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In eukaryotic cells, double-strand breaks (DSBs) in DNA are generally repaired 
by the pathway of homologous recombination or by DNA nonhomologous end 
joining (NHEJ). Both pathways have been highly conserved throughout eu- 
karyotic evolution, but no equivalent NHEJ system has been identified in 
prokaryotes. The NHEJ pathway requires a DNA end-binding component called 
Ku. We have identified bacterial Ku homologs and show that these proteins 
retain the biochemical characteristics of the eukaryotic Ku heterodimer. Fur- 
thermore, we show that bacterial Ku specifically recruits DNA ligase to DNA 
ends and stimulates DNA ligation. Loss of these proteins leads to hypersen- 
sitivity to ionizing radiation in Bacillus subtilis. These data provide evidence that 
many bacteria possess a DNA DSB repair apparatus that shares many features 
with the NHEJ system of eukarya and suggest that this DNA repair pathway 
arose before the prokaryotic and eukaryotic lineages diverged. 
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Double-strand breaks (DSBs) in DNA arise 
during exposure to ionizing radiation (IR) and 
as intermediates during site-specific rearrange- 
ment events such as mating-type switching in 
Saccharomyces cerevisiae and V(D)J recombi- 
nation in vertebrates (1, 2). In eukaryotic cells, 
the primary DNA end-binding component of 
NHEJ, Ku, is a heterodimer of two sequence- 
related subunits [Ku70 (69 kD) and Ku80 (83 
kD)] (3-5) that forms an open ringlike structure 
through which a variety of DNA end structures 
can be threaded (6, 7). DNA-bound Ku helps to 
recruit the ligase IV/XRCC4 complex, thereby 
enhancing its ligation activity (8-10). In verte- 
brates, Ku also recruits the DNA-dependent 
protein kinase catalytic subunit (DNA-PKcs), 
thereby activating its kinase activity, which is 
required for DSB rejoining (11-13). Mamma- 
lian cells deficient in these NHEJ proteins are 
defective in DSB rejoining and are hypersensi- 
tive to IR (1, 4, 13). 

In contrast to the conservation between 
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these components in higher and lower eu- 
karyotes, NHEJ has not been reported in pro- 
karyotes. However, genes with significant ho- 
mology to Ku70 and Ku80 have been identified 
in some bacterial genomes (14, 15), which rais- 
es the possibility that prokaryotes might have a 
NHEJ apparatus that is fundamentally homolo- 
gous to that of eukaryotic cells. Significantly, 
the Ku-like gene exists in some bacterial spe- 
cies in an operon that includes a gene predicted 
to encode an adenosine triphosphate (ATP)- 
dependent DNA ligase (14-16). Operons fre- 
quently co-regulate functionally interacting 
proteins (17); perhaps then, these putative li- 
gases interact with the Ku-like proteins. 

We exploited the genetically amenable bac- 
terium Bacillus subtilis to generate strains bear- 
ing inactivating mutations in YkoV (Ku-like 
gene; ykoV) and YkoU (ligase-like gene; ykoU) 
and double mutants defective in YkoU and 
YkoV (ykoU ykoV) (18). None of the strains 
had any observable growth defect at tempera- 
tures ranging from 10? to 37?C (19), which 
indicates that neither YkoU nor YkoV is essen- 
tial. These findings are consistent with the no- 
tion that the B. subtilis nicotinamide adenine 
dinucleotide (NAD+>-dependent ligase YerG 
functions during DNA replication (20). To in- 
vestigate the role of YkoU and YkoV in DNA 
repair, we examined the sensitivity of the mu- 
tant strains to DNA-damaging agents (18). No 
sensitivity to ultraviolet light or to methyl meth- 
anesulfonate (MMS) was observed, which sug- 
gests that nucleotide excision repair functions 
normally and alkylation damage induced by 
MMS is repaired efficiently (19). In contrast, 
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the mutant strains were sensitive to IR relative 
to a wild-type control (WT168) (Fig. 1A). The 
ykoU and ykoUV strains showed similar sensi- 
tivity to IR, more marked than that shown by 
the ykoV mutant strain (Fig. 1A), which indi- 
cates that ykoV and ykoU are epistatic but that 
defects in ykoU have the greatest impact. The 
major cytotoxic lesions induced by IR are DNA 
DSBs, which suggests a role for YkoV and 
YkoU in DSB repair. 

In B. subtilis, RecA plays a crucial role in 
homologous recombination. Therefore, we 
generated YkoV and YkoU mutations (recA 
ykoU and recA ykoV) in a recA mutant back- 
ground and examined the response of the 
multiple mutant strains to IR. As expected, the 
recA mutant strain was very sensitive to IR, as 
were the recA ykoU and recA ykoV double- 
mutant strains (Fig. 1B). However, we noted 
that the triple-mutant strain (recA ykoUykoV) 
was reproducibly slightly more resistant to 
lower doses of IR than the recA single mutant 
or the double-mutant strains. We interpret 
these survival experiments as indicating that 
there may be an alternative, inefficient DSB 
repair system that can operate in cells lacking 
RecA, YkoV, and YkoU. In recA mutant strains 
that still possess either YkoV or YkoU, how- 
ever, it may be that the remaining NHEJ 
factor interacts with IR-induced DNA damage 
in a nonproductive manner so that it not only 
precludes NHEJ but also interferes with the 
alternative DSB repair pathway. 

The genes for YkoU and YkoV and their 
homologs were cloned from B. subtilis and 
additional bacteria, and the proteins were 
overexpressed in Escherichia coli (18). Many 
of the proteins, including B. subtilis YkoU 
and YkoV, expressed poorly or were insolu- 
ble. By contrast, recombinant histidine- 
tagged versions of Mycobacterium tubercu- 
losis Ku-like protein [open reading frame 
(ORF) Rv0937c] and the genetically linked 
putative ATP-dependent ligase (ORF 
Rv0938) were readily overexpressed in solu- 
ble form. We analyzed these proteins, hence- 
forth called Mt-Ku and Mt-Lig, further after 
we purified them by nickel-agarose affinity 
chromatography (fig. S ). 

Eukaryotic Ku70 and Ku80 form a stable 
heterodimeric complex, and this 1:1 stoichiom- 
etry is essential for interaction with DNA ends 
(6, 7). Analysis of recombinant Mt-Ku by gel- 
filtration chromatography indicated that Mt-Ku 
exists as a homodimer in solution (fig. S2). This 
species was very stable, even at high salt con- 
centrations, which suggests a strong ho- 
modimeric interaction (see supplemental text; 
fig. S3). Eukaryotic Ku binds to double-strand- 
ed (ds) DNA ends with high affinity (21). Elec- 
trophoretic mobility-shift assays (EMSAs), 
with a 33-base-pair (bp) dsDNA oligonucleo- 
tide with either 5' or 3' overhangs, demonstrat- 
ed that Mt-Ku, like eukaryotic Ku, forms a 
specific complex with either type of DNA end 

REPORTS 

(fig. S4). Excess nonlabeled linear dsDNA but 
not closed circular plasmid DNA or single- 
stranded DNA competed for binding (Fig. 2A), 
which demonstrates that Mt-Ku binds preferen- 
tially to dsDNA ends. 

Multiple molecules of eukaryotic Ku can 
bind to the same DNA molecule to give multi- 
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maximum number of Ku molecules that can 
bind to a DNA molecule is directly proportional 
to DNA length (21). Titration of Mt-Ku against 
a fixed concentration of labeled 33-nucleotide 
oligomer resulted in a single retarded band (Fig. 
2B), presumably representing a 1:1 Ku-DNA 
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Fig. 1. IR sensitivity of B. subtilis Ku (ykoV) and ligase (ykoU) knockout 
strains. B. subtilis wild type (WT168), ykoV, ykoU, or ykoVykoU double- 
mutant and B. subtilis recA mutant cells were treated with x-rays. The 
percentage survival for each strain over the indicated range of doses was 
determined, and the mean from three independent experiments was plotted. 
Error bars denote standard deviation from the mean for each point. (A) 
Deletion of YkoV and YkoU genes (strains ykoU and ykoV) resulted in 
significant IR hypersensitivity of these strains compared with the wild type, 
and the ykoVykoU double-knockout strain did not show any higher sensi- 
tivity than the ykoU single mutant, which suggests that these genes act in 
the same pathway. (B) B. subtilis recA mutant strains were extremely 
sensitive to irradiation. However, at lower IR dosage, deletion of ykoV and 
ykoU together (recA ykoU ykoV) could partially rescue the hypersensitivity 
of recA cells. 
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Fig. 3. Mt-Lig is an ATP-dependent dsDNA ligase. (A) 
Mt-Lig forms a covalent adenylate adduct in the presence 
of ATP. One microgram of Mt-Lig or K481A mutant was 

iEpA incubated with 50 mM Tris-HCl (pH 7.5), 10 mM MgCL2, 5 
mM dithiothreitol, [a-32P]ATP for 1, 30, 60, and 120 min 
(lanes 1-4, respectively) at 25?C. K481A was incubated for 
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120 min. The reactions 
were stopped by boiling 
in SDS-PAGE loading 
buffer and analyzed by 
electrophoresis on a 12% 
SDS-polyacrylamide gel. 
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reactions and the efficien- 
cy of ligation was com- 
pared with that mediated 
by T4 DNA ligase (330 
ng). Labeled DNA frag- 
ments (53 bp to 2.6 kbp) 
were incubated with in- 
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Fig. 4. (A) Mt-Lig end-joining activity is greatly stimulated by the Mt-Ku complex. dsDNA 
fragments (70 fmol) (157 or 445 bp) were preincubated with increasing amounts of Mt-Ku (0, 20, 
40 80, 200, 400, and 800 ng). The ligase reaction was started by addition of 1 pg of Mt-Lig. 
Optimum stimulation was achieved between 80 and 200 ng of Mt-Ku per reaction. (B) Stimulation 
of Mt-Lig end-joining activity is specific to the bacterial Ku complex. DNA fragments (445 bp) were 
preincubated with increasing amounts of Mt-Ku (20, 80, 200, and 400 ng) or human recombinant 
Ku70/80 complex (hKu; 20, 60, 120, 240, 500, and 1100 ng). Ligase reactions were started by 
adding 1 pg of Mt-Lig. No stimulation but significant inhibition has been observed in reaction 
mixtures preincubated with hKu. (C) Mt-Ku significantly inhibits end-joining ligation catalyzed by 
human recombinant LigaselV/XRCC4 complex (LiglV/X4) or T4 DNA ligase. Ligase reaction mix- 
tures were preincubated with Mt-Ku and ligation was started by adding 150 ng of LiglV/X4 complex 
or T4 Lig. In both cases, the presence of increasing amounts of Mt-Ku (200 and 400 ng, respectively) 
significantly inhibited end-joining reactions, which suggests that stimulation of ligation is critically 
dependent on interaction of the correct physiological partners, Mt-Ku and Mt-Lig. (D) Mt-Ku 
recruits Mt-Lig to DNA. Three distinct DNA-protein complexes formed by Mt-Ku (arrowhead 1), 
Mt-Lig (arrowhead 2), and Mt-Ku and Mt-Lig together (arrowhead 3) in EMSA. Reaction mixtures 
contained 90 fmol of 33-mer dsDNA and 2.5 pmol of Mt-Ku, where indicated (+). In reactions with 
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the supershift reactions (right), DNA was preincubated with Mt-Ku (2.5 pmol) followed by the 
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complex (see supplementary text). When we 
doubled the length of the DNA (66-nucleotide 
oligomer), we observed two progressively re- 
tarded bands (Fig. 2B). Multiple Ku-DNA 
complexes were formed on all dsDNA linear 
substrates of >60-mer tested, and the number 
of retarded species was directly proportional to 
the length of the DNA (19), which suggests that 
upon binding to the end the Mt-Ku can freely 
move along the DNA. 

The putative bacterial ATP-dependent DNA 
ligases (14-16) share a common core domain 
with other ATP-dependent ligases, and this en- 
compasses the signature catalytic motif 
KXDG-R (motif I) (22) found at the active site 
of DNA ligases (23) (fig. S5). The first step of 
the ligation reaction involves the active site ly- 
sine attacking the a-phosphorus of ATP or 
NAD+, yielding a covalent intermediate (ligase- 
adenylate) in which adenosine monophosphate 
(AMP) is linked via a phosphoamide bond to the 
c-amino group of the lysine (23). To test wheth- 
er Mt-Lig uses ATP or NAD+, we incubated 
Mt-Lig with either [a-32P]ATP or NAD+ and 
magnesium. In the presence of ATP, but not 
NAD+, a radiolabeled covalent ligase-adenylate 
adduct was formed that comigrated with the 
Mt-Lig polypeptide during SDS-polyacrylam- 
ide gel electrophoresis (SDS-PAGE) (Fig. 3A). 
This demonstrates that Mt-Lig is active in co- 
valent nucleotidyl transfer with a specific pref- 
erence for ATP as the AMP donor. Substitution 
of the motif I residue Lys481 by alanine (K481A) 
abolished ligase-AMP formation (Fig. 3A), as 
has been observed with analogous mutations in 
other ATP-dependent DNA ligases (24, 25). 

To examine whether Mt-Lig is a dsDNA 
ligase, we used dsDNA substrates of various 
sizes (53 to 2560 bp) in ligation reactions and 
compared the efficiency of ligation to that 
mediated by T4 DNA ligase. Mt-Lig cata- 
lyzed the joining of the various dsDNA frag- 
ments of different lengths to equivalent 
extents (Fig. 3B). We conclude that M. tuber- 
culosis Mt-Lig, and by inference B. subtilis 
YkoU, are functional DNA ligases capable of 
catalyzing DSB rejoining in an ATP-depen- 
dent manner. 

Eukaryotic Ku can stimulate dsDNA liga- 
tion catalyzed by DNA ligase IV/XRCC4 (8, 9, 
26-29). Notably, the DNA ligation activity of 
Mt-Lig was stimulated >30-fold by the addi- 
tion of Mt-Ku (Fig. 4, A and B). Stimulation 
was abolished by heat denaturation of Mt-Ku 
(19). By contrast, Mt-Lig was not stimulated by 
the human Ku heterodimer (Fig. 4B) and, con- 
versely, human ligase IV/XRCC4 and T4 ligase 
were not stimulated by Mt-Ku (Fig. 4C). In- 
deed, amounts of Mt-Ku that stimulated Mt-Lig 
inhibited both ligase IV and T4 ligase activity 
(Fig. 4C). Consistent with these observations, 
Mt-Ku stimulated the activity of Mt-Lig by 
>20-fold but not T4 ligase in an in vitro plas- 
mid repair assay (fig. S6). Thus, stimulation of 
ligation by Mt-Ku is highly specific for Mt-Lig 
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and raises the possibility that these proteins 
might physically interact. 

Eukaryotic Ku recruits DNA ligase IV/ 
XRCC4 to sites of DNA damage (8-10). 
Therefore, we looked for potential interac- 
tions between Mt-Ku and Mt-Lig by EMSAs 
with a radiolabeled dsDNA probe (33 bp). As 
shown in Fig. 4D, including Mt-Lig and Ku 
together led to the generation of a DNA- 
protein complex with a mobility distinct from 
that of the complexes formed by either pro- 
tein alone. However, the addition of increas- 
ing amounts of Mt-Ku did not abolish the 
appearance of the novel DNA-protein com- 
plex, which strongly suggests that it does not 
inhibit the binding of Mt-Lig to DNA. For- 
mation of the new complex did not occur if 
Mt-Lig had been heat denatured (19), which 
indicates that it reflects the binding of Mt-Lig 
and is not mediated by a buffer component 
(Fig. 4D). Biacore studies with a biotinylated 
dsDNA (33-mer) bound to a streptavidin- 
coated chip and isothermal titration calorim- 
etry studies also confirmed that Mt-Ku spe- 
cifically recruits Mt-Lig to DNA (19). 

Despite the importance of XRCC4 in the 
eukaryotic NHEJ system, we have so far been 
unable to detect any XRCC4 homologs in bac- 
teria (19). It has been reported that many of the 
Ku-associated DNA ligases possess additional 
domains with significant homology to eukary- 
otic DNA primases and nucleases (15, 16). 
Therefore, it is possible that these domains 
enhance ligase activity in the absence of 
XRCC4 and may also be directly involved in 
the DSB repair process (16). The similarity 
between the eukaryotic and bacterial Ku pro- 
teins suggests that they have evolved from a 
common ancestor and shows that NHEJ is a 
much more ancient process than was previously 
believed. The eukaryotic Ku proteins may have 
acquired additional domains-such as the 
VWA, SAP, and DNA-PKcs interaction do- 
mains-to enhance the repair activities of the 
complex and to provide additional functions, 
such as roles in telomere maintenance and 
V(D)J recombination. It is notable that only one 
characterized archaeal species, Archaeglobus 
fulgidus, contains the Ku ligase system, which 
suggests that this was acquired by lateral trans- 
fer. The Mu phage protein, Gam, and related 
bacterial orthologs may also represent a distinct 
family of functional homologs of eukaryotic Ku 
(30). It is also interesting to note that many of 
the bacteria that contain the Ku ligase system 
are capable of sporulation (B. subtilis, S. coeli- 
color) and/or spend long periods of their life 
cycle in the stationary phase (M. tuberculosis, 
Mesorhizobium loti, Sinorhizobium loti). It is 
tempting to speculate that a Ku-based NHEJ 
system is particularly important for the repair of 
DSBs that arise during these states of relative 
inactivity, where the better characterized ho- 
mologous recombination-based repair path- 
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Previous studies have revealed that autoantibodies, complement components, 
and Fc receptors each participate in the pathogenesis of erosive arthritis in 
K/BxN mice. However, it is not known which cellular populations are responsive 
to these inflammatory signals. We find that two strains of mice deficient in mast 
cells, W/Wv and S/Sld, were resistant to development of joint inflammation and 
that susceptibility was restored in the W/W" strain by mast cell engraftment. 
Thus, mast cells may function as a cellular link between autoantibodies, soluble 
mediators, and other effector populations in inflammatory arthritis. 
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The pathogenic mechanisms at play in inflam- 
matory arthritis, such as rheumatoid arthritis, 
remain poorly understood both systemically 
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and in the microenvironment of the diarthrodial 
joint. A large number of soluble inflammatory 
mediators and cellular effector populations 
have been implicated in arthritis; however, the 
early clinical events remain elusive. Recent 
studies using the serum of an engineered mouse 
model, K/BxN, have revealed that autoantibod- 
ies directed against a ubiquitously expressed 
antigen can selectively provoke inflammatory, 
hyperplastic, and erosive synovitis (1-3). It is 
known that members of the complement net- 
work (the alternative pathway and C5a), Fc 
receptors (FcyRIII), and cytokines [interleukin 
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