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Geographic Range Size and 

Determinants of Avian Species 
Richness 
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Geographic patterns in species richness are mainly based on wide-ranging species 
because their larger number of distribution records has a disproportionate con- 
tribution to the species richness counts. Here we demonstrate how this effect 
strongly influences our understanding of what determines species richness. Using 
both conventional and spatial regression models, we show that for sub-Saharan 
African birds, the apparent role of productivity diminishes with decreasing range 
size, whereas the significance of topographic heterogeneity increases. The relative 
importance of geometric constraints from the continental edge is moderate. 
Our findings highlight the failure of traditional species richness models to 
account for narrow-ranging species that frequently are also threatened. 
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Most analyses of determinants of geographic 
patterns in species richness have traditionally 
looked only at overall species richness patters, 
but this does not give a representative picture 
for most taxa. Wide-ranging species contribute 
many more distribution records to a species 
richness patter than do narrow-ranging spe- 
cies. Thus, although most species tend to have 
range sizes well below average (1-3), insights 
from conventional biogeographical analyses of 
overall species richness are in fact largely based 
on wide-ranging species. This may produce a 
profound bias in the presumed determinants of 
species richness in space that any general model 
should address. 
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Determinants of overall species richness 
singled out so far include measures of produc- 
tivity (4, 5), habitat heterogeneity (6, 7), area 
(8, 9), regional and evolutionary history (10), 
synergism between climate and evolutionary 
history (11), and effects from geometric con- 
straints imposed by distribution boundaries 
such as the continental edge (12-14). Here we 
address the potential effect of range size on the 
pattern of species richness and its presumed 
determinants (15), using a 1l-resolution data- 
base summarizing the distribution of the 1599 
breeding bird species endemic to sub-Saharan 
Africa (Fig. 1B) (15). 

We first examine potential factors one by 
one, using traditional general linear model 
(GLM) and spatial linear model (SLM) re- 
gression analyses of overall species richness 
(see table S1 for all single-predictor results). 
We focus on the latter approach, which 
avoids inflation of type I errors and invalid 
parameter estimates due to spatial autocorre- 
lation (15-17). Our results broadly confirm 
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the important role of net primary productivity 
(NPP, including a quadratic term, NPP2) and 
habitat heterogeneity (HabHet) on species 
richness asserted in previous studies (4-7). 
Both emerge as main predictors of overall 
species richness (single-predictor SLM: t 
(HabHet) = 22.03; two-predictor SLM 
(NPP + NPP2): t (NPP) = 25.08, t (NPP2) = 

-15.62; all P < 0.001). These three variables 
together explain around 66% of the variance 
(SLM: r2 of fitted values against observed 
values, log likelihood = -12,440). Annual 
precipitation (Rain) also has high predictive 
value (single-predictor SLM: t = 26.14), but 
because it is strongly collinear with NPP 
[rs = 0.91, n = 1738; two-predictor SLM 
(NPP + Rain): t (Rain) = 8.69, t (NPP) = 
13.66], we did not examine it further. 

Other core environmental predictors include 
topographic heterogeneity [TopHet, measured 
as altitudinal range; single-predictor SLM: t = 
13.77 (table S1)] and mean maximum daily 
temperature (MaxTemp; single-predictor SLM: 
t = -17.74). In contrast to the suggested direct 
positive link between temperature as a measure 
of energy and species richness (18, 19) and 
some of the empirical findings from South 
America (11), the relationship with maximum 
temperature is strongly negative: High-temper- 
ature quadrats support fewer species than do 
quadrats with more moderate temperatures. This 
may suggest an envelope effect of temperature 
on homeotherms, with both cold and hot tem- 
peratures aversely affecting species richness in 
addition to and conjunction with other factors. 

Distribution constraints imposed by conti- 
nental boundaries, together with the tendency 
of ranges to be continuous at larger scales of 
analysis, can demonstrably influence the geog- 
raphy of species richness, with higher levels of 
species richness expected in the middle of a 
bounded domain (12-14, 20). We found that 
geometric constraints modeled in two dimen- 
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sions have an independent effect on overall 
species richness [single-predictor SLM: t = 

11.77, P < 0.001 (table S1)]. This pattern is 
upheld when other factors are controlled for 
(Table 1), but its strength compared to produc- 
tivity and habitat heterogeneity is relatively low 
(Table 1). Geometric constraints and most oth- 
er variables are largely independent in effect, 
experiencing only minor change when consid- 
ered together in the model. Individual test re- 
sults are not shown, but, for example, in mov- 
ing from a single-predictor to a two-predictor 
model based on geometric constraints and hab- 
itat heterogeneity, t values change very little 
(for geometric constraints, t changes from 11.77 
to 11.88, whereas for habitat heterogeneity t 
changes from 22.03 to 22.10). Our results sug- 
gest that, although there exists a signature of 
hard distribution boundaries on the species rich- 
ness pattern of wide-ranging species, environ- 
mental and evolutionary ecological aspects of 
species richness exceed these effects of conti- 
nental geometry for our data set. It casts doubt 
on the assertion that geometric constraints may 
provide a simple answer to the latitudinal gra- 
dient in species richness (21, 22). 

Investigations have so far tended to examine 
potential factors in isolation, although they are 
likely to act in concert. Collinearity of variables 
(such as between habitat and topographic het- 
erogeneity, rs = 0.59, n = 1738) may well 
affect model results and render presumed rela- 
tionships as artefacts. To address this caveat, 
we selected six "core" variables following the 
initial single- and two-predictor results and con- 
sensus from the literature and examined them in 
a multiple-predictor spatial regression model 
(Table 1). All six core variables, notably habitat 
heterogeneity and topographic heterogeneity, 
retain the directions and magnitudes of their 
effects. The combined spatial autoregressive 
model explains 67% of the variance, a value 
that increases to 94% when the estimates for 
the spatial signal are included. Inclusion of 
nine further environmental predictors (15) 
(table S2) yields a statistically better model 
(log-likelihood test on SLM model: G = 100, 
d.f. = 6, P < 0.001), but the change in model 
fit is very small. 

Partitioning species into range size quartiles 
[RSQs (15)] of -400 species each highlights 
the fact that records are spatially distributed 
very disparately (Fig. 2): The widest-ranging 
quartile of species accounts for 70.5% of 
366,853 records overall, whereas the first, sec- 
ond, and third quartiles represent only 1.3, 7.2, 
and 21% of records, respectively. The correla- 
tion between quadrat species richness of nar- 
row-ranging species with overall species 
richness is weak and increases with larger 
range size. The dominance of wide-ranging 
species in quadrat assemblages contrasts 
with the strongly right-skewed range size 
distribution of sub-Saharan African birds 
(skewness = 1.99, n = 1599 species) 

also found in other groups and regions (23). 
As expected (13, 20), the effect of geo- 

metric constraints decreases with decreasing 
range size and is not detectable for the nar- 
row-ranging half of species (Table 1). More 
surprisingly, the effect of productivity, a very 
prominent predictor of overall and wide- 
ranging species richness, shows a stark de- 
crease with decreasing range size (Fig. 3). 
Advocates of the species-energy hypothesis 
support the idea that species numbers in local 
assemblages generally increase with ambient 
available energy (9, 18, 19, 24), although the 
shape of the relationship (hump-shaped or 
monotonic) appears to be affected by scale 
(9). We find that relationships between NPP 

Fig. 1. Species richness A 
pattern of (A) birds of 
continental Africa (n = 
1901 species) and (B) 
birds endemic to Africa 
(n = 1599 species). Both 
patterns are highly cor- 
related (rs = 0.99, n = 
17381? quadrats).Equal- 305 
interval classification is *615 
shown, with color ramps 
indicating minimum 
(light, top of legend) to 
maximum (dark red, C 
bottom of legend) spe- 
cies richness. (C and D) 
Geographic pattem of 
model residuals. For (C), 
the residuals come from 
the traditional (GLM) 
model and for (D) from 
the spatial autoregres- 
sive six-predictors model 
(SLM), as presented in 
Table 1. Standard devia- 
tion classification ranges 
from dark cyan (<-3 
SD) to dark red (>+3 
SD). 

1st 

1.3% records 

and richness vary markedly among groups of 
different range sizes, with a clear hump- 
shaped pattern only for the most wide-rang- 
ing species (fourth RSQ), a monotonic in- 
creasing one for moderately wide-ranging 
species, and a poor relationship for the nar- 
row-ranging half of species (25). 

Conversely, topographic heterogeneity, 
although of only marginal importance for 
overall species richness and wide-ranging 
species, increases in importance with de- 
creasing range size and is the most important 
predictor of narrow-ranging species' richness 
(Fig. 4). Topographic heterogeneity mea- 
sured as altitudinal range has often been used 
as a proxy for habitat heterogeneity (4, 26). 

B 

3rd 

21.0% recordsi 
rs=0.75 

1 
030 
*59 

2nd 4th 

70.5% records 

rs= 0.91 

100% of records 
all 1,599 species 

Fig. 2. Geographic pattern of sub-Saharan avian species richness by range size quartiles. Quartiles 
range from first (narrowest ranging 25%) to fourth (widest ranging 25% ) of 1599 species overall. 
Equal-interval classification is shown, with color ramps indicating minimum (light, top of legend) 
to maximum (dark red, bottom of legend) species richness. 
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Fig. 3. Relationship be- 
tween NPP (in tons of 
carbon per hectare per 
year) and avian species 
richness for species be- 
longing to different range 
size quartiles, from first 
to fourth. Each point rep- 
resents one 1? quadrat. 
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Table 1. Regression results for selected predictors of all species richness of birds endemic to Africa (All 
species) and richness of species partitioned into range size quartiles [from first (narrowest-ranging 25% 
of species) to fourth (widest-ranging 25% of species)]. We performed traditional GLM and SLM analyses. 
We fitted a six-predictor model of core variables, including predictions from a two-dimensional geometric 
constraints model (GeoConst), the number of different vegetation classes (HabHet), net primary 
productivity (NPP), topographic heterogeneity/altitudinal range (TopHet), and mean daily maximum 
temperature (MaxTemp). We subsequently added nine further environmental variables in order to see 
whether they added further information left unexplained by the selected core predictor variables (for 
detailed results, see table S2). The high spatial autocorrelation of errors in the GLM analysis (all Moran's 
I, P < 0.001) confirms the expected violation of the non-independence assumption. Thus, for SLM only, 
we tested t values for their significance (*P < 0.05, **P < 0.01, ***P < 0.001. P values were adjusted 
for error rate per variable Padj = P/6). 

First Second Third Fourth 
Model Variable All species quartile quartile quartile quartile 

GLM 
Six-predictor GeoConst t -4.80 -5.75 8.22 9.08 6.28 

model HabHet t 6.97 15.78 4.46 6.76 9.61 
NPP t 1.25 -3.44 -6.29 38.60 25.27 
NPP2 t 0.76 6.77 14.31 -35.00 -18.91 
TopHet t 20.18 10.94 0.82 0.70 5.21 
MaxTemp t -6.97 -18.10 -21.57 -7.13 -14.75 
Model F 290.82 450.82 434.32 701.14 758.87 
Model r2 0.50 0.61 0.60 0.71 0.73 
Errors Moran's I 0.55*** 0.70*** 0.73*** 0.79*** 0.74*** 

15-predictor Model F 133.84 218.30 252.41 337.17 364.78 
model Model r2 0.54 0.66 0.69 0.75 0.76 

SLM 
Six-predictor GeoConst t -1.62 0.15 2.30 6.43*** 6.42*** 

model HabHet t 4.82*** 9.66*** 6.30*** 10.44*** 10.77*** 
NPP t 4.59*** 5.31** 4.22*** 23.03*** 17.22*** 
NPP2 t -3.08* -1.00 2.06 -16.38*** -10.12*** 
TopHet t 13.92*** 8.45*** 6.33*** 3.68*** 8.88*** 
MaxTemp t -7.41*** -11.99*** -6.76*** -2.54 -6.16** 
Log likelihood -5,312 -5,784 -10,440 -11,610 -12,340 
Fitted values r2 0.46 0.52 0.53 0.62 0.67 
Full model r2 0.82 0.92 0.93 0.96 0.94 
Errors Moran's I -0.02 -0.02 0.08*** 0.03* 0.01 

15-predictor Log likelihood -5,281 -5,724 -10,340 -11,580 -12,290 
model Fitted values r2 0.48 0.52 0.60 0.62 0.66 

However, we find that both habitat heteroge- position, habitat shifts on African mountains 
neity and topographic heterogeneity retain following temporally fluctuating changes in 
high individual contributions in a multiple climate (27) may have given rise to many 
predictor model. In addition to topographic opportunities for speciation (11, 28). In Afri- 
heterogeneity, altitudinal range measures the ca, mountain regions near the equator are 
degree to which some parts of a quadrat are known for their unusually high number of 
topographically separate from others. Be- species and local endemics (29, 30). Our 
cause of their relatively isolated geographic results support the potential historical signal 

I 0.7- 
.c 

'. 0.6- 
x 

c 0.5- 
0 

. 0.4- 

> 0.3- 
0 |O 
o 0.2- 

o 0.1- 
0. 

, 0.0 

altitudinal range 
/ geometric constraints 

net primary productivity 

- V F rn,i^ nF 
1 st 2nd 3rd 4th 

Range size quartile 
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of altitudinal range per se (11), highlighting 
its specific effect on narrow-ranging species. 

In the search for the determinants of spe- 
cies richness, it has been tacitly assumed that 
the pattern and determinants of overall spe- 
cies richness may be representative for the 

majority of species. However, the usual anal- 

yses of overall species richness elicit corre- 
lates that may be representative geographical- 
ly and for species richness per se, but not 

necessarily taxonomically, for individual spe- 
cies or even for a great proportion of species. 
It follows that conservation strategies based 

simply on hotspots of species richness or the 
distribution and environmental correlates of 
overall species richness may be of limited use 
for threatened species, which tend to be re- 
stricted in range (31). Likewise, biogeograph- 
ic models depending on such an approach 
may have to be rethought. Additional analy- 
ses will help to clarify to what extent the 
observed dissimilarity between widespread 
and localized species is due to differences in 
rates of speciation and extinction, dispersal 
and colonization potential, habitat availabili- 

ty and site suitability, community-wide com- 

petition at large spatial scales, or a yet un- 
identified principle. Progress in meeting this 

challenge is likely to come from high-quality 
distributional and ecological databases and 
from biologically realistic null models. 
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Hierarchical Organization of 

Modularity in Metabolic 

Networks 
E. Ravasz,' A. L. Somera,2 D. A. Mongru,2 Z. N. Oltvai,2* 

A.-L. Barabasi1* 

Spatially or chemically isolated functional modules composed of several cellular 
components and carrying discrete functions are considered fundamental build- 
ing blocks of cellular organization, but their presence in highly integrated 
biochemical networks lacks quantitative support. Here, we show that the 
metabolic networks of 43 distinct organisms are organized into many small, 
highly connected topologic modules that combine in a hierarchical manner into 
larger, less cohesive units, with their number and degree of clustering following 
a power law. Within Escherichia coli, the uncovered hierarchical modularity 
closely overlaps with known metabolic functions. The identified network ar- 
chitecture may be generic to system-level cellular organization. 
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The identification and characterization of 
system-level features of biological organiza- 
tion is a key issue of postgenomic biology 
(1-3). The concept of modularity assumes 
that cellular functionality can be seamlessly 
partitioned into a collection of modules. Each 
module is a discrete entity of several elemen- 
tary components and performs an identifiable 
task, separable from the functions of other 
modules (1, 4-8). Spatially and chemically 
isolated molecular machines or protein com- 
plexes (such as ribosomes and flagella) are 
prominent examples of such functional units, 
but more extended modules, such as those 
achieving their isolation through the initial 
binding of a signaling molecule (9), are also 
apparent. 

Simultaneously, it is recognized that the 
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thousands of components of a living cell are 
dynamically interconnected, so that the cell's 
functional properties are ultimately encoded 
into a complex intracellular web of molecular 
interactions (2-6, 8). This is perhaps most 
evident with cellular metabolism, a fully con- 
nected biochemical network in which hun- 
dreds of metabolic substrates are densely in- 
tegrated through biochemical reactions. 
Within this network, however, modular orga- 
nization (i.e., clear boundaries between sub- 
networks) is not immediately apparent. In- 
deed, recent studies have demonstrated that 
the probability that a substrate can react with 
k other substrates [the degree distribution 
P(k) of a metabolic network] decays as a 
power law P(k) - k-~ with y - 2.2 in all 
organisms (10, 11), suggesting that metabolic 
networks have a scale-free topology (12). A 
distinguishing feature of such scale-free net- 
works is the existence of a few highly con- 
nected nodes (e.g., pyruvate or coenzyme 
A), which participate in a very large num- 
ber of metabolic reactions. With a large 
number of links, these hubs integrate all 
substrates into a single, integrated web in 
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which the existence of fully separated mod- 
ules is prohibited by definition (Fig. 1A). 

Yet, the dilemma of a modular versus a 
highly integrated module-free metabolic net- 
work organization remains. A number of ap- 
proaches for analyzing the functional capa- 
bilities of metabolic networks indicate the 
existence of separable functional elements 
(13, 14). Also, from a purely topologic 
perspective, the metabolic network of Esch- 
erichia coli is known to possess a high clus- 
tering coefficient (11), a property that is sug- 
gestive of a modular organization. In itself, 
this implies that the metabolism ofE. coli has 
a modular topology, potentially comprising 
several densely interconnected functional 
modules of varying sizes that are connected 
by few intermodule links (Fig. lB). However, 
such clear-cut modularity imposes severe re- 
strictions on the degree distribution, implying 
that most nodes have approximately the same 
number of links, which contrasts with the 
metabolic network's scale-free nature (10, 
11). 

To determine whether such a dichotomy is 
indeed a generic property of all metabolic 
networks, we first calculated the average 
clustering coefficient for 43 different organ- 
isms (10, 15, 16) as a function of the number 
of distinct substrates N present in their me- 
tabolism. The clustering coefficient, defined 
as Ci = 2n/ki(k - 1), where n denotes the 
number of direct links connecting the ki near- 
est neighbors of node i (17), is equal to 1 for 
a node at the center of a fully interlinked 
cluster, and it is 0 for a metabolite that is part 
of a loosely connected group (Fig. 2A). 
Therefore, Ci averaged over all nodes i of a 
metabolic network is a measure of the net- 
work's potential modularity. We found that, 
for all 43 organisms, the average clustering 
coefficient is about an order of magnitude 
larger than that expected for a scale-free net- 
work of similar size (Fig. 2B), suggesting that 
metabolic networks in all organisms are char- 
acterized by a high intrinsic potential modu- 
larity. We also observed that, in contrast with 
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