
REPORTS REPORTS 

Fig. 2. Concordia diagrams 
for zircons from the S1 im- 
pact layers found in (A) the 
Warrawoona Group of 
Western Australia and (B) 
the Onverwacht Group of 
South Africa. Ellipses are 2o 
errors, and samples that are 
greater than 80% concor- 
dant (Table 1) are shown 
shaded. The principal varia- 
tion in both data sets is the 
result of modern Pb loss. 
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C-O Bond Formation by 
Polyketide Synthases 
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Polyketide synthases (PKSs) assemble the polyketide carbon backbone by sequen- 
tial decarboxylative condensation of acyl coenzyme A (CoA) precursors, and the 
C-C bond-forming step in this process is catalyzed by the P-ketoacyl synthase (KS) 
domain or subunit. Genetic and biochemical characterization of the nonactin bio- 
synthesis gene cluster from Streptomyces griseus revealed two KSs, NonJ and NonK, 
that are highly homologous to known KSs but catalyze sequential condensation of 
the acyl CoA substrates by forming C-O rather than C-C bonds. This chemistry 
can be used in PKS engineering to increase the scope and diversity of polyketide 
biosynthesis. 

Polyketides are natural products found in epothilone (anticancer), rapamycin (immuno- 
bacteria, fungi, and plants that include many suppressant), and lovastatin (antihypercho- 
clinically important drugs such as eryth- lesterolemic). These metabolites are biosynthe- 
romycin (antibacterial), daunorubicin and sized from acyl CoA precursors by PKSs. PKSs 
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have been the focus of intensive research in the 
past decade for their extraordinary structure, 
mechanism, and catalytic reactivity and flexi- 
bility (1-4). Genetic manipulation of PKSs has 
been increasingly recognized as an alterative 
strategy for the production of novel compounds 
that are difficult to access by traditional chem- 
ical synthesis (5-10). Success of the genetic 
approach depends on the continuous discovery 
and characterization of PKSs that catalyze dif- 
ferent chemistry (11-16). 

Three types of PKSs are known. Type I 
PKSs are multifunctional enzymes that are 
organized into modules, each of which min- 
imally contains three domains, 3-ketoacyl 
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Fig. 1. C-C bond-forming step catalyzed by (A) type I and II PKSs and (B) type III PKSs and (C) C-O bond-forming step catalyzed by the NonJK KSs. 
The newly formed C-C or C-O bond is shown in red. KS, 3-ketoacyl synthase; ACP, acyl carrier protein; CoA, coenzyme A; MCoA, malonyl CoA. 

synthase (KS), acyl transferase (AT), and 
acyl carrier protein (ACP) (1, 17). Type II 
PKSs are multienzyme complexes minimally 
consisting of the KSol, KS3, and ACP sub- 
units (1, 18). [The KSP unit lacks the con- 
served Cys residue essential for the KS ac- 
tivity and is also known as chain length factor 
(2) or chain initiation factor (19).] Type I and 
II PKSs share a high degree of amino acid 
sequence similarity and use ACP to activate 
the acyl CoA substrates and to channel the 
growing polyketide intermediates (Fig. 1A). 
Type III PKSs, also known as chalcone syn- 
thase-like PKSs, are essentially KSs (11, 13, 
20). They lack ACP and use acyl CoAs di- 
rectly as substrates (Fig. 1B). Although type 
III PKSs have the conserved Cys residue, the 
amino acid sequences of this Cys motif have 
no apparent similarity to that of the KSs of 
the type I and II PKSs. Despite structural and 
mechanistic differences, all PKSs biosynthe- 
size the polyketide carbon backbone by se- 
quential decarboxylative condensation of 
acyl CoA precursors, and the KS domain or 
subunit catalyzes the C-C bond-forming step 
for polyketide biosynthesis (Fig. 1, A and B). 

Here we report two KSs, NonJ and NonK, 
hereafter referred to as NonJK, that catalyze 
C-O bond formation in nonactin (Fig. 1C, 
compound 1) biosynthesis. The NonJK KSs 

act on (+)-nonactyl CoA (Fig. 1C, compound 
2), catalyze tetramerization of (+)- and (-)-2 
in a stereospecific (+)(-)(+)(-)-fashion into 
1, and require the Cys residue conserved 
among all KSs for this reaction (Fig. 1C). 

Nonactin belongs to the macrotetrolide 
family of cyclic polythers that exhibit a broad 
spectrum of biological activities, including 
antibacterial, antifungal, antitumor, and im- 
munosuppressive activity. Structurally, 1 is 
composed of four molecules of (+)- and 
(-)-nonactic acid (Fig. 1C, compound 3) in a 
(+)(-)(+)(-)-macrotetrolide linkage, an in- 
triguing molecular topology not seen in other 
natural products. The biosynthesis of 1 has 
been studied by feeding experiments with 
various isotope-labeled precursors and by 
cloning and characterizing the biosynthesis 
gene cluster from Streptomyces griseus 
DSM40695 (21-23). These studies estab- 
lished that (+)-3 is synthesized by a PKS that 
lacks an ACP. The idea that (+)- and (-)-3 
are intermediates in nonactin biosynthesis 
was supported by their efficient incorporation 
into 1 and the isolation of both (+)- and 
(-)-3, as well as their dimers, from S. griseus 
fermentation. There are five KS genes within 
the cluster, nonJKPQU, which have deduced 
products that are highly homologous to KSs 
of the type II PKS (Fig. 2A) (22). Inactivation 

of any one of them either completely abol- 
ishes (nonJKPQ) or significantly impairs 
(nonU) 1 production, and expression of any 
one of them in trans in the corresponding 
mutants restores 1 production, confirming 
that all five KS genes are involved in I 
biosynthesis (24). Because KSs are only 
known to catalyze C-C bond-forming steps 
in polyketide biosynthesis, we reasoned that 
all KS mutants would retain the enzymatic 
functions for the C-O bond-forming tet- 
ramerization steps involved in (+)-3 to 1 and, 
thereby, nonactin production could be re- 
stored to all KS mutants by fermenting them 
in the presence of exogenously added (+)-3. 
That was indeed the case for the nonPQU 
mutants but not for the nonJK mutants, sug- 
gesting that the NonJK KSs might play a role 
in the C-O bond-forming steps in nonactin 
biosynthesis (24). 

To identify the minimal genes required for 
the C-O bond-forming tetramerization steps, 
we combined plasmid-based expression of 
the non genes in Streptomyces lividans (fig. 
S1) with biotransformation of (+)-3 to 1 in 
the resultant recombinant strains (24). We 
reasoned that the minimal genes required for 
the tetramerization step could be identified by 
successive deletion of genes included in the 
expression cassettes. Thus, S. lividans strains 
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Fig. 2. (A) The macrotetrolide biosynthesis gene cluster with the five 
nonJKPQU KS genes shown in green and the nonL CoA ligase gene shown 
in blue. (B) Biotransformation of (+)-3 into 1 by S. lividans strains 
harboring various non gene expression cassettes (24). Shown in black are 
gene cassettes constructed in pSET152, and shown in blue are gene 
cassettes constructed in pWHM3. Black rectangles with arrow indicate 
orientation of the actl promoters. Each entry represents an S. lividans 
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nonKC161G and nonJ C169G mutants are shown in yellow. (C) Examples 
of HPLC chromatograms of biotransformation of (+)-3 into 1 by various 
S. lividans recombinant strains: I, authentic 1 standard (white diamond); 
II, S. lividans (pBS2014/pBS2015); V, S. lividans (pBS2017); VIII, S. 
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Fig. 3. In vitro synthesis of (+)-2 from (+)-3 
catalyzed by NonL, requiring ATP and CoA (24). 
(A) Negative control in the absence of NonL 
and (B) complete assay with 800 nM NonL. ATP 
(black dot), AMP (black diamond), CoA (white 
diamond), (+)-2 (inverted triangle). 

harboring various non gene expression cas- 
settes were fermented in the presence of ex- 
ogenously added (+)-3 (21, 22, 24). The 
production of 1 was monitored by high-per- 
formance liquid chromatography (HPLC) and 
confirmed by electrospray ionization-mass 
spectrometry (ESI-MS) analysis, yielding a 
characteristic (M+Na)+ ion at m/z = 759.4, 
consistent with the molecular formula of 
C40H64012 for 1 (21, 22). As summarized in 

Fig. 2, B and C, all recombinant strains ex- 
pressing nonJKL genes are effective in bio- 
transformation of (+)-3 into 1 (entries II, VI, 
VII, and VIII), and deletion of nonJK or nonL 
from the expression cassettes completely 
abolishes their biotransformation ability (en- 
tries III, IV, and V), suggesting that nonJKL 
genes are essential for this activity. We final- 
ly established that nonJKL are sufficient for 
the tetramerization steps by expressing only 
the nonJKL genes; the resultant recombinant 
strain is as effective in biotransformation of 
(+)-3 into 1 (entry VIII) as those strains 

harboring other non 
nonJKL. 

genes in addition to 

On the basis of its high sequence homology 
to a family of CoA ligases, we reasoned that 
NonL, rather than directly contributing to the 
C-O bond-forming steps, instead activates 
(+)-3 into CoA esters (+)-2 that are then tet- 
ramerized into 1 by the NonJK KSs. To vali- 
date this hypothesis, we expressed nonL in 
Escherichia coli, purified NonL as a His6- 
tagged fusion protein (fig. S2), and character- 
ized NonL as a CoA ligase (24). We monitored 
the in vitro assay of NonL by HPLC analysis: 
NonL catalyzes the conversion of (+)-3 to 
(+)-2, requiring CoA and ATP as co-sub- 
strates. Under the condition examined, 80% of 
(+)-3 was converted to (+)-2 in 2 hours, con- 
firming that NonL recognizes both (+)- and 
(-)-3 as substrates (Fig. 3). The identity of 
(+)-2 was verified by ESI-MS, yielding a char- 
acteristic (M-2H)2 ion at m/z = 474.7, consis- 
tent with the molecular formula of 

C31H52N7O19P3S. 
Because NonJKL proteins are sufficient to 

biotransform (+)-3 to 1 (Fig. 2, B and C, 
entry VIII), the characterization of NonL as a 
CoA ligase, catalyzing the conversion of both 
(+)- and (-)-3 into their CoA esters, indicates 
that NonJK proteins are responsible for the 
C-O bond-forming tetramerization steps, act- 
ing directly on the CoA ester substrates of 
(+)- and (-)-2. KSs known to date catalyze 
only C-C bond formation, although the CoA 
substrates can be utilized either directly (by 
type III PKS) (11, 13, 20) or indirectly via 
acyl-ACPs (by both type I and II PKS) (17, 
18). Thus, as depicted in Fig. 1C, NonJK, in 
a mechanistic analogy to type III PKS, could 

be envisaged to first catalyze the transfer of 
the nonactyl group from (+)-2 to the Cys 
residue of NonJK to form the nonactyl-S-KS 
species (Fig. 1C, step a). (It remains to be 
established if NonJ or NonK is enantiospe- 
cific for (+)- or (-)-2, respectively.) Unlike 
KSs that catalyze decarboxylative condensa- 
tion between the carbon anion nucleophile 
and acyl-S-KS to form the C-C bond (Fig. 1, 
A and B), the NonJK KSs catalyze the con- 
densation between the oxygen nucleophile of 
the -OH group of 2 and nonactyl-S-KS to 
form the C-O bond, yielding the dimers in 
the form of CoA esters (Fig. 1C, steps b and 
c). The latter have been isolated as free acids 
from S. griseus fermentation (25), supporting 
the proposed pathway. Iterations of steps a 
and b or steps a and c eventually lead to the 
KS-bound linear tetramers that undergo in- 
tramolecular condensation between the -OH 
group of the distal nonactyl unit and the 
acyl-S-KS carbonyl group to afford 1 (Fig. 
1C, step d). 

To gain insight into the mechanism of the 
condensation reaction, we compared the 
NonJK sequences with those of other KSs of 
both fatty acid synthases (FASs) and PKSs. 
All previously characterized KSs contain a 
Cys-His-His (for type I and II FAS and PKS) 
(26, 27) or Cys-His-Asn (for type III PKS) 
(28) catalytic triad (Fig. 4). The His-His or 
His-Asn residues are essential for malonyl- 
ACP or malonyl CoA decarboxylation to 
generate the corresponding carbon anion, and 
the Cys residue catalyzes condensation be- 
tween the resultant carbon anion and acyl-S- 
KS to form the C-C bond (Fig. 1, A and B). 
Strikingly, NonJK are characterized with a 
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Type II-FAS FabB ISSA TSA -126aa- YLNSIGTST -24aa- TKAMTGSLGA 
FabF IAT TSGV -131aa- YVN TGT -26aa- TKSMT GLLGA 

Type I-PKS DEBS1 VDTA SSSL -126aa- AVEA GTGT -27aa- VKSNLG TQAA 

Type I-PKS PikAIV VDT SSSL -126aa- VVEG GTGT -29aa- LKSNIGTGT 

Type II-PKS Act KSa VST TSGL -131aa- YINA GSGT -26aa- IKSMVGISLGA 
Tcm KSa VST TSGL -131aa- YINA GSGT -26aa- IKSMI SLGA 

Type III-PKS CHS2 YQQG FAGG -130aa- FWIA PGGP -22aa- VLSDYG iSSA 

RppA AQL AGG -123aa- FFI AGGP -22aa- TLTERG IASS 

NonK VSCG ASSS -143aa- YVNGGGEGD -26aa- QEACFGjSGAP 
NonJ VSGS NVAL -122aa- FVNDYADGN -28aa- QEAVFG VAGT 
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mutated catalytic triad-Cys-Tyr-His for 
NonJ or Cys-Gly-His for NonK, suggesting 
that NonJK lack the decarboxylation activity 
(Fig. 4). This is consistent with the proposal 
that NonJK catalyze C-O bond formation by 
using the -OH as the nucleophile directly. 
Finally, to confirm that Cys plays a catalytic 
role in the C-O bond-forming step, we re- 
placed the conserved Cys residue in NonJ or 
NonK, respectively, with Gly by site-directed 
mutagenesis (24). The resultant mutants 
completely lose their ability to biotransform 
(?)-3 into 1 (Fig. 2, B and C, entries IX and 
X). Thus, the NonJK KSs catalyze the C-O 
bond-forming step in nonactin biosynthesis, 
acting directly on (+)-2 and using the same 
active-site residue Cys that is used in KS 
catalysis of C-C bond formation. Given the 
high sequence homology and conserved ac- 
tive site between NonJK and other KSs, the 
structural plasticity and catalytic flexibility 
of KSs upon protein engineering (6, 9, 10), 
and now the C-O bond-forming ability of 
the NonJK KSs, further mechanistic and 
structural characterization of the NonJK 
KSs could allow us to rationally engineer 
the C-O bond-forming activity into other 
KSs. This could expand the size and diver- 
sity of polyketide library accessible by 
combinatorial biosynthesis. 
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Structure of the Extracellular 

Region of HER3 Reveals an 

Interdomain Tether 

Hyun-Soo Cho and Daniel J. Leahy* 

We have determined the 2.6 angstrom crystal structure of the entire extra- 
cellular region of human HER3 (ErbB3), a member of the epidermal growth 
factor receptor (EGFR) family. The structure consists of four domains with 
structural homology to domains found in the type I insulin-like growth factor 
receptor. The HER3 structure reveals a contact between domains II and IV that 
constrains the relative orientations of ligand-binding domains and provides a 
structural basis for understanding both multiple-affinity forms of EGFRs and 
conformational changes induced in the receptor by ligand binding during sig- 
naling. These results also suggest new therapeutic approaches to modulating 
the behavior of members of the EGFR family. 
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The epidermal growth factor receptor 
(EGFR) is the founding member of the ErbB 
family of receptor tyrosine kinases that in 
humans includes HER1 (EGFR, ErbB1), 
HER2 (Neu, ErbB2), HER3 (ErbB3), and 
HER4 (ErbB4) (1-4). These receptors re- 
spond to EGF and related ligands to mediate 
cellular growth and differentiation in multiple 
tissues in both the developing embryo and 
adult (5-8). Loss of any of the ErbB family 
members results in embryonic lethality in 
mice with defects observed in organs includ- 
ing the brain, heart, skin, lung, and gastroin- 
testinal tract, depending on the receptor af- 
fected (7). Overexpression and activation of 
ErbB receptors, most notably HER1 and 
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HER2, are found in many human cancers and 
are critical factors in the development and 
malignancy of these tumors (9). Therapies 
that target these receptors have shown prom- 
ise, and a monoclonal antibody against 
HER2, with the trade name Herceptin, is 
currently being used to treat breast cancer 
(10). 

ErbB receptors consist of an -620-amino 
acid extracellular region followed by a single 
transmembrane-spanning region and a cyto- 
plasmic kinase domain. The extracellular re- 
gions of ErbB receptors are made up of four 
domains arranged as a tandem repeat of a 
two-domain unit consisting of an - 190-ami- 
no acid L domain followed by an -120- 
amino acid cysteine-rich domain. The first 
three of these domains share 15 to 20% se- 
quence identity with the first three domains 
of the type I insulin-like growth factor recep- 
tor (IGFR), for which a structure is known 
(11). Unlike the homologous region of 
HER1, an NH2-terminal three-domain frag- 
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