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sphere, we have calculated the atmospheric 
residence time of MeONO2 and EtONO2. 
Use of the mean sea-to-air fluxes for 0? to 
40?S (Table 1) and measured atmospheric 
concentrations results in a lifetime of be- 
tween 4.5 and 25 days for MeONO2 and 
between 5 and 10 days for EtONO2 (22). 
Literature estimates of the atmospheric life- 
time of MeONO2, based on known atmo- 
spheric destruction processes, are poorly con- 
strained, ranging from 6 to 29 days (23, 24). 
For EtONO2, the atmospheric lifetime with 
respect to photodissociation at the equator 
and at 40?S has been estimated to be 7 and 12 
days, respectively, for October (25). The rea- 
sonable agreement between the two methods 
implies that, for this region at least, the oce- 
anic flux of these light alkyl nitrates is a 
significant source component of the light al- 
kyl nitrate budget, thereby satisfying the re- 
quirements of the reported atmospheric mea- 
surements for a marine source. 
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Subduction and Recycling of 

Nitrogen Along the Central 

American Margin 
Tobias P. Fischer,'* David R. Hilton,2 Mindy M. Zimmer,' 
Alison M. Shaw,2 Zachary D. Sharp,1 James A. Walker3 

We report N and He isotopic and relative abundance characteristics of volatiles 
emitted from two segments of the Central American volcanic arc In Guatemala, 
815N values are positive (i.e., greater than air) and N2/He ratios are high (up to 
25,000). In contrast, Costa Rican N2/He ratios are low (maximum 1483) and S15N 
values are negative (minimum -3.0 per mil). The results identify shallow hemipe- 
lagic sediments, subducted into the Guatemalan mantle, as the transport medium 
for the heavy N. Mass balance arguments indicate that the subducted N is 
efficiently cycled to the atmosphere by arc volcanism. Therefore, the subduc- 
tion zone acts as a "barrier" to input of sedimentary N to the deeper mantle. 
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The present-day isotopic composition of N (1) is 
different in the various terrestrial reservoirs. For 
example, the mantle supplying mid-ocean ridge 
basalts (MORB) is depleted [815N - -5 per mil 
(%o)] compared with Earth's atmosphere (2-7). 
The isotopic difference between mantle and at- 
mospheric N was probably established early in 
Earth's history, reflecting the integrated effects 
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of partial outgassing of primordial N, possible 
late addition of asteroidal and/or cometary N, 
and/or hydrodynamic escape of a primary atmo- 
sphere (8-11). Subsequent modifications to the 
N isotope balance between the mantle and at- 
mosphere may have occurred through subduc- 
tion of biogenic and terrigenous sediments into 
the mantle (12). Sedimentary material also has a 
N isotopic composition (815N - +6 to +7%o) 
distinct from the atmosphere and upper mantle 
(13, 14) resulting from a kinetic isotope effect 
that has enriched (residual) nitrate in 15N (15- 
17). This large isotopic contrast between mantle 
and crustal/atmospheric reservoirs gives N po- 
tential as a tracer of volatile recycling between 
the surface and Earth's interior. Here we focus 
on volatile exchange associated with the sub- 
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Table 1. Nitrogen and helium isotope and relative abundance character- geothermal well; GM, gas from mudpot. Nitrogen source codes 
istics of Central American volcanic gases. Guatemala samples were taken denote fraction of nitrogen derived from air (A), mantle (M), and sediment 
in May 2001, Costa Rica samples in January, March, and July 2001. Type (S); see (28) for calculation of these fractions. nd, Not determined; stm, 
code: GF, gas from fumarole; GS, gas from (hot) spring; GW, gas from steam. 

Long. Temp. HeTyp/4e N (% Nitrogen source 815NM+ Volcano/location Lat. (N) W O Type CN (%o) (mmo[/ N./He %St (%) 
(Rc/RA), mot) A S M () 

*Corrected for the effects of air-derived helium (55). Error quoted at the 1(r level. fPercentage of sediment-derived nitrogen in binary sediment-mantle mixture. :Measured 
nitrogen isotope ratios are corrected for air contamination using S15Nc = f 815NM + (1 - f )lSNs where S15NM = -5 %o, 815Ns = +7%o., and f is the fraction of mantle-derived 
nitrogen [calculated from penultimate column: f = 1 - (%S/100)]. ?Estimated value derived by projecting data point onto M-S mixing curve (N2/He = 200 for Poas crater 1/01; 
N2/He = 312 for Poas crater 7/01; N2/He = 750 for Turrialba). ?Average of three other ratios at same locality. 

REPORTS 

duction process and specifically on the N iso- front extending some 1100 km from the Guate- evidence for sediment accretion along the Cen- 

tope systematics of the volcanic arc of Central mala-Mexico border to central Costa Rica. Vol- tral American arc, implying that the bulk of the 
America. canoes tend to occur as large composite volcanic sediments on the downgoing Cocos Plate are 

Central America is the site of active subduc- centers, with an average spacing of -25 km- subducted into the mantle (20-23). Deep sea 
tion of the Cocos Plate beneath the Caribbean which is less than the spacing at other subduc- drilling sites off Guatemala/El Salvador (site 
Plate. Resulting volcanism occurs along a linear tion zones (18, 19). There is no geophysical 495) and Costa Rica (site 1039) have revealed 

Guatemala 
Zunil 

Zunil 93.0 GF 1.9 + 0.5 4.69 + 0.05 0.006 5139 + 524 0.69 0.29 0.02 92.3 

0.034 6691 + 682 0.78 0.20 0.02 91.4 

0.090 2227 + 227 0.09 0.85 0.05 94.0 

6.07 

5.97 

6.28 

14? 91? 
46.693' 30.542' 

San Marcos 
La Cimarron 

Volcan Fuego 
Summit 

Amatitlan-Pacaya 
Lake Shore 

Hot water dyke 

Laguna de caldera 

Laguna de caldera 
(2nd well) 

Tecuamburro 

Laguna Ixpacho 

Duplicate (L.I.) 

Sulfur mine 

Moyuta 
Las Guineas 

Mirram "El 
Volcan" 

Costa Rica 

nd nd 94.7 GS 1.3 + 0.4 2.23 + 0.03 

14? 90? 
28.590' 52.816' 

14? 90? 
28.395' 36.140' 
14? 90? 
27.074' 38.572' 
14? 90? 
24.695' 35.807' 
14? 90? 
24.695' 35.807' 

14? 90? 
11.577' 25.394' 
14? 90? 
11.577' 25.394' 
14? 90? 
09.129' 24.871' 

14? 90? 
03.215' 05.831' 
14? 90? 
00.541' 06.068' 

87.7 GF 5.7-+ 0.2 6.95 ? 0.06 

93.8 GS -0.5 + 0.4 6.72 ? 0.07 

76.4 GS 2.1 ? 0.2 6.22 - 0.06 

1.595 9748 ? 994 

2.324 4385 + 447 0.65 0.32 0.03 91.8 

0.001 1393 + 142 0.68 0.22 0.10 67.7 

0.001 1870 + 191 0.43 0.49 0.07 87.2 

0.325 8200 + 836 0.09 0.90 0.00 99.5 

0.468 7734 + 789 0.14 0.85 0.01 99.3 

6.01 

3.12 

5.47 

6.94 

6.91 

stm GW 1.0 + 0.5 7.31 + 0.07 

stm GW 3.1 + 0.4 7.60 + 0.08 

77.8 GS 6.3 + 0.3 6.39 t 0.07 

77.8 GS 5.9 + 0.3 6.38 + 0.06 

93.1 GF -0.7 ?0.5 5.39 + 0.06 

85.9 GF 4.3 + 0.4 7.39 + 0.06 

80.7 GM 1.8 + 0.3 7.36 + 0.09 

76.0 GF -1.9 + 0.3 7.10 + 0.10 

92.2 GF -2.7 + 0.4 7.22 + 0.07 

1.015 24,899 + 2539 

0.519 6042 + 616 0.36 0.63 0.02 97.6 

6629 ? 676 0.72 0.26 0.02 93.6 

6.72 

6.24 

-1.91 

-4.78 

-4.89 

-3.04 

0.81 

-4.78 

4.16 

Poas 
Crater - 1/01 10? 84? 

11.883' 13.719' 
Crater - 3/01 10? 84? 

11.883' 13.719' 
Crater - 7/01 10? 84? 

11.883' 13.719' 
Crater - 7/01 10? 84? 

11.883' 13.719' 
Turrialba 

Summit - 1/01 10? 83? 
01.156' 45.937' 

Summit - 7/01 10? 83? 
01.156' 45.937' 

Irazu 
Summit landslide 9? 83? 
- 1/01 59.723' 47.308' 

0.020 

0.023 

0.037 

101 ?+ 10 0.00 0.26 0.75 25.7? 

268 + 27 0.43 0.01 0.56 1.9 

373 + 38 0.52 0.01 0.48 <1? 

156 ?+16 0.01 0.16 0.83 16.3 

643 ? 66 0.56 0.22 0.23 48.4 

866 + 88 0.80 0.00 0.20 <1? 

1483 + 151 0.59 0.31 0.10 76.4 

92.8 GF -2.4 ? 0.5 7.14 ? 0.07 

108 GF -3.0 + 0.6 7.1511 + 0.07 0.021 

89.6 GF 0.4 + 0.3 7.74 ? 0.07 0.102 

89.7 GF -1.0 + 0.3 8.10 ? 0.10 0.068 

88.5 GF 1.7 ? 0.4 7.24 ? 0.06 0.537 
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little regional variation in the sedimentary 
quences on the oceanic plate: The sedin 
column consists of -175 m of hemipela 
diatom-rich mud overlying -250 m of pel 
carbonates (20, 21, 24, 25). Both units are E 

chemically distinct and contribute to volc; 
sources along much of the strike of the arc 
26). In Costa Rica, however, the low 'lBe c 
tents of arc magmas suggest that the hem 
lagic portion of the sedimentary column is 
derplated to the overriding Caribbean P] 
leaving only the pelagic carbonates to contril 
to the slab flux (27). This variation in 
amount and type of sediment involved in pe 
genesis makes Central America an ideal loco 
to investigate details of the transfer of N into 
mantle and the associated effects on N2/He 
'15N ratios. 

We measured N concentrations, N2/He 
tios, and N and He isotopic compositions of 
discharges of three volcanic centers in C 
Rica and six volcanic regions in Guaten 
(Table 1) (28). The majority of samples 1 
3He/4He ratios in the range 5 to 8 R^, (where 
is the 3He/4He value of air = 1.4 X 10 
indicating that both segments of the arc san 
He primarily from the mantle wedge (29, 30 
contrast, the N isotope systematics and N2 
ratios vary between Guatemala and Costa R 
The Guatemalan volatiles have '85N values 

Fig. 1. Geothermal fluids from 
Guatemala (filled circles) and 
Costa Rica (open circles) com- 
pared with possible end member 
compositions for air (AIR), man- 
tle (M), and sediment (S). Dotted 
lines reflect air addition to mix- 
tures of mantle and sediment 
end members (solid line), with 
percentages representing the 
amount of sediment in the sed- 
iment-mantle binary mix. N-iso- 
tope end members from (1-7, 
13, 14); N2/He from (54). 

Fig. 2. Helium (3He/4He) ver- 
sus N isotopes (815N) (both 
corrected for contamination; 
see Table 1 for details) for 
geothermal fluids from Gua- 
temala (filled circles) and 
Costa Rica (open circles). The 
solid line is a binary mixing 
trajectory between mantle 
and sediment end members, 
with a relative enrichment of 
70 of the sediment N2/He 
value relative to that of the 
mantle [i.e., K = 70 (56)]. 
Percentages marked along 
the trajectory indicate per- 
cent sediment in the binary 
mixture. See (32, 33) for He- 
isotope end members. 
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American margin has been estimated at 1.7 X 
109 mol/year by combining an estimate of the 
total SO2 flux (2.1 X 1010 mol/year) with the 
median SO2/N2 ratio (12.6) derived from almost 
100 analyses of volcanic gas chemistries in the 

region (39). The above flux can be corrected for 
air-derived N on the basis of measured N2/Ar 
ratios and the assumption that Ar is derived 
from air. The revised value for the non-air N2 
flux from the Central American arc is 2.9 X 108 

mol/year (39). This output flux balances almost 

exactly the input flux of N into the trench and 

implies that N is efficiently released from the 
slab and transported through the mantle wedge 
to the atmosphere by arc volcanism. Thus, the 
Central American subduction zone acts as a 
"barrier" (40) for the transport of sedimentary N 
into the mantle beyond the region of magma 
formation below the arc; that is, the N transfer 
from the crust to deep mantle is short-circuited 

by release through arc volcanism. 
If the Central American subduction zone 

acts to efficiently recycle subducted sedimenta- 

ry N to the atmosphere, the question arises 
whether subduction zones worldwide behave in 
an analogous fashion. The output of N from arcs 

globally has been estimated at 3.2 X 1010 mol/ 

year, which corrects to a value of 2.0 x 1010 

mol/year when the air-N contribution is sub- 
tracted (39). The input from subducted sedi- 
ments is 1.37 x 1010 mol N/year, based on an 
estimate of the N concentration of 0.01 wt % 

(100 ppm) and a total flux of subducted sedi- 
ment of 3.8 x 1015 g/year (39). Given the 

anticipated heterogeneity in N contents of vari- 
ous sediment lithologies (35) as well as the fact 
that sediments subducted worldwide are charac- 
terized by large compositional differences (41), 
we consider that the apparent difference be- 
tween input and output estimates falls within the 
level of overall uncertainty. In this case, there- 

fore, it would seem that sediments worldwide 

transport N to depths of arc magma generation 
only, and that recycling of subducted N to the 
surface via arc volcanism is extremely efficient. 
The corollary of this conclusion is that if 
surficial N is recycled into the deeper mantle 

[see (12)], then it would require a source (e.g., 
oceanic crustal basement) other than shallow 
marine sediments. 
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Splay Fault Branching Along the 

Nankai Subduction Zone 

Jin-Oh Park,* Tetsuro Tsuru, Shuichi Kodaira, Phil R. Cummins, 
Yoshiyuki Kaneda 

Seismic reflection profiles reveal steeply landward-dipping splay faults in the 
rupture area of the magnitude (M) 8.1 Tonankai earthquake in the Nankai 
subduction zone. These splay faults branch upward from the plate-boundary 
interface (that is, the subduction zone) at a depth of -10 kilometers, -50 to 
55 kilometers landward of the trough axis, breaking through the upper crustal 
plate. Slip on the active splay fault may be an important mechanism that 
accommodates the elastic strain caused by relative plate motion. 
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Large thrust earthquakes along subduction 
zones pose a seismic and tsunami threat to 
densely populated coastal cities. These earth- 
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quakes can be generated repeatedly on a cer- 
tain portion of the plate-boundary interface 
(1), which is called the seismogenic zone. 
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