
mass transport in the tropical Pacific parallel 
to the equator, but transport perpendicular to 
the equator (meridional transport) also oc- 
curs. Interannual and decadal J2 variations, 
visible after the linear decreasing trend is re- 
moved, appear to be correlated with the Pa- 
cific Decadal Oscillation index. The dynam- 
ics of this oscillation are not well understood, 
but model studies indicate water mass trans- 
port from the subtropics to the tropics (12), 
which may produce a change in J2. 

It may be tempting to search for an ocean- 
ic (and hence climatic) origin for the observed 
change in J2, but as yet there is no evidence. 
Whatever the cause, the results of Cox and 
Chao emphasize the importance of gravity 
variations as a barometer of integrated mass 
changes in the Earth system. Monitoring these 
variations with improved spatial and temporal 
resolution would provide an important tool for 
studying Earth system changes. 

Future insights into the causes of the 
unexpected J2 change should come from at 
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least two sources. State-of-the-art ocean 
general circulation models should be able 
to determine whether large-scale water 
mass redistribution occurred in the ocean 
in recent years. And the recently launched 
GRACE (Gravity Recovery and Climate 
Experiment) satellite mission will measure 
mass redistribution in the surface fluid en- 
velopes with unprecedented spatial resolu- 
tion (300 km) and precision (1 cm water 
equivalent), on time scales ranging from a 
month to several years (13). 

If events like the mass redistribution of 
1998 to 2001 occur again, they will be eas- 
ily detectable by GRACE. Unlike the ob- 
servations of Cox and Chao (4), who can 
only give information integrated over the 
whole Earth, GRACE will identify the ge- 
ographical location of the source, provid- 
ing strong constraints on the cause of the 
mass redistribution. This would provide 
unprecedented insight into the ongoing 
changes in the Earth system. 
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Statistical physics is one of the pillars 
of modern physics, explaining the 
macroscopic world on the basis of 

the dynamics of its microscopic compo- 
nents. But methods from statistical physics 
can also foster a deeper understanding of 
computational phenomena. On page 812 
of this issue, Mezard et al. (1) use this ap- 
proach to characterize the properties of 
random instances of the satisfiability 
problem in unprecedented detail. They al- 
so introduce a novel strategy for finding 
solutions to this problem. 

Satisfiability (SAT) is a logical reason- 
ing problem defined in terms of Boolean 
variables (a, b, c, and so forth) and logical 
constraints describing the relation between 
these variables. Each variable can be either 
"True" or "False." An example of a con- 
straint is 

a OR (NOT b) (1) 

A SAT problem is solved by assigning 
truth values to the variables such that all 
constraints are satisfied simultaneously. 
For example, the constraint in Eq. 1 is sat- 
isfied if a is "True" or b is "False." 

The SAT problem plays a central role 
in the quest for more efficient ways of 
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solving large-scale computational prob- 
lems, such as planning and scheduling, 
finding the folded state of a protein, and 
determining whether a computer chip de- 
sign meets its specification. These prob- 
lems are called "NP-complete." Thousands 
of NP-complete problems are known; all 
can be encoded as SAT problems (see the 
second figure). 

It is widely believed that there does not 
exist an efficient algorithm for solving 
NP-complete problems. Formally proving 
that no such algorithm exists is one of the 
main open problems in modem computer 
science (2). NP-completeness is, however, 
a worst-case notion, capturing the compu- 
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tational cost of the very hardest possible 
instances of the problem. In practical ap- 
plications, one may not encounter in- 
stances that are quite that hard. What, 
then, is the computational cost of "typical" 

instances? One can obtain impor- 
tant insights into typical case 
complexity by considering ran- 
domly generated SAT problems. 

Mezard et al. (1) consider ran- 
dom instances of a particular case 
of SAT, the K-satisfiability prob- 
lem (K-SAT), in which each con- 
straint contains exactly k vari- 
ables. Such randomly generated $e instances exhibit a "phase transi- 

8 tion" as a function of the ratio a 
of constraints to variables (3). K- 

that a SAT problems with a small a val- 
lent as ue almost all have one or more 
o vari- satisfying assignments, whereas 
iase on problems with a large a value 
s. have too many constraints and be- 

come unsatisfiable (that is, no 
setting of the variables simultaneously sat- 
isfies all constraints). As the number of 
variables grows, the transition from almost 
always satisfiable to almost always unsat- 
isfiable becomes very sudden (see the first 
figure). For 3-SAT (that is, k = 3), the 
transition occurs at a = 4.25. The exact lo- 
cation of the phase transition threshold has 
not yet been derived rigorously (4-8). 

Many of the computationally hardest 
problem instances appear to lie in this 
phase transition area. Hence, a better un- 
derstanding of the phase change in the K- 
SAT problem may also provide new in- 
sights into its computational properties 
and strategies for solving it. 
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An approach that is often effective for 
solving the K-SAT problem is called local 
search. The search starts from a randomly 
generated truth assignment. One then 
changes or "flips" the truth value of one of 
the variables to try to satisfy more of the 
constraints. Such flips are repeated until a 
satisfying assignment is found. However, 
the set of possible truth assignments is ex- 
ponentially large--2N truth assignments 
for N variables. A large number of flips 
may be required, depending on the struc- 
ture of the search space (9). 

Mezard et al. (1) provide a remarkably 
detailed picture of the search space of a 
random K-SAT problem and introduce a 
new algorithm for finding a satisfying as- 
signment. The algorithm is based on the 
cavity method from statistical physics. In 
this approach, the concept of a cavity field 
is used to measure the tendency of a vari- 
able to be "True" when one of the clauses 
containing the variable is removed from 
the SAT problem. In effect, the method ex- 
ploits the topology of the search space to 
navigate efficiently through the exponen- 
tially large set of assignments. 
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The authors show how the search 
space for k > 3 changes dramatically 
when one approaches the phase transi- 
tion region. For k = 3 and a < 3.92, the 
search space is globally smooth, with the 
solutions grouped together. A basic local 
search method can find a satisfying as- 
signment relatively quickly. However, for 
larger values of a, the space breaks up 
into a number of metastable states, sig- 
naling the onset of search complexity. A 
basic local search method will get 
"stuck" at assignments with a nonzero 
number of unsatisfied clauses. In such 
cases, Mezard et al.'s method still has a 
high probability of finding a satisfying 
assignment. 

Mezard et al.'s technique is general and 
holds promise for a wide range of hard 
computational problems. However, be- 
cause SAT problems in real-world applica- 
tions are not random, the approach may 
have to be adapted for SAT problems that 
are more structured (10-13). The work il- 
lustrates the power of bringing together 
ideas and techniques from statistical 
physicists interested in disordered sys- 
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tems, mathematicians studying combinato- 
rial structures, and computer scientists 
studying computational complexity. 
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ations containing a tri-coordinate 
silicon atom, R3Si+, well separated 
from counterions and solvent 

molecules have been avidly sought for 
decades (1). On page 825 of this issue, 
Kim et al. (2) bring this search to a suc- 
cessful conclusion by presenting the crys- 
tal structure of the salt of such a cation. 

Silicon is in the same group as carbon 
and shares some of its chemical character- 
istics. But silicon chemistry often follows 

- pathways different from those of carbon. 
To understand reaction mechanisms for 

I silicon compounds, one must synthesize 
z 
Io 
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and study silicon analogs of the reactive 
intermediates of organic chemistry. 

The trivalent silyl cation R3Si+ has been 
particularly challenging. To solve this 
problem, chemists have had to view the 
covalent bond in shades of gray rather than 
black and white-as a continuum of elec- 
tronic interactions of varying strength, 
rather than as a link between atoms that is 
either present or absent. New quantitative 
probes for the extent of bonding of ions 
with surrounding species had to be devel- 
oped, and a seeming paradox had to be re- 
solved: Why are R3Si+ cations difficult to 
detect in solution, yet comparatively easy 
to make in the gas phase (3)? 

In normal organosilicon compounds, 
R3Si-Z, silicon is attached to four groups. 
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How can an Si-Z bond be broken in such a 
manner that a trivalent silicon cation is 
created? Researchers have looked to anal- 

ogous carbon compounds, R3C-Z, for an- 
swers. But most Z groups that easily ion- 
ize from R3C-Z to form R3C+ do not readi- 

ly depart from the silicon compound be- 
cause the Si-Z bonds are stronger than the 

equivalent C-Z bonds. 
Hydrogen is unusual in that C-H bonds 

are stronger than Si-H bonds. Hence trans- 
fer of a hydride ion, H-, from R3SiH to a 
carbon cation could lead to the formation 
of a silyl cation. But when the salt of a car- 
bon cation was used as a hydride acceptor 
(4), the products proved to be silyl esters 

(5). If a silyl cation formed at all, it was 
immediately consumed by the counterion. 

Why can a carbon cation, Ph3C+, per- 
sist in the presence of C104-, but a silyl 
cation, R3Si+, is immediately captured by 
this anion? Silicon forms a much stronger 
bond with oxygen than does carbon, and 
silicon cations are stabilized to a lesser ex- 
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ize from R3C-Z to form R3C+ do not readi- 

ly depart from the silicon compound be- 
cause the Si-Z bonds are stronger than the 

equivalent C-Z bonds. 
Hydrogen is unusual in that C-H bonds 

are stronger than Si-H bonds. Hence trans- 
fer of a hydride ion, H-, from R3SiH to a 
carbon cation could lead to the formation 
of a silyl cation. But when the salt of a car- 
bon cation was used as a hydride acceptor 
(4), the products proved to be silyl esters 

(5). If a silyl cation formed at all, it was 
immediately consumed by the counterion. 

Why can a carbon cation, Ph3C+, per- 
sist in the presence of C104-, but a silyl 
cation, R3Si+, is immediately captured by 
this anion? Silicon forms a much stronger 
bond with oxygen than does carbon, and 
silicon cations are stabilized to a lesser ex- 
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