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Fig. 3. (Top) The rela- 
tive contribution map 
of transient and sus- 
tained BOLD signal 
sources across all sub- 
jects and trials with the 
corresponding signals 
as identified by tempo- 
ral ICA. (Bottom) Sig- 
nals represent intrain- 
dividual averages of 
the five trials used as 
predictors within a 
group multiple regres- 
sion analysis (31). The 
functional map is pro- 
jected on the recon- 100 - 
structed cortical surface - 
of the temporal lobes of Transient 
a standard brain tem- 50 predictors predictors 
plate. Color coding 0 
indicates the relative m 0 - 
contribution of the 
two predictor classes 
and suggests a spatial 0 20 40 60 0 20 40 60 
continuum between Time (s) Time (s) 
the temporal response 
patterns. The contribution of the sustained response type becomes less predominant as one moves from 
the core to the belt areas. There was no notable hemispheric difference in the extension of the 
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Our data add to the evidence that the temporal 
decomposition of neural activity into transient 
and sustained patterns, or a continuum of them 
(4), may be a fundamental principle of deci- 
phering auditory information. The mechanisms 
of upstream propagation of differential neural 
activity have only been partially unraveled. At 
the cortical level, the transformation into differ- 
ent temporal response types could be achieved 
by separate synaptic networks (27). The gener- 
al rules, however, need to be viewed in light of 
the auditory network at large. In the thalamo- 
cortical circuitry, for instance, neural signals 
undergo radical reconstruction, with some 
properties preserving fidelity and others being 
transformed or generated anew in the auditory 
cortex (28). Temporal signal transformation ap- 
pears to be a fundamental principle in the au- 
ditory system and could be related to different 
hierarchical levels of sound characterization. 
This hypothesis becomes particularly perspicu- 
ous considering the serial properties of auditory 
information. 
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Representation of the Quantity 
of Visual Items in the Primate 

Prefrontal Cortex 
Andreas Nieder,* David J. Freedman, Earl K. Miller 

Deriving the quantity of items is an abstract form of categorization. To explore 
it, monkeys were trained to judge whether successive visual displays contained 
the same quantity of items. Many neurons in the lateral prefrontal cortex were 
tuned for quantity irrespective of the exact physical appearance of the displays. 
Their tuning curves formed overlapping filters, which may explain why behav- 
ioral discrimination improves with increasing numerical distance and why dis- 
crimination of two quantities with equal numerical distance worsens as their 
numerical size increases. A mechanism that extracts the quantity of visual field 
items could contribute to general numerical ability. 
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The ability to judge the relative quantity of 
items in the visual field is highly adaptive. 
Social animals such as primates can make de- 
cisions to fight or flee by judging the relative 
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number of friends versus foes (1-3); in forag- 
ing, choosing a larger alterative can contribute 
to survival (4). These behaviors depend on the 
capacity to abstract information from sensory 
inputs and to retain it in memory, neural corre- 
lates of which are found in the prefrontal cortex 
(PFC) (5, 6). To investigate the role of PFC 
neurons in representing visual quantity, we 
trained monkeys to judge whether two succes- 
sive displays contained the same small number 
of items (Fig. 1A). 
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Monkeys were trained with computer dis- 
plays on which one to five dots could appear 
(Fig. 1B). We varied the exact physical ap- 
pearance of the displays by randomly placing 
dots in 24 possible locations on a 5 x 5 
matrix centered around the fixation target, on 
which monkeys maintained gaze. Each dot 
was also randomly varied among five differ- 
ent sizes (7). Monkeys watched two displays 
(first sample, then test) separated by a 1-s 
delay. They were trained to release a lever if 
the displays contained the same number of 
items. Average performance of both monkeys 
was significantly better than chance for all 
tested quantities (Binomial test, P < 0.01), 
with a decline when tested for higher quanti- 
ties (8) similar to that seen in humans per- 
forming comparable tasks (Fig. 1C) (9). 

To determine whether the monkeys solved 
the task by truly abstracting quantity rather 
than attending to low-level visual features, 
we used seven sets of control stimuli (Fig. 
1B) (Table 1). Across these stimulus sets, the 
exact physical appearance of each numerical 
quantity varied widely. Even though mon- 
keys were trained on the standard dots alone, 

A 

they readily generalized (without additional 
training) to the control stimulus sets; perfor- 
mance was very similar across them (Fig. 
1C). This suggests that monkeys were indeed 
judging quantity. 

We recorded from 352 randomly selected 
neurons from the lateral PFC (Fig. 2A) of two 
monkeys (7). A third or more of them 
showed activity that varied significantly with 
the number of items in the sample display 
either during its presentation (131/352 or 
37%) or during the memory delay [111/352 
or 32%; analysis of variance (ANOVA), P < 
0.01] (10). Five such neurons are shown (Fig. 
2, B to F). Each cell shows peak activity for 
one of the visual quantities and a systematic 
drop-off of activity as the number of sample 
items varies from the preferred value. Many 
neurons (77/168) showed selectivity during 
both the sample presentation and the memory 
delay (Fig. 2, B and D); typically, neural 
preference was similar for both epochs (Pear- 
son's correlation coefficient, r = 0.56, P < 
0.0001) (7). We also recorded from the gyrus 
of the inferior parietal lobule (IPL) (area 7a). 
Only 7% (16/222) of IPL neurons were se- 

lective for quantity of visual stimuli. They 
will not be considered further in this report. 

Neural activity also generalized across 
changes in the physical appearance of the 
sample displays. Neurons were tested with 
different combinations of both standard and 
control stimuli, and switching between them 
had little or no effect on neural activity. For 
example, the neurons (Fig. 2) showed re- 
markably similar activity to the standard or 
variable feature stimuli (Fig. 2B) and to dis- 
plays with low or high density (Fig. 2C), with 
dots arranged in lines or shapes (Fig. 2D), 
with standard dots or those equating total area 
across numerosities (Fig. 2E), and with stan- 
dard dots or those that equated the total cir- 
cumference (Fig. 2F). Few of the quantity- 
selective neurons showed a significant effect 
of stimulus type (sample epoch, 17% or 22/ 
131; delay, 13% or 14/111; two-way 
ANOVA, effect of stimulus protocol or inter- 
action between stimulus protocol and quanti- 
ty, P < 0.01). Of the 308 neurons tested with 
different combinations of standard and/or 
control stimuli, only a small proportion of the 
neurons were affected by stimulus type (sam- 

B 

P=0.50 
Fixation Sample Delay 
500ms 800ms 1 000ms 

Fig. 1. Task protocol and behavioral performance. (A) De- 
layed match-to-quantity task. A trial started when the mon- 
key grasped a lever. The monkey had to release the lever if 
the sample and test displays contained the same number of 
items and had to continue holding it if they did not (P = 0.5). 
The nonmatch stimuli for intermediate samples ("two," 
"three," "four") were one number up and down (P = 0.25). 
The nonmatch for "one" was only "two"; forn "five" the 
nonmatch was only "four." (B) A small subset of the stimulus 
displays are shown as examples. The physical appearance of 
the displays varied widely for the same quantities (Table 1). 
(C) Average performance of both monkeys to the standard 
and the control conditions during the recording sessions. 
Chance = 50%. 
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Table 1. Stimulus protocols. For the shape category, three dots were arranged 
as triangle, four dots as quadrangle, five dots as pentagon. Randomized 
arrangement signifies a 5 x 5 matrix. Density was determined by calculating 
the average distance between the dots. For high-density stimuli, the dots had 

an average distance of <1.4? of visual angle (measured from center of the 
dots). For low-density stimuli, the items were arranged with an average 
distance of >2.5? of visual angle. Surface area, circumference, and density 
were evaluated with respect to concomitant changes in quantity. 

Stimulus type Spatial arrangement Surface area Circumference Density Item 

Standard Randomized Increasing Increasing Increasing Dots 
Equal area Randomized Equal Increasing Increasing Dots 
Equal circumference Randomized Decreasing Equal Increasing Dots 
Linear One-dimensional Increasing Increasing Increasing Dots 
Shape Triangle, quadrangle, Increasing Increasing Increasing Dots 

pentagon 
High density Randomized Increasing Increasing Equally high Dots 
Low density Randomized Increasing Increasing Equally low Dots 
Variable features Randomized Increasing Increasing Increasing Dots, ellipses, 

squares, bars, 
triangles 

pie epoch, 12% or 36/308; delay interval, 7% 
or 21/308; two-way ANOVA, P < 0.01). 
Quantity-selective neurons also showed a 
high degree of correlation of their activity 
between tested stimulus protocols (sample 
epoch median correlation coefficient = 0.81; 
delay = 0.77) (7). Thus, the quantity of 
sample items was the dominant factor encod- 
ed by these neurons, not the physical appear- 
ance of the displays. 

Neural activity in the PFC seemed to un- 
derlie a systematic, orderly representation of 
quantity; neurons showed peak activity to a 
specific quantity and a progressive drop-off 
as the quantity progressively varied (Fig. 2, 
B to F). To evaluate this across the popu- 
lation, we normalized the activity of each 
quantity-selective neuron and plotted its 
activity as a function of distance from its 
preferred quantity (7). On average, activity 
dropped off progressively with numerical 
distance (Wilcoxon signed ranks tests) for 
the sample (Fig. 3A) and the delay (Fig. 
3B) intervals. The activation latencies for 
different quantities were similar (P = 0.76, 
Friedman test) (11). 

Population neural filter functions were 
calculated by averaging the normalized activ- 
ity for all neurons that preferred a given 
quantity. Neural activity formed band-pass 
filters with increasingly attenuated activity as 
distance from the preferred quantity in- 
creased (Fig. 3, C and D). To correlate these 
functions with behavior, we conducted addi- 
tional psychophysical tests using a broad 
range of quantities as nonmatch stimuli. 
Monkeys made most errors for quantities that 
were adjacent to the cued quantity of dots and 
performed progressively better as numerical 
distance between two displays increased 
("numerical distance effect") (12). 

The average bandwidth of the neural fil- 
ters increased with quantity (7) (i.e., on av- 
erage, neurons became less precisely tuned as 
their preferred quantity increased) (Fig. 3, E 
and F). This same increase in bandwidth with 
increasing quantity is evident in network 

Fig. 2. Recording sites A 
and neural responses. sar s 

(A) Location of re- - 
cording sites in PFCs PS- 
of the two monkeys. .-. i / ;. 
The dot size reflects \ oar 
the proportion of se- mor \ 
lective units found at 5 mm 
each recording site. 
iar, inferior arcuate >-1% / 
sulcus; morb, medial -5% > 

orbital sulcus; ps, prin- 
cipal sulcus; sar, supe- C2 
rior arcuate sulcus. _1 ,12 -h 

There was no appar- .--3 i 8 
ent topographical ar- - 6 

rangement or cluster- n 2 

ing of neurons by their X Nu mb 
properties. (B to F) Re- 1- 
sponses (spike density s 
functions) of five ex- |l 
ample neurons selec- 
tive to different num- 
bers of items. Each 0o 560 10001500 
colored line shows the E Time (ms) 
time course of activity 50- 40 - 
for the five tested --2 f 30 
quantities. Gray shad- 40- 20 ~' -5 q, 20 
ing represents the -- 1 

sample period (800 30- 

ms). The rate function 2 Nur 

insets indicate the . 0- _ 
mean activity of the n 
neurons to each of the 10 
two stimulus proto- 
cols (error bars repre- o 500 10ob 1500 
sent SEM) using the Time (ms) 
epoch (sample or de- 
lay) in which there was maximal quantity selectiv 

models of numerosity (13). It could be a 
neural correlate of the "numerical magnitude 
effect," the behavioral observation that it is 
harder to discriminate between two quantities 
of equal numerical distance as their magni- 
tude increases (12). This was observed in our 
monkeys' behavior: For larger sample quan- 
tities, nonmatches had to be numerically 
more distant to reach a similar performance 
level as for small sample quantities (see be- 
havioral data in Fig. 3, E and F) (7). Tuning 
curve shapes were asymmetric (a steeper 

i. 
I v 

tiar 

' 

X20 

i 10 
-.- standard 
-- equal cir- 

at 0 cumference 
12345 

Number of items 

Time (ms) 

slope for smaller quantities), but assumed a 
Gaussian shape when plotted on a logarith- 
mic scale (14). 

Further evidence that PFC neural activ- 
ity contributed to behavior came from an 
examination of error trials. When monkeys 
made judgment errors, neural activity for 
the preferred quantity was significantly re- 
duced to 84.8 and 72.1% of that observed 
on correct trials (100%) for the sample and 
delay epochs, respectively (7). As a result 
of this (and the orderly representation of 
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Fig. 3. Normalized response Sample period Delay period 
rates of selective neurons as A B 
a function of numerical dis- 100 100. 
tance. (A and B) Normalized 75 * * 75. 
spike rate during sample (A) .N N 

and delay (B) epoch of all r_ 50- , 50. 
tested cells plotted against . ?& 

z E! 25- o 25- the numerical distance from z z 5z 
the preferred number of 0.0 . ........ 
items. Numbers closer to -4-3 -3 -2-1 0 4321 3 4 
the preferred quantity elicit- Numerical distance Numerical distance 

ed significantly higher spike 100. . * 100. 
rates (Wilcoxon matched- 
pairs signed-ranks test, *** O 75. o R 75. 

P<0.001 and * = P < 
0.05). (C and D) Normalized E? 5O 0 

responses averaged for neu- '25. a 25. 
rons preferring the same z z 2 

quantity for the sample (C) 0 .0 

anddelay(D) epochs.Colors 
1 2 3 4 5 1 2 3 4 

and delay (D) epochs. Colors Number of items Number of items 
are as in Fig. 2, B to F. (E and E F 
F) The average bandwidth of '3 4.5. a ' 4.5 . 
the neural filters for neurons 4.0. " ,.behavioral . behaoviol .. C neuronal 4.0 neuronal 
preferring different quanti- | 

3.5. ... .0 3.5. 

ties during sample (E) and 00 " 2.5. 2.5. 
delay (F) epochs. The same 2. 2.0. 
behavioral function is plot- iS 15. 1 . 
ted in (E) and (F) for com- E 1.0. E 1.0. = 
parison with the neural data. E 0.5 4 0.5 
Filter bandwidth increases Number of items Number of items 
for both behavior and neural 
activity with increasing quantity (though absolute values for neuronal and behavioral filter bandwidths are 
not directly related). 

quantity), the activity on error trials elicited 
by a sample of a given quantity was more 
similar to that elicited by adjacent quanti- 
ties on correct trials, especially during the 
delay (Fig. 3, A and B). 

These results indicate that neurons in 
the lateral PFC can participate in high- 
level, abstract visual representations that 
can contribute to judgments of quantity. 
Many neurons were tuned for the number of 
items on a visual display but showed little 
change in activity to wide variations in the 
exact physical appearance of the displays. 
They seemed to preserve a systematic rela- 
tion among different quantities; adjacent 
quantities evoked relatively similar activity 
and there was progressive drop-off as nu- 
merical distance increased. Neural activity 
seemed to form a bank of overlapping fil- 
ters whose properties can explain the nu- 
merical distance and magnitude effect 
found in behavioral tests. Because monkeys 
(15-17) and other animals (18-20) are en- 
dowed with some rudimentary numerical 
competence, PFC activity may be a neural 
correlate for deriving the quantity informa- 
tion in a visual display. 

This, of course, does not mean that the 

PFC is the only region where such infor- 
mation is represented. Human imaging and 
neuropsychological studies indicate in- 
volvement of both the frontal and parietal 
lobes in numerical ability (21-25). Neurons 
in a somatosensory-responsive area in the 
superior parietal lobe can keep track of the 
number of hand taps by a trained monkey 
(26); the authors reported few such neurons 
in the PFC. By contrast, our task examined 
judgments of visual quantity. Consistent 
with recent studies indicating that PFC neu- 
rons contribute to abstract visual categories 
(5, 6), we found ample PFC neurons tuned 
to small numbers of visual stimuli (and a 
relatively small number in area 7a). Wheth- 
er different brain areas contribute to differ- 
ent types of numerical abilities needs to be 
addressed with further experimentation. 
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