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Analytic and Algorithmic 
Solution of Random 

Satisfiability Problems 
M. Mezard,1 G. Parisi,'-2 R. Zecchinal 3* 

We study the satisfiability of random Boolean expressions built from many 
clauses with K variables per clause (K-satisfiability). Expressions with a ratio a 
of clauses to variables less than a threshold ac are almost always satisfiable, 
whereas those with a ratio above this threshold are almost always unsatisfiable. 
We show the existence of an intermediate phase below oa, where the prolif- 
eration of metastable states is responsible for the onset of complexity in search 

algorithms. We introduce a class of optimization algorithms that can deal with 
these metastable states; one such algorithm has been tested successfully on the 

largest existing benchmark of K-satisfiability. 

The K-satisfiability problem (Ksat) asks 
whether one can satisfy simultaneously a set 
of M constraints between N Boolean vari- 
ables, where each constraint is a clause built 
as the logical OR involving K variables (or 
their negations). Ksat is at the core of com- 
binatorial optimization theory (1) and often 
serves as a benchmark for search algorithms 
in artificial intelligence and computer sci- 
ence. An efficient algorithm for solving Ksat 
for K > 3 would immediately lead to other 
algorithms for efficiently solving thousands 
of different hard combinatorial problems. 
The class of combinatorial problems sharing 
such a crucial feature is called NP-complete 
(2), and it is a basic conjecture of modem 
computer science that no such efficient algo- 
rithm exists. Algorithms that are used to 
solve real-world NP-complete problems dis- 
play a huge variability of running times, 
ranging from linear to exponential. A theory 
for the typical-case behavior of algorithms, 
on classes of random instances chosen from a 
given probability distribution, is therefore the 
natural complement to the worst-case analy- 
sis (3-5). Whereas 1 sat and 2sat problems are 
solved efficiently by polynomial time algo- 
rithms (6), K > 2 randomly generated Bool- 
ean formulae may become extraordinarily 
difficult to solve: It has been observed nu- 
merically (7, 8) that computationally hard 
random instances are generated when the 
problems are critically constrained [i.e., close 
to the satisfiable-unsatisfiable (SAT- 
UNSAT) phase boundary]. The study of crit- 
ical instances represents a theoretical chal- 
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lenge toward a greater understanding of the 
onset of computational complexity and the 
analysis of algorithms. Moreover, such hard 
instances are a popular test bed for the per- 
formance of search algorithms (9). 

The random Ksat problem has close sim- 
ilarities with models of complex materials 
such as spin glasses, which are fundamental 
systems in the statistical physics of disor- 
dered systems (10). Spin glasses deal with 
binary variables ("spins") interacting with 
random exchange couplings. Each pair of 
interacting spins can be seen as a constraint, 
and finding the state of minimal energy in a 
spin glass amounts to minimizing the number 
of violated constraints. Although the con- 
straints in spin glasses and Ksat differ with 
respect to their precise form, in both cases the 
difficulty comes from the possible existence 
of "frustration" (11), which makes it difficult 
to find the global optimal state by a purely 
local optimization procedure. Links between 
combinatorial optimization and statistical 
physics have been known for years (10, 12, 
13). Techniques from statistical physics are 
particularly useful when the size of the in- 
stance is large. 

Two main categories of questions can be 
addressed. One type is algorithmic (e.g., find- 
ing an algorithm that decides whether an 
instance is SAT or UNSAT, or that tries to 
minimize the number of violated constraints). 
Another one is more theoretical and deals 
with random instances for which one wants to 
predict the typical behavior (e.g., phase tran- 
sitions and structure of the solution space). 

We address the two types of questions in 
the 3sat problem. When the numbers of vari- 
ables N and of clauses M both increase at a 
fixed value of a = MIN, random Ksat prob- 
lems become generically SAT at small ax and 
generically UNSAT at large a. The existence 
of a SAT-UNSAT phase transition in the 
infinite N limit has been established rigorous- 
ly for any K (14), but the critical value oxc 

(that separates the two phases) has been 
found only in the (polynomial) K = 2 prob- 
lem where oc = 1 (15-17). For the NP- 

complete case K > 3, much less is known. 
The present best numerical estimate for ac% at 
K = 3 is 4.26 (18), and the rigorous bounds 
are 3.42 < oc < 4.506 (19, 20); previous 
statistical mechanics analysis, using the rep- 
lica method, has found c%(3) - 4.48 (21) and 

Ocx(3) - 4.396 (22) in the framework of vari- 
ational approximations. The SAT-UNSAT 
decision problem is also known experimen- 
tally to be algorithmically harder to solve in 
the neighborhood of ac, depending on the 
characteristics of the SAT-UNSAT phase 
transition. Indeed, 2sat and 3sat are different 
in this respect (23). 

Setting out the statistical physics 
problem. The Ksat problem deals with N 
Boolean variables xi, i E {1, ..., N}. Each 
clause a E {1, ..., M} involves K variables 

{il(a), ... xiK(a)}. Each such variable can be 

negated or not, and the clause is built as the 
OR function of the K resulting variables. In 

physical terms, the variable xi can be repre- 
sented by a "spin" si = +1 through the 
one-to-one mapping si = -1 if xi is false and 
Si = +1 if xi is true. For each variable Xir(a) 

appearing in clause a, one introduces a "cou- 

pling" Jar = -1 if the variable appears negat- 
ed in the clause; otherwise the coupling is Jr 
= 1. The sets of indices i1(a), ..., iK(a) and of 

"couplings" Ja = {J,..., Ja} define an in- 
stance of the problem under study. Given a 

spin configuration, the "energy" EJa(Sil(a), . 

Sik(a)) of clause a is equal to 0 if the clause is 

satisfied, or equal to 1 if it is violated (24). 
The total energy E equals the number of 
violated clauses. 

In statistical physics, one assigns to each 
of the 2N spin configurations a Boltzmann 

probability exp(-PE)/Z, where 13 is an aux- 
iliary parameter playing the role of the in- 
verse of temperature, and Z is a normalization 
term; here we are interested in the 3 --> oo 

"zero-temperature" limit, where Boltzmann's 
law selects optimal states. 

The spin glass approach. We first study 
the large N limit of the random 3sat problem, 
where the indices in each clause are chosen 

randomly, as well as the sign of each cou- 

pling, with uniform distributions. Our ap- 
proach to these problems uses a general strat- 

egy initiated years ago in spin glass theory 
(10). The first concept we need to introduce is 
that of a state. Roughly speaking, states cor- 

respond to connected regions of configura- 
tions, such that one must cross energy barri- 
ers that diverge when N -> oo to go from one 

state to another. The archetype of such a 
situation is the ferromagnetic transition 
where the spins collectively polarize, either 
toward an "up" state or toward a "down" 
state. In frustrated systems such as satisfiabil- 

ity problems, many states can exist: The 
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number of states with energy E behaves as 
exp[N ((e)], where e - EIN; the function 
((e), called the complexity, is a crucial con- 
cept in studies of structural glasses. The 
ground-state energy density e can be found 
by the condition E(e) = 0. Here we choose a 
restricted zero-temperature definition that ap- 
plies to random Ksat: A state is simply a 
cluster of configurations of equal energy re- 
lated by single spin-flip moves, such that the 
energy cannot be decreased by any sequence 
of single spin flips (25). Generalizing the 
approach of (26), one can develop a whole 
"zero-temperature thermodynamics" of the 
states by introducing a "free energy" function 
4I(y) defined from 

exp[-Nyi(y)] = fde exp{N[(e) -ye]} 

(1) 
The reweighting y is a Lagrange parameter 
(similar to an inverse temperature) that al- 
lows the energy of the states to be fixed. 
Larger reweighting selects states of lower 
energies until one reaches y = y*, corre- 
sponding to the lowest energy states (y* = oo 
in the SAT region). 

The cavity method: Message-passing 
procedures. To compute >(y), we use the 
zero-temperature cavity method (27, 28), in 
which the basic ingredients are the cavity 
fields and the cavity biases, which are defined 
in each state. The cavity field hia measures 
the tendency of spin i to be up, when one of 
the clauses, a, to which i belongs, has been 
disconnected (Fig. 1). It is equal to the sum of 
cavity biases ubi, sent to site i from all the 
other clauses b to which it belongs. In com- 
puter science terminology, cavity fields are 
messages sent from a variable node to a 
function node, whereas cavity biases are mes- 
sages sent from a function node to a variable 
node (29). The cavity biases are determined 
by a local optimization procedure. Consider 
one clause a, involving K variables s1, ..., sK, 
and a penalty function c(S1, ..., SK). The 

optimization on the variables s2 ..., SK, ex- 
pressed as 

min 
s(J(1, ... SK) - h 

2'"' K 2 
j j=2 

1 
= - [aj(h2, . hK) + s1uj(h2, ..., hK)] 

(2) 
defines the mean energy shift aj and the 
cavity bias ua_l = u(h2, ..., hK) propagated 
from this clause to the variable s1 (30). 

The advantage of cavity biases and cavity 
fields in large (N >> 1) random Ksat and spin 
glass problems is the special structure of the 
interaction graph: It is locally tree-like, and 
the connectivity fluctuates from site to site 
with a Poisson distribution of mean Kot (see 
Fig. 1). On a more global scale, these random 

graphs have loops with a typical length grow- 
ing as log(N). As the cavity fields h2 ..., hK 
are defined in the absence of the clause, 
they correspond to faraway variables [with 
a distance of order log(N)]. The "clustering 
property," valid inside each state, implies 
that their correlations go to zero at large N 
(on a real tree they would be fully uncor- 
related). The topology of the graph implies 
that the cavity equations are exact on finite 
subgraphs. 

To determine the statistical properties of 
the set of cavity biases and how they change 
from state to state, we introduce "surveys," 
which are histograms of cavity biases. For 
each state o, there is one cavity bias u_>1 
propagated from one clause a to site 1; it can 
be computed from Eq. 2, where the cavity 
fields are those corresponding to the state o. 
For a given value of the reweighting, the 
survey propagated to spin s1 in Fig. 1 is 
defined as Q(v)v() = CE,(u - ua_o), 
where C is a normalization constant ensuring 
that Q(Y) (u) is a probability distribution, 
and the sum over o is restricted to the states 
having the energy density e selected by the 
reweighting y. 

The survey propagation rules on the graph 
of Fig. 1 take the precise form 

r q 

Q(a l(u) 
= C' dweQ(y) ( Wr) 

r q 

fq n dv,Q(Y) -(v,) 
[u - = 

8[u - Uj(W,V)] exp[yaj(W,V)] (3) 

where W= w1 + ... + Wq, V= + ... + 

vq,, and C' is a normalization constant. The 
exponential term in Eq. 3 takes care of the 
energy-level crossings induced by the propa- 
gation. Once the surveys are known, the free 
energy (D(y) can be computed using the for- 
mulae of (27, 28), and the complexity can be 
deduced from Eq. 1. The order parameter of 
the theory is the collection of the surveys. 

Phase diagram. In the zero-temperature 
3sat problem, one sees from the definition (2) 
that a given cavity bias ua, takes either the 
values {0,1 } (if the variable xi appears negat- 
ed in clause a) or the values {0,-1}. The 
corresponding survey Q() (u) is thus char- 
acterized by a single number, the probability 
that u = 0. Using this simplification, we have 
been able to compute (31) the statistical dis- 
tribution of surveys in random graphs in the 
infinite volume limit. We find two critical 

, \ , \ / %I 

I \ I \ 
, I \ 

I \ I % I % 

I \ 
\ 

Fig. 1. In the random 3sat problem, the graph of clauses is locally isomorphic to a tree. Variables 
(spins) are depicted by a circle, and clauses by a square. The cavity bias ua,1 sent from the red 
clause a to the variable s1 summarizes the effects of optimizing clause a on s2, s3, taking into 
account all the blue + green (top) part of the graph, when the yellow (bottom) part has been taken 
away. In the absence of the red clause, the cavity field h2 a sums up all cavity biases w1, ..., wq 
arriving onto s2 from the blue clauses, and the cavity field h3_a sums up all cavity biases 1, .... vq, 
arriving onto s3 from the green clauses. 
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values of a at oad - 3.921 and ac - 4.256. 
For a < ad, the solution is of a paramagnetic 
type [all the surveys equal 8(u)], a generic 
instance is satisfiable, and the solution can be 
found even by a simple zero-temperature Me- 
tropolis algorithm (ZTMA) (32). For td < 
a < ac, the space of configurations breaks up 
into many states, and there exists a nontrivial 
complexity (33). Some of the states have zero 
energy; therefore, we are still in the SAT 
phase. It can be argued that algorithms like 
ZTMA will generically get trapped into the 
most numerous states, which have an exten- 
sive (proportional to N) energy Eth. 

At a = 4.2 we find analytically Eth 
0.0036N, and we have checked that ZTMA 
converges to a similar value of energy. The 
fact that eth = EthN is small explains the 
good performance of smarter algorithms on 
instances involving a few thousand variables. 
At a > ac, the system is in its UNSAT phase, 
and the lowest possible energy is positive. 
The phase diagram is summarized in Fig. 2. 

Survey propagation algorithm. We 
now consider one given instance (31), that is, 
one fixed large graph. We have seen experi- 
mentally that in the glassy region ac > td, the 
standard (y = 0) iteration of cavity biases 
either ceases to converge or converges to the 
trivial paramagnetic solution where all 
Ua i = 0. If i is the rth site connected to the 
function node a, we introduce a survey 
Q'(ai(U) -= a.i(U) + (1 

- 
la-,i)G(U + Jr) 

that is characterized by the single number 

,a- ,i The survey propagation of Eq. 3 per- 
formed with random sequential updating is a 
message-passing procedure that defines a dy- 
namical process in the space of the KN vari- 
ables a-- .. We have implemented it on large 
random instances in the hard part of the SAT 
phase, with a - 4.2 to 4.25, using a suffi- 
ciently large value ofy (typically y - 4 to 6). 
The process is found to converge to a unique 
nontrivial solution. We expect that this sur- 
vey propagation technique can be of interest 
in many problems of statistical inference. 

The set of all surveys Q(Y) .(u) found after 

Fig. 2. The phase diagram of the 
random 3sat problem. Plotted is 
eo, the number of violated claus- 
es per variable (red), versus the 
control parameter a, which is 
the number of clauses per vari- 
able. The SAT-UNSAT transition 
occurs at a = ac -~ 4.256. The 
green line is eth, the threshold 
energy per variable, where local 
algorithms get trapped. The blue 
line is the complexity I of satis- 
fiable states, equal to 1/N times 
the logarithm of their number. 

0 
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convergence provides a nontrivial informa- 
tion on the structure of the states. From all the 
surveys sent onto one site i, we reconstruct 
through a reweighted convolution (34) the 
probability distribution of local fields on this 
site, Pi(H). This is a distribution on integers 
[Pi(H) = r8(H- r)wr]. The total weight 
wi+ = JWr= of Pi(H) on positive integers 
gives the fraction of zero-energy states where 
si = 1; similarly, the total weight wi = 

r_.oo wr of Pi(H) on negative integers gives 
the fraction of zero-energy states where si = 
-1. We have checked numerically, on single 
instances with N = 10,000, that these frac- 
tions predicted from survey propagation 
agree with those obtained by averaging on a 
few hundreds of ground states. 

A decimation algorithm. This informa- 
tion can be exploited to invent new types of 
algorithms (31) or to improve existing ones. 
We have worked out one such application, 
the survey inspired decimation (SID), which 
shows promising performance, but other al- 
gorithms probably could be found using the 
same type of information. Given an instance, 
we first compute all the surveys by the survey 
propagation algorithm with a sufficiently 
large value ofy (e.g., y = 6). Then we deduce 
the distribution of local fields, and in partic- 
ular their weights wi- on positive and nega- 
tive integers. We then fix the variable i with 
largest I wi+ - wi-I to the value si = 

Sign(wi+ - wi-). Satisfied clauses are elim- 

inated, and unsatisfied K-clauses involving i 
are transformed into K - 1 clauses, leading to 
a new instance with a reduced number of 
variables (and of clauses). The surveys can be 
propagated again on this new instance (start- 
ing from the previous ones) until conver- 
gence, and the procedure is iterated. When- 
ever a paramagnetic state is found (signaled 
by all ,a--i = 1) or at some intermediate 
steps, a rapid search process like simulated 
annealing at a fixed cooling rate is run. 

This SID algorithm has been tested suc- 
cessfully on the largest (up to N = 2000) 
existing benchmarks (9) of random 3sat 

0.03 

0.02 

0.01 

ad ac a 

instances in the hard regime. Satisfying 
assignments have been found for all bench- 
marks. We have applied the SID to much 
larger instances, increasing N up to N = 
105 at a fixed a = 4.2. The algorithm is 
very efficient: It always finds a SAT con- 
figuration, and its apparent complexity 
scales like N2, although more systematic 
studies with higher statistics will be neces- 
sary to establish this behavior. For the very 
same large instances, the only existing al- 
gorithm able to find solutions, at a consid- 
erable computational cost, is a highly opti- 
mized version of the walksat algorithm (9, 
35). 

Conclusions. We have proposed an ana- 
lytical method that predicts quantitatively the 
phase diagram of the random 3sat problem in 
the limit of infinite number of clauses and 
opens the way to other types of algorithms. The 
existence of an intermediate phase with many 
metastable states close to the SAT-UNSAT 
transition explains the slowing down of algo- 
rithms in this region. We would like to stress 
that the solution we propose is typical of a 
"one-step replica symmetry-breaking" solution, 
as it is called in spin glasses (10). All the 
consistency checks of the analytic results lead 
us to believe that this solution is exact for the 
3sat problem. From the strict mathematical 
point of view, the phase diagram we propose 
should be considered as a conjecture, as for the 
great majority of the theoretical results in sta- 
tistical physics. Our computation implies that a 
way to provide a fully rigorous proof of the 
transition behavior in random Ksat problems 
could be based on the study of the decomposi- 
tion of the probability measure into states en- 
dowed with the clustering property (36). On the 
other hand, the predictions of our theory can be 
compared with numerical experiments, and our 
first such tests have confirmed its validity. On 
the basis of the analytical study, our algorithm 
looks promising in that it can solve large in- 
stances exploring a rather small number of spin 
configurations. It will be interesting to explore 
its application to other optimization problems. 
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White Collar-1, a Circadian Blue 

Light Photoreceptor, Binding to 

the frequency Promoter 
Allan C. Froehlich,1 Yi Liu,'* Jennifer J. Loros,1'zt 

Jay C. Dunlap1t 

In the fungus Neurospora crassa, the blue light photoreceptor(s) and signaling 
pathway(s) have not been identified. We examined light signaling by exploiting 
the light sensitivity of the Neurospora biological clock, specifically the rapid 
induction by light of the clock componentfrequency (frq). Light induction of frq 
is transcriptionally controlled and requires two cis-acting elements (LREs) in the 
frq promoter. Both LREs are bound by a White Collar-1 (WC-1)/White Collar-2 
(WC-2)-containing complex (WCC), and light causes decreased mobility of the 
WCC bound to the LREs. The use of in vitro-translated WC-1 and WC-2 
confirmed that WC-1, with flavin adenine dinucleotide as a cofactor, is the blue 
light photoreceptor that mediates light input to the circadian system through 
direct binding (with WC-2) to the frq promoter. 
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In Neurospora, a wide range of processes is 
light sensitive, including suppression and 
phase shifting of circadian rhythms, photo- 
tropism of perithecial beaks (1), and carot- 
enoid biosynthesis (initially described in the 
first published study of Neurospora in 1843) 
(2). The photoreceptor(s) involved in these 
blue light-influenced processes has not been 
identified, but screens in Neurospora for mu- 
tants involved in light perception and signal- 
ing have repeatedly turned up two indispens- 
able loci, wc-i and wc-2 (3). WC-1 and 
WC-2 are nuclear transcription factors con- 

Departments of 'Genetics and 2Biochemistry, Dart- 
mouth Medical School, Hanover, NH 03755, USA. 

*Present address: Department of Physiology, Univer- 
sity of Texas Southwestern Medical Center, Dallas, TX 
75390, USA. 
tTo whom correspondence should be addressed. E- 
mail: jennifer.loros@dartmouth.edu (.J.L) and 
jay.c.dunlap@dartmouth.edu (J.C.D) 

In Neurospora, a wide range of processes is 
light sensitive, including suppression and 
phase shifting of circadian rhythms, photo- 
tropism of perithecial beaks (1), and carot- 
enoid biosynthesis (initially described in the 
first published study of Neurospora in 1843) 
(2). The photoreceptor(s) involved in these 
blue light-influenced processes has not been 
identified, but screens in Neurospora for mu- 
tants involved in light perception and signal- 
ing have repeatedly turned up two indispens- 
able loci, wc-i and wc-2 (3). WC-1 and 
WC-2 are nuclear transcription factors con- 

Departments of 'Genetics and 2Biochemistry, Dart- 
mouth Medical School, Hanover, NH 03755, USA. 

*Present address: Department of Physiology, Univer- 
sity of Texas Southwestern Medical Center, Dallas, TX 
75390, USA. 
tTo whom correspondence should be addressed. E- 
mail: jennifer.loros@dartmouth.edu (.J.L) and 
jay.c.dunlap@dartmouth.edu (J.C.D) 

taining trans-activation and zinc-finger (Zn- 
finger) DNA binding domains (4, 5). They 
form a White Collar Complex (WCC) by 
heterodimerizing via PAS (PER ARNT SIM) 
domains (6, 7) and act as positive elements in 
light signaling, most likely through direct 
binding of DNA (4, 5); in true wc-lK? and 
WC-2KO strains, all examined light responses 
are lost (8, 9). This requirement suggested to 
us and others that either WC-1 or WC-2 is the 
photoreceptor, or that they both are required 
to mediate the response of an unidentified, 
perhaps duplicated, receptor (1, 10, 11). 

In Neurospora, generation of circadian 
rhythms is dependent on WCC-mediated rhyth- 
mic production of frq transcript and protein, 
both of which are central clock components 
(12, 13). Light causes a rapid induction offirq 
message, the central means by which light in- 
fluences the clock (14). In the absence of WC-1 
or WC-2, light induction of fiq is completely 
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abolished, highlighting the WCs' central role in 
light input to the clock (8, 9, 15). 

Effects of light in vivo. To examine the 
contribution of transcription to the light-in- 
duced accumulation offrq transcript, the frq 
promoter was fused to a reporter gene, hph, 
and the resulting construct, pYL40B, was 
transformed into a frq+ strain. Light treat- 
ment of transformants resulted in a marked 
increase in hph transcript level, similar to that 
offrq (Fig. 1A). Because only frq promoter 
sequence was fused to hph, light induction of 
the hph transcript, and consequently of en- 
dogenous frq message, is controlled at the 
transcriptional level. 

We identified cis-acting elements mediat- 
ing light induction offrq by transformingfrq 
promoter deletion constructs into a frqKO 
strain and the testing for light induction offrq 
message (Fig. 1B). Deletion of two light re- 
sponse elements (LREs) in thefrq promoter 
decreased light induction offrq message. We 
noted an -50% reduction with the distal LRE 
deleted (AF26) and an -70% reduction with 
the proximal LRE deleted (AF33) (Fig. 1C). 
Deletion of both LREs (AF36) abolished 
light induction of frq transcript (Fig. 1C), 
which suggests that light induction offrq is 
controlled entirely at the transcriptional level. 
Both LREs were also sufficient to confer 
light inducibility on an hph reporter construct 
(pAF35), both individually (pAF43 and 
pAF44) and together (pAF45) (Fig. 1D). 

The effects of the LRE deletions on cir- 
cadian clock function were examined using 
race tubes to monitor Neurospora's rhythmic 
conidiation (11). In a wild-type strain, trans- 
ferring race tubes from light to dark results in 
a decrease infrq transcript that sets the clock 
to subjective dusk, after which the clock con- 
tinues to run (11, 14). Control ABC1 trans- 
formants, containing the entirefrq locus, dis- 
played a period and phase similar to those of 
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