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American margin has been estimated at 1.7 X 
109 mol/year by combining an estimate of the 
total SO2 flux (2.1 X 1010 mol/year) with the 
median SO2/N2 ratio (12.6) derived from almost 
100 analyses of volcanic gas chemistries in the 

region (39). The above flux can be corrected for 
air-derived N on the basis of measured N2/Ar 
ratios and the assumption that Ar is derived 
from air. The revised value for the non-air N2 
flux from the Central American arc is 2.9 X 108 

mol/year (39). This output flux balances almost 

exactly the input flux of N into the trench and 

implies that N is efficiently released from the 
slab and transported through the mantle wedge 
to the atmosphere by arc volcanism. Thus, the 
Central American subduction zone acts as a 
"barrier" (40) for the transport of sedimentary N 
into the mantle beyond the region of magma 
formation below the arc; that is, the N transfer 
from the crust to deep mantle is short-circuited 

by release through arc volcanism. 
If the Central American subduction zone 

acts to efficiently recycle subducted sedimenta- 

ry N to the atmosphere, the question arises 
whether subduction zones worldwide behave in 
an analogous fashion. The output of N from arcs 

globally has been estimated at 3.2 X 1010 mol/ 

year, which corrects to a value of 2.0 x 1010 

mol/year when the air-N contribution is sub- 
tracted (39). The input from subducted sedi- 
ments is 1.37 x 1010 mol N/year, based on an 
estimate of the N concentration of 0.01 wt % 

(100 ppm) and a total flux of subducted sedi- 
ment of 3.8 x 1015 g/year (39). Given the 

anticipated heterogeneity in N contents of vari- 
ous sediment lithologies (35) as well as the fact 
that sediments subducted worldwide are charac- 
terized by large compositional differences (41), 
we consider that the apparent difference be- 
tween input and output estimates falls within the 
level of overall uncertainty. In this case, there- 

fore, it would seem that sediments worldwide 

transport N to depths of arc magma generation 
only, and that recycling of subducted N to the 
surface via arc volcanism is extremely efficient. 
The corollary of this conclusion is that if 
surficial N is recycled into the deeper mantle 

[see (12)], then it would require a source (e.g., 
oceanic crustal basement) other than shallow 
marine sediments. 
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Splay Fault Branching Along the 

Nankai Subduction Zone 
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Seismic reflection profiles reveal steeply landward-dipping splay faults in the 
rupture area of the magnitude (M) 8.1 Tonankai earthquake in the Nankai 
subduction zone. These splay faults branch upward from the plate-boundary 
interface (that is, the subduction zone) at a depth of -10 kilometers, -50 to 
55 kilometers landward of the trough axis, breaking through the upper crustal 
plate. Slip on the active splay fault may be an important mechanism that 
accommodates the elastic strain caused by relative plate motion. 
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The seaward updip limit of the seismogenic 
zone helps to determine the size of the tsu- 
nami, whereas the landward downdip limit 
helps to determine the intensity of the strong 
ground motion, both of which may be gener- 
ated by a large earthquake in the seismogenic 
zone. A thrust-type reverse-fault branching 
upward from the subduction zone at depth is 
often referred to as a "splay fault." Fukao (2) 
pointed out the importance of such splay 
faults, which may provide a mechanism by 
which earthquakes generate tsunamis. Even 
though slip on splay faults has been inferred 
in various convergent margins related to large 
earthquakes from paleoseismology and crust- 
al deformation modeling (2-8), there are few 
seismic reflection images of such faults to use 
in directly mapping the fault geometry. 
Among these subduction zones, the Nankai 
subduction zone (Fig. 1) off southwest Japan 
is known as one of the best-suited convergent 
plate margins for studying subduction zone 
earthquakes. Historically, large earthquakes 
along subduction zones have occurred with a 
recurrence interval of 100 to 200 years (9) 
along the Nankai Trough margin. The last 
two large earthquakes that occurred off the 
Kii Peninsula were the 1944 Tonankai (M = 

8.1) and 1946 Nankaido (M = 8.3) events. 
Multichannel seismic (MCS) reflection pro- 

files (10) show splay faults in the rupture area 
of the 1944 Tonankai earthquake. The MCS 
profile on line 5 (Fig. 2A) reveals a unique, 
landward dipping, -30-km-long thrust fault 
that branches upward from the plate-boundary 
interface at a depth of -10 km, -55 km land- 
ward from the deformation front (trough axis) 
in the forearc basin. This thrust fault becomes 
steeper (with an 8? to 20? dip) as it approaches 
the sea floor just seaward of the outer ridge, 
breaking through the upper crustal plate. Be- 
cause the thrust fault almost reaches the sea 
floor and is apparently within the 1944 Tonan- 
kai coseismic rupture area estimated from tsu- 
nami (11) and seismic (12) waveform inver- 
sions, we suggest that it corresponds to a splay 
fault branching upward from the subduction 
zone plate boundary. This splay fault may have 
experienced slip during the 1944 Tonankai 
event.-A splay fault with similar structural fea- 
tures was also identified on other MCS profiles 
on lines 4, 6, and 7 in the 1944 Tonankai 
coseismic rupture area, although a strong reflec- 
tion from the splay fault was not observed at 
depths shallower than -5 km. On line 4 (Fig. 
2D), the fault branches upward from the plate- 
boundary interface at -50 km landward from 
the trough axis. On line 7 (Fig. 2E), the splay 
fault with a steeper angle (with a 15? to 25? dip) 

Institute for Frontier Research on Earth Evolution, 
Japan Marine Science and Technology Center, Yoko- 
suka 237-0061, Japan. 
*To whom correspondence should be addressed. E- 
mail: jopark@jamstec.go.jp 

REPORTS 

branches upward from the plate-boundary in- 
terface at a depth of -10 km, -55 km land- 
ward from the trough axis. The uppermost 
crustal sequence at the seaward tip of the 
forearc basin shows apparent landward-dipping 
bedding planes (Fig. 2, B and E), indicating 
substantial uplift of the outer ridge. Slip on the 
splay fault may heave the seaward tip of the 
forearc basin upward, producing a conspicuous 
sea-floor fault scarp and a subsequent outer 
ridge, which are in good agreement with geo- 
logic evidence (13). We observed several active 
normal faults (Fig. 2, B and D) cutting through 
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the uplifted crustal layers. These active normal 
faults may indicate an ongoing postseismic (or 
interseismic) relaxation after the coseismic slip 
on the splay fault, which would support the 
suggestion that the splay fault is closely related 
to the recent large event. 

We note the reverse polarity reflection (Fig. 
2C) of the splay fault, which may indicate 
elevated fluid pressure in the fault zone (14, 
15). Recent submersible observations (16) were 
made of chemosynthetic benthic colonies 
around the sea-floor scarp of the splay faults, 
indicating the presence of cold seeps (Fig. 2A) 
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and possible fluid migration along the fault. 
Stick-slip behavior in a fault zone requires that 
the strength be recovered after any slip event so 
that the earthquake failure can repeat (17). En- 
hanced mineral precipitation caused by active 
fluid migration could contribute to the healing 
of the splay fault. As a weak fault zone, the 
splay fault is likely to be repeatedly chosen as 

REPORTS 

an easier pathway than the main subduction 
zone for rupture propagation of earthquakes. In 
particular, the 1944 Tonankai rupture area pre- 
serves the slip behavior on the splay fault as 
sea-floor topography. A combination of swath- 
bathymetric (Fig. 1) and MCS (Fig. 2, A, D, 
and E) data exhibit a pronounced, continuous 
outer ridge of topography longer than 120 km 

along the strike, which we believe is caused by 
the splay fault slip in the 1944 Tonankai event. 
This outer ridge topography suggests repeating 
slip on the splay fault during the historic earth- 
quake cycles, rather than the topography having 
been caused by an isolated event. Moreover, 
anomalously high gamma-ray intensity and U- 
series radioactive nuclide concentration (18) at 

Fig. 2. Poststack depth-migrated MCS profiles showing the splay faults. 
The subducting oceanic crust is shaded light blue. The seaward distribu- 
tion of the 1944 Tonankai coseismic slips estimated from tsunami 
(orange lines) and seismic (blue lines) inversions is projected in the 
profiles. Locations of both the splay fault's initial branching and the 
decollement stepdown to the top of the oceanic basement are marked in 
orange dotted circles. Green and black arrows show motions of the splay 
fault slip and the decollement or normal fault, respectively. Vertical 

exaggeration is 2x. (A) MCS profile on line 5. The PSP subducting 
beneath the upper plate produces a huge accretionary prism. The loca- 
tion of the cold seep is marked by an asterisk. Note active normal faults 
[(B), inset] cutting the well-stratified, landward-tilting cover sequence 
and reverse polarity reflection [(C), inset] of the splay fault at a depth of 
-7 km around the shot point (SP) 2365. (D) The active normal faults are 
also observed on line 4. (E) The splay fault is also identified on line 7, 
which is separated from line 4 by an -80-km distance. 
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Fig. 3. Schematic cross section of the updip portion of the Nankai subduction zone. Gradation in gray scale shows the degree of interplate coupling. 
Temperature at the plate boundary is inferred from thermal modeling results (20). 

www.sciencemag.org SCIENCE VOL 297 16 AUGUST 2002 

O.- 
0- 

Il I llaEe~~~. ~?--?. I I 

1159 



the cold seep sites (Fig. 2A), which may be 
attributed to the formation ofmicrocracks in the 
fracture zone of the active fault (19), support 
the hypothesis that the splay fault is one of the 
major active faults in the Nankai subduction 
zone. Slip on the active splay fault may be an 
important mechanism that accommodates elas- 
tic strain due to relative plate motion. 

All of the interseismic elastic strain at the 
updip portion of the seismogenic zone could be 
released by the coseismic splay fault slip alone, 
but it seems more likely that there would be slip 
partitioning between it and the subduction zone 
(Fig. 3). The splay fault's initial branching por- 
tion (Figs. 1 and 2) is within the 1944 Tonankai 
coseismic rupture area, suggesting a causal re- 
lation between the earthquake and slip parti- 
tioning. Even though we cannot distinguish the 
splay fault slip from the subduction zone slip, 
the splay fault may be responsible for tsunami 
earthquake generation, accompanying deforma- 
tion of the forearc accretionary wedge. 

The updip limit of the seismogenic zone is 
constrained by the structural extent of the 
splay fault and the outer ridge topography, 
which we believe accumulated during repeat- 
ed earthquake cycles. Namely, the splay 
fault's intersection portion with the mega- 
thrust (Fig. 3), to which the 1944 coseismic 
rupture propagated, can be regarded as the 
"true" updip limit of the seismogenic zone to 
generate large earthquakes along the subduc- 
tion zone. Based on thermal modeling (20), 
the temperature at the true updip limit corre- 
sponds to -200?C, which is greater than the 
-150?C threshold temperature proposed as 
the onset of stick-slip behavior (20). The 

150?C temperature corresponds to the tem- 
perature at a portion where the decollement 
steps down to the top of the oceanic crust 
under the outer ridge (Figs. 2A and 3). 

Finally, structural features such as the de- 
collement stepdown (150?C at -30 km) and 
the splay fault branching (200?C at -55 km) 
enable us to divide the updip portion of the 
Nankai subducting plate boundary into three 
different zones (Fig. 3): (i) a decoupled aseis- 
mic zone, (ii) a slip partitioning transition zone, 
and (iii) a coupled seismic zone. For the de- 
coupled aseismic zone between the trough axis 
(0 km) and the outer ridge, -30 km landward 
from the trough axis, the presence of stably 
sliding clays leads to free slip along the decolle- 
ment (21). Underneath the outer ridge, the de- 
collement steps down to the top of the oceanic 
crust (Fig. 2A) and the incipient plate-boundary 
coupling (locking) occurs because of dehydra- 
tion of clay minerals (21), indicating the onset 
of interplate stick-slip and seismogenic behav- 
ior. The plate-boundary coupling may mature 
landward in the slip partitioning zone between 
the decollement stepdown portion and the splay 
fault branching portion, which can be treated as 
a transition zone from aseismic to seismic be- 
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REPORTS 

and may partition some slip to the surface, 
where it can help generate a tsunami. The 
branching portion of the splay fault in the seis- 
mic zone is coupled to the subduction zone and 
may help generate large earthquakes along the 
plate boundary. 
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Photothermal Imaging of 

Nanometer-Sized Metal 

Particles Among Scatterers 
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Ambient optical detection of labeled molecules is limited for fluorescent dyes 
by photobleaching and for semiconducting nanoparticles by "blinking" effects. 
Because nanometer-sized metal particles do not optically bleach, they may be 
useful optical labels if suitable detection signals can be found. We demonstrate 
far-field optical detection of gold colloids down to diameters of 2.5 nanometers 
with-a photothermal method that combines high-frequency modulation and 
polarization interference contrast. The photothermal image is immune to the 
effects of scattering background, which limits particle imaging through Rayleigh 
scattering to diameters larger than 40 nanometers. 
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An ideal optical label for large molecules should 
generate an intense optical signal; it should also 
be small, durable, chemically inert, and apt to 
bind to the molecule of interest in a controlled 
manner. All present-day optical markers fall 
short of the "ideal label" status. The most com- 
mon labels, fluorescent dyes, can be chemically 
grafted to the molecule under study. Their red- 
shifted fluorescence can be sifted very efficient- 
ly out of the scattering background (1). Their 
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main drawback, however, is photobleaching, 
i.e., the irreversible photochemical processes 
leading from the excited fluorophore to nonfluo- 
rescent products. Nanocrystals of II-VI semi- 
conductors (such as CdSe/ZnS) have recently 
been proposed as optical markers (2, 3). Al- 
though they resist bleaching longer than dyes, 
their luminescence brightness is liable to "blink- 
ing" (4), and they are difficult to functionalize in 
a controlled way. 

Metal particles are currently used for single- 
particle or single-molecule tracking (5) and in 
immunocytochemistry (6, 7). They include col- 
loids with diameters ranging from a micrometer 
to a few nanometers, and synthesized clusters 
(8, 9) with well-defined chemical structures. 
Submicrometer metal particles down to diame- 
ters of 40 nm can be imaged in an optical 
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