
a specialized subset of mature DCs might ac- 

tively divert T cell responses toward tolerance 

(3). However, in humans no such subset has 
been defined, and the molecular mechanisms 

by which such cells might function remain un- 
clear. We and others have recently shown that 
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cells expressing the tryptophan-catabolizing en- 
zyme IDO are capable of inhibiting T cell 
proliferation in vitro (4, 5) and reducing T cell 
immune responses in vivo (6-10). In the current 
study, we explored whether expression of IDO 
might define a particular subset of regulatory 
human APCs. 

Using an IDO-specific antibody [fig. S1 
and supporting online text (11)], we found by 
flow cytometry that fresh human monocytes 
expressed low to undetectable levels of the 
protein (Fig. 1A). Monocyte-derived macro- 
phages (M(s) (4) up-regulated IDO upon 
activation with interferon-y (IFN-^y). Expres- 
sion of IDO in these cells was confined to a 
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particular subset of cells coexpressing CD 123 
[the interleukin-3 (IL-3) receptor a chain] 
and the chemokine receptor CCR6 (Fig. 1A). 
Similarly, monocyte-derived DCs (12) ex- 
pressed IDO, which was also confined to a 
CD123+, CCR6+ subset. 

Because serum factors are known to influ- 
ence DC maturation (13), we derived DCs in 
both bovine calf serum (BCS)-based medi- 
um and serum-free medium (SFM). Both sys- 
tems yielded IDO+ DCs with the same phe- 
notype, but >90% of the IDONEG cells in 
SFM were tightly adherent. This allowed fac- 
ile enrichment of the nonadherent IDO+ pop- 
ulation to >90% purity (14). The IDO+ cells 
expressed cell-surface markers (CD14NEG, 
CD83+, CD80+, CD86HI, HLA-DRHI) (Fig. 
1B) and morphology consistent with mature 
DCs (Fig. 1C). Adherent cells lacked CD83 
and displayed residual levels of CD14, con- 
sistent with an immature or transitional phe- 
notype. Although IDO+ cells in DC cultures 
expressed DC-specific lineage markers, and 
the IDO+ M(s expressed Mt(-lineage mark- 
ers (Fig. 1D), in both types of cells the IDO+ 
subset could be specifically identified by ex- 
pression of CD123 and CCR6. 

As shown previously by our group (4), 
resting macrophage colony-stimulating factor 

(MCSF)-derived M(s did not express high 
concentrations of IDO until they received a 
triggering signal such as IFN-y (Fig. 2A). In 
contrast, IDO could be detected constitutive- 
ly in CD123+ DCs (Fig. 2B). However, ac- 
tivation with IFN--y was still required for 
expression of functional enzymatic activity 
(Fig. 2E), which suggests that the IDO pro- 
tein could exist in both enzymatically active 
and inactive states (15). Because the matura- 
tional status of DCs may affect a number of 
functional attributes of these cells, we asked 
whether maturation affected IDO expression 
by CD123+ DCs. Although maturation itself 
had no effect on the constitutive (basal) ex- 
pression of IDO protein, subsequent activa- 
tion of mature DCs with IFN-y resulted in 
complete down-regulation of IDO. This was 
a consistent observation in 16 experiments 
with 10 different donors and was confirmed 
by flow cytometry (Fig. 2C), enzymatic ac- 
tivity (Fig. 2E), and mRNA (16). 

Interleukin 10 (IL-10) is a regulatory cy- 
tokine that has been associated with the de- 
velopment oftolerogenic DCs (17). The pres- 
ence of IL-10 during maturation prevented 
IFN-y-induced down-regulation of IDO, re- 
sulting in sustained expression of functional 
IDO even in mature, IFN-y-activated DCs 
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Fig. 1. Expression of IDO by APCs. (A) Human monocytes were analyzed 
without culture (fresh, n = 12); cultured (14) for 7 days in MCSF with 
IFN-y added for the final 18 hours (M(|s + IFNy, n = 8); or cultured in 
granulocyte-macrophage CSF + IL-4 (DCs) in BCS medium (n = 34) or 
SFM (n = 24). (Upper) IDO versus CD123; (lower) CCR6 versus CD123 on 
the same triple-stained cells. Negative control for IDO staining was the 
primary antibody preadsorbed with the immunizing peptide. (B) Immu- 

nophenotype of nonadherent (IDO+) DCs (dark lines) versus adherent 
cells (light lines) from SFM cultures [matured with tumor necrosis 
factor-o-/IL-lp/IL-6/prostaglandin E2 (14)]. (C) Morphology of adherent 
(left) and nonadherent (right) cells (cytocentrifuge preparations, Wright's 
stain; scale bar, 10 pjm). (D) Immunophenotype of MCSF-derived M(s, 
gated separately on the CD123+ (dark lines) and CD123NEG (light lines) 
populations. 
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(Fig. 2, D and E). [We observed similar 
results when transforming growth factor-p 
was present during maturation (16).] Taken 
together, these data raised the possibility that 
expression of IDO by mature DCs might be 
determined by the prevailing regulatory influ- 
ences during maturation. 

We next tested IDO+ DCs for their ability to 
stimulate T cells in allogeneic mixed-leukocyte 
reactions (MLRs). In Fig. 2, B to E, recombinant 
IFN-y was added to simulate signals from acti- 
vating T cells (4), but for MLRs the DCs re- 
ceived no exogenous IFN-y (11). Immature 
DCs, selected and enriched to >90% purity for 
IDO expression (Fig. 1B), stimulated very little 
T cell proliferation (Fig. 2F). However, in most 
donors proliferation could be significantly en- 
hanced by addition of 1-methyl-tryptophan 
(1MT), a competitive inhibitor of IDO (donor- 
to-donor variability and the use of 1MT are 
discussed in (11). After maturation, enriched 
IDO+ DCs displayed one of two patters: in 4 
of 45 experiments the mature DCs lost their 
IDO-mediated inhibitory activity (Fig. 2F), 
whereas in 41 of 45 experiments they main- 
tained potent inhibitory activity despite matura- 
tion, which was reversed by the addition of 1MT 
(Fig. 2G). Continued expression of IDO by ma- 
ture DCs in the latter experiments was con- 
firmed by flow cytometry on MLR cultures and 
by measurement of tryptophan and kynurenine 
in supematants (16). The two different patterns 
observed in MLR were suggestive of the differ- 
ent patterns observed when mature DCs were 
tested in isolation (Fig. 2, C and D), as discussed 
in (11). 

We performed the experiments in Fig. 2G 
with highly enriched IDO+ DCs from SFM 
cultures. In contrast, BCS medium yielded a 
mixture of nonadherent IDO' and IDONEG 
cells, with IDONEG cells typically in the ma- 
jority. Under these conditions, T cell activa- 
tion predominated, and 1MT had little detect- 
able effect (Fig. 2H). However, when the 
IDO+ DCs were enriched from such mixtures 
by sorting for CD123 expression, they dis- 
played inhibitory activity comparable to the 
IDO+ DCs from SFM (Fig. 2H). 

To verify the specificity of 1MT as an inhib- 
itor of IDO, we added 1MT to MLRs containing 
APCs that did not express inhibitory amounts of 
IDO (adherent cells from SFM cultures, <10% 
IDO+). Under these conditions, T cell prolifer- 
ation was not inhibited, and 1MT had no effect 
on T cell proliferation (Fig. 21). 

In vivo, we detected few IDO+ cells in 
normal lymphoid tissue (fig. S3). However, hu- 
man tonsils displaying features of chronic in- 
flammation often possessed intense focal infil- 
trates of IDO+ cells (Fig. 3A), which were 
morphologically distinct from Ham56+ macro- 
phages (18) or S100+ interdigitating DCs (19). 
Some IDO+ cells coexpressed CD83, a marker 
of mature DCs, and some expressed CD123 and 
CCR6 (Fig. 3B). However, not all CD83+ (or 
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IL-10 added during the maturation step Pre-sort CD123(+) Depleted DC number (x 10-3) 

(14). (E) Functional enzymatic activity. 
Depletion of tryptophan from the culture medium (4) (expressed as a percentage of the 
starting tryptophan concentration in fresh medium, 25 ,uM) by DCs with or without IFN-y for 
18 hours. Immature DCs (iDC), CD40-matured DCs (mDC), and CD40-matured DCs in the 
presence of IL-10 (mDC/IL10) were generated, with or without IFN--y activation, as in (B) to 
(D). (F) Allogeneic MLRs using enriched IDO+ DCs (nonadherent cells, SFM system, without 
added IFN-y). DCs were either immature or matured with antibody to CD40. APC/T cell ratio = 
1: 20. White bars, without 1MT; black bars, with 1MT. (G) MLR with a titration of enriched 
IDO+ DCs (nonadherent cells, SFM system, no IFN-y) matured with cytokine-containing 
supernatant from activated monocytes (14). Similar results were observed when DCs were 
matured with the cytokine regimen used in Fig. 1B (16). Responder T cell number, 5 x 105 
(highest APC/T cell ratio = 1:10) without 1MT (triangles),and with 1MT (squares). (H) 
Immunomagnetic sorting (14) of CD123+ DCs from a mixed DC preparation [BCS system, 
tumor necrosis factor-a (TNF-a) matured, no IFN-y]. Unfractionated (pre-sort), sorted 
CD123+ cells (>80% purity), and CD123-depleted cells. APC/T cell ratio = 1: 10. White bars, 
with 1MT (DL-racemic mixture); black bars, without 1MT. (I) Adherent cells (<10% IDO+) from 
SFM cultures, matured with TNFa/IL13B/IL6/prostaglandin E2, used as stimulators in allogeneic 
MLRs. (White squares) without 1MT, (black squares) with 1MT. For comparison, nonadherent 
(IDO+) cells from the same culture are shown without 1MT (triangles). Representative of six 
experiments. 
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Fig. 3. IDO-expressing 
human cells in vivo (14). 
(A) Chronically in- 
flamed tonsil (actino- 
mycosis) showing accu- 
mulation of IDO+ cells 
(blue) in lymphoid tis- 
sue (L) underlying the 
mucosal epithelium (E). 
(B) Expression of IDO by 
cells in tonsil coexpress- 
ing CD83, CD123, and 
CCR6 (dual exposure, 
merged image at right; 
arrows mark coexpress- 
ing cells). (C) Lymph 
node from a representa- 
tive patient with malig- 
nant melanoma, show- 
ing accumulation of IDO- 
expressing cells (red). Scale 
bars, 50 pm. 

CD83 IDO Dual 

CD123 IDO Dual 

CCR6 IDO Dual 

CD123+ or CCR6+) cells expressed IDO, 
and no single marker identified all IDO+ 

cells, which suggests that IDO may be ex- 

pressed by more than one population in vivo 

(11). Analyses of regional and sentinel (first 
draining) lymph nodes (11) taken from pa- 
tients with malignant melanoma revealed 
that 25 of 66 patients had one or more nodes 
with abnormal accumulation of IDO+ cells 

(Fig. 3C). In many of these patients, accumu- 
lation of IDO+ cells in the sentinel node 
occurred before overt metastasis (11). Similar 
accumulation of IDO+ cells was found in 
nodes from patients with breast, colon, lung, 
and pancreatic cancers (16). The association 
of IDO+ cells with draining lymph nodes of 
tumors is being further investigated by our 

laboratory. 
In this study, we describe a subset of human 

monocyte-derived DCs that use IDO to inhibit T 
cell proliferation in vitro. In both DC and M( 

lineages, IDO+ cells could be characterized by 
coexpression of CD123 and CCR6 (despite the 

expression of otherwise distinct lineage-specific 
markers), which suggests that the IDO+ popu- 
lation may represent a discrete subset of profes- 
sional APCs. IDO+ DCs expressed major his- 

tocompatibility complex class II and costimula- 

tory molecules and were effective stimulators of 

T cell proliferation when IDO was blocked by 
1MT, which suggests that these cells could act 
as competent APCs. We hypothesize that this 

may reflect a regulatory subset of APCs special- 
ized to cause antigen-specific depletion (20) or 
otherwise negatively regulate the responding 
population of T cells. In light of the finding that 

large numbers of such cells are present in a 

proportion of tumor-draining lymph nodes, we 

speculate that IDO+ APCs may participate in 
the state of apparent immunologic unrespon- 
siveness displayed by many cancer patients to- 
ward tumor-associated antigens. However, the 
extent to which IDO-expressing APCs might 
influence immunologic unresponsiveness in 
vivo remains to be determined. 
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