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One of the most challenging evolutionary 
problems is locating the root of the eukaryote 
tree. The widespread view that early eu- 

karyotes were amitochondrial has recently 
been dramatically overturned (1). Multigene 
trees, though more reliable than single-gene 
trees, leave many possibilities open (2). We 
use a derived gene fusion between dihydro- 
folate reductase (DHFR) and thymidylate 
synthase (TS), previously known from a few 

eukaryotes (3), to greatly narrow down the 

position of the root. In eubacteria, both genes 
are separately translated, often in one operon, 
TS preceding DHFR (Fig. 1). Animals and 

fungi also have separately translated DHFR 
and TS genes (not in an operon), presumably 
the original eukaryotic condition (3). Plants, 
alveolates, and Euglenozoa instead have a 
bifunctional fusion gene with both enzyme 
activities in one protein (3). As this fusion is 

clearly derived compared with separate 
genes, it suggests that the eukaryote tree's 
root must be below the common ancestor of 

plants, alveolates and Euglenozoa (3). The 
root cannot lie among groups all having the 
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fusion gene, because they share this derived 
character that arose in their common ances- 
tor. As those with separate genes have the 

primitive condition, the root must lie adjacent 
to or within one of them. 

This reasoning is valid only if the genes 
fused just once and were never secondarily 
split or laterally transferred within eu- 

karyotes. Although evolutionary gene split- 
ting is known for a few bacterial genes, it is 
a priori many orders of magnitude less likely 
for eukaryotic protein-coding genes, requir- 
ing simultaneous evolution at four separate, 
correctly ordered positions, not just two as in 
bacteria: we know no examples. Secondary 
splitting might also theoretically occur by 
gene duplication and differential deletions 
within each copy; even this would involve 
three independent mutations, two positionally 
precise, so is very improbable. 

We amplified and sequenced DHFR-TS 
fusion genes from four previously unstudied 

groups: the heterokont chromist 'Cafeteria' 
marsupialis and three protozoan phyla (cen- 
trohelid Heliozoa, Apusozoa, Cercozoa); 
plus, as positive controls, additional Eugleno- 
zoa and Ciliophora (4). Multiple alignment 
shows that all are authentic DHFR-TS fusion 

genes with one open reading frame. A further 
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plus, as positive controls, additional Eugleno- 
zoa and Ciliophora (4). Multiple alignment 
shows that all are authentic DHFR-TS fusion 

genes with one open reading frame. A further 

control was the choanozoan Corallochytrium 
limacisporum; as expected, because Choano- 
zoa are probably sisters to animals (5), we 
found no fusion gene. Only in one other 

protist phylum (Amoebozoa, represented by 
Phreatamoeba, Phalansterium solitarium) 
could we similarly detect no fusion gene. In 
Phreatamoeba and Corallochytrium, we suc- 

cessfully amplified TS genes alone (4). 
The presently known phylogenetic distri- 

bution of DHFR-TS fusion genes is shown in 

Fig. 1; strikingly, their origin coincides with 
that of the biciliate condition. All organisms 
above the apparent point of origin of the 
fusion protein in Fig. 1 are ancestrally bicil- 
iate and collectively called bikonts (5). 
Bikont monophyly is also shown by trees for 
123 genes with -25,000 amino acid posi- 
tions (6), if rooted as in Fig. 1. In plants, 
chromalveolates, and excavates, biciliate 

cells, differentiate their cilia and roots over 
two successive cell cycles; this developmen- 
tal complexity strongly indicates that bikont 

ciliary transformation is derived (5). The dis- 
tribution of the DHFR-TS fusion supports 
this interpretation. We cannot exclude the 

possibility that the fusion occurred not at the 

very origin of bikonts, but after some small 
and obscure unstudied bikont lineage di- 

verged from the rest. Our conclusion strongly 
contradicts recent assumptions that the root is 

among the excavate bikonts [e.g., beside 
Parabasalia (7) or jakobid Loukozoa (8)]; the 
two single amino-acid enolase deletions sug- 
gesting early divergence of Parabasalia (7) 
are much more easily reversible than the 
DHFR-TS fusion. 

Archezoa (Parabasalia and metamonads) 
were formerly considered possible primitive 
eukaryotes because of absence of mitochon- 
dria and deep branching in sequence trees (7, 
9), but several lines of evidence now indicate 
that they are a relatively advanced group 
within excavates. Neither DHFR nor TS 

enzymatic activity is detectable in Giardia 
intestinalis (Metamonada), Trichomonas 

vaginalis and Tritrichomonas foetus (Para- 
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basalia), suggesting dependence on exoge- 
nous thymidine (10-12), and the gene is 
absent from the virtually complete Giardia 
genome. Possibly these parasites have lost 
the fusion gene. rRNA trees not using long- 
branching archaebacteria as an outgroup 
place Parabasalia and Metamonada together 
with high bootstrap support (5, 13, 14) and 
often place Archezoa as sisters to Percolozoa. 
The complex tetrakont ciliary apparatus of 
Archezoa and Percolozoa was long an obsta- 
cle to considering them the most primitive 
eukaryotes; more likely, they evolved from 
simpler biciliate eukaryotes (5, 9, 14). As 
parabasalids and diplomonads share two de- 
rived laterally transferred genes of cyanobac- 
terial origin [glucokinase (GK) and glucose- 
phosphate isomerase (GPI); Fig. 1] (15, 16), 
Archezoa are almost certainly holophyletic, 
so the root cannot lie within them, whether 
beside metamonads, as rRNA trees rooted on 
archaebacteria suggested, or Parabasalia, as 
suggested by two single amino-acid inser- 

tions in enolase that are shared with pro- 
karyotes (7). The enolase insertions are far 
weaker evidence than the DHFR-TS fusion, 
as they could easily have been secondarily 
acquired by replication slippage mutations or 
by a single gene conversion using as template 
a bacterial enolase gene taken into the 
phagotrophic ancestor of Parabasalia after it 
diverged from Metamonada and other exca- 
vates. Sequence evidence that retortamonads 
arose from diplomonads (17) eliminates them 
as candidate "early amitochondrial eu- 
karyotes" by placing them firmly within the 
ancestrally tetrakont metamonads. 

Jakobid Loukozoa have also been con- 
sidered possible primitive eukaryotes be- 
cause their mitochondria retain more pro- 
karyotic features than others (8); retention 
of the proteobacterial RNA polymerase by 
Recliinomonas does not mean that it is the 
most ancient eukaryote-if the viral-type 
polymerase that replaced it was present in 
the ancestral eukaryote, the bacterial en- 

Fig. 1. Phylogenetic rela- 
tionships of the major eu- PLANTAE chromalveolates 
karyote groups [modified 

Rhodophyta CHROMISTA 
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zymes could have been lost independently 
in several lineages. 

Although most published distance trees 
do not show excavate monophyly, probably 
because of long-branch problems, one max- 
imum likelihood rRNA tree not rooted on 
archaebacteria shows the monophyly of ex- 
cavates including Recliinomonas (5), with 
reasonably strong bootstrap support (87%) 
in the corresponding distance tree. In view 
of this and of the ultrastructural unity of 
excavates and their complex ciliary roots 
(5), we predict that jakobid Loukozoa also 
have the gene fusion. Whether Loukozoa 
are monophyletic or polyphyletic is uncer- 
tain, as is the precise position of excavates. 
But given the strong evidence for bikont 
monophyly, no uncertainty in their internal 
branching order would be relevant to our 
conclusion unless an unstudied lineage 
consistently branches closer to Amoebozoa 
than any other bikonts and also has separate 
DHFR and TS genes. 

Like shared laterally transferred genes, 
symbiogenetic acquisitions of chloroplasts 
are derived characters that help narrow down 
the position of the eukaryotic root, for it 
cannot lie within any group created by a 
single such event. Thus the root cannot be 
within Plantae or chromalveolates (5, 18). If 
euglenoids and chlorarachneans got their 
chloroplasts in one event in a common ances- 
tor, for which good evolutionary arguments 
exist (18), then it cannot lie in any of its 
descendants (i.e., not within excavates or the 
Cercozoa/Retaria clade; Fig. 1). Even if 
euglenoids acquired chloroplasts indepen- 
dently (5), an early timing of that event would 
exclude the root from some groups: the glid 
gene of plastid affinity in Percolozoa (19) 
implies a photosynthetic common ancestor of 
Percolozoa and Euglenozoa, ruling out both 
discicristates and Archezoa, if the latter really 
are sisters of Percolozoa (Fig. 1) [even the 
highly divergent gidc of Archezoa (19) might 
have the same origin]. 

Although the DHFR-TS gene fusion is 
the strongest available evidence for the 
position of the eukaryote root-among uni- 
ciliate protozoa (5), independent corrobo- 
ration is desirable to rule out the theoretical 
possibility of its reversal in opisthokonts 
(and possibly Amoebozoa). Such reversal 
might in principle occur by horizontal 
acquisition from bacteria of separate DHFR 
and/or TS genes and partially or totally 
deleting the fusion gene. Our multiple 
alignments argue clearly against this; de- 
rived signature sequences indicate that the 
separate opisthokont DHFR and TS genes 
are distinctly more similar to the fusion 
genes than to the separate bacterial genes. 
Unfortunately, both genes are too short to 
make robust trees. 

A unique insertion in EF-la of animals 
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and fungi (20) is a derived character indicat- 
ing that the root cannot be within opis- 
thokonts. If it is outside bikonts and opis- 
thokonts, it must be at or near the bifurcation 
between them. Our inability to amplify fusion 
genes in Amoebozoa (Phreatamoeba, Pha- 
lansterium) does not prove their absence. We 
also searched the genomic/EST databases of 
other Amoebozoa (Dictyostelium, Entamoe- 
ba histolytica) for the fusion and individual 
genes, without success. This is not surprising, 
for E. histolytica and invadens lack DHFR or 
TS enzymatic activity (21) and presumably 
also the genes, whereas Dictyostelium prob- 
ably replaced TS by a nonhomologous en- 
zyme (22). If other Amoebozoa have the 
fusion gene, contrary to present indications, 
they must be sisters to bikonts and the tree is 
rooted precisely as in Fig. 1, i.e., between 
opisthokonts and Amoebozoa/bikonts. If they 
genuinely lack it, their position will remain 
ambiguous; they could be sisters of bikonts or 
opisthokonts or branch below either. 

Three arguments suggest, albeit indeci- 
sively, that the root may be between opis- 
thokonts and Amoebozoa/bikonts (5). First, 
opisthokonts typically have flat mitochondri- 
al cristae, whereas Amoebozoa/bikonts 
would ancestrally have had tubular cristae; 
this difference could reflect divergent spe- 
cialization immediately following the sym- 
biogenetic origin of mitochondria (23). 
Second, the single cilium is posterior in opis- 
thokonts, but anterior in Amoebozoa; the lat- 
ter character is shared with bikonts, ances- 
trally with one anterior and one posterior 
cilium (5). Third, bootstrap support for the 
bipartition between opisthokonts and bikonts/ 
Amoebozoa is typically much stronger on 
single-gene trees than that between Amoebo- 
zoa and other eukaryotes (2, 5, 7, 20); a 
significantly earlier divergence between opis- 
thokonts and Amoebozoa/bikonts would sim- 
ply explain this (5). Only if Amoebozoa turn 
out to branch below the opisthokont/bikont 
bifurcation would they be early diverging 
eukaryotes-the only ones. If Amoebozoa 
are sisters of bikonts or opisthokonts, there 
would be no extant eukaryote lineages that 
diverged before the common ancestor of an- 
imals and plants; the recent extensive search- 
es for early diverging eukaryotes would have 
been wild goose chases. Further study of 
genetic diversity within Amoebozoa should 
clarify their position and thereby precisely 
pinpoint the root. 
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Rapid Regulation of Light 
Harvesting and Plant Fitness in 

the Field 
Carsten Kulheim,1 Jon Agren,2 Stefan Jansson'* 

We used Arabidopsis thaliana mutants to examine how a photosynthetic regulatory 
process, the qE-type or ApH-dependent nonphotochemical quenching, hereafter 
named feedback de-excitation, influences plant fitness in different light environ- 
ments. We show that the feedback de-excitation is important for plant fitness in 
the field and in fluctuating light in a controlled environment but that it does not 
affect plant performance under constant light conditions. Our findings demon- 
strate that the feedback de-excitation confers a strong fitness advantage under field 
conditions and suggest that this advantage is due to the increase in plant tolerance 
to variation in light intensity rather than tolerance to high-intensity light itself. 
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The ability to adjust metabolic processes to a 
variable environment should be crucial for the 
Darwinian fitness of plants and other sessile 
organisms, which cannot move away from un- 
favorable conditions. In recent years, the molec- 
ular basis of various short-term regulatory pro- 
cesses has been identified in plants, but the 
adaptive importance of these processes has nev- 
er been explored under field conditions. One 
metabolic pathway that must be strictly con- 
trolled is the photosynthetic light reaction be- 
cause it has potentially dangerous side effects. If 
the incident light increases or the photosynthetic 
dark reactions are retarded (for example, due to 
a drop in temperature or closure of stomata), 
then there is the risk that the production of 
adenoside triphosphate (ATP) and the reduced 
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form of nicotinamide adenine dinucleotide 
(NADPH) by the photosynthetic light reactions 
becomes greater than the capacity to catabolize 
these compounds, which causes photo-oxidative 
stress. Plants have evolved several protective 
mechanisms that have been suggested to repre- 
sent adaptations against photo-oxidative stress 
(1). They operate at different time scales, and 
one, the qE-type of nonphotochemical quench- 
ing (NPQ) or feedback de-excitation, is a very 
rapid process that is induced seconds after a 
plant has been exposed to extreme light ("high 
light"). Feedback de-excitation accounts for 
about 80% of NPQ (2) and works by switching 
the photosynthetic antenna into a state of ther- 
mal dissipation instead of efficient solar energy 
utilization (3). Two proteins have been shown to 
be essential for feedback de-excitation. One is 
the enzyme violaxanthin de-epoxidase (VDE), 
which converts one carotenoid species (vio- 
laxanthin) to another (zeaxanthin) in the so- 
called xanthophyll cycle (4). The other is the 
PsbS protein that undergoes a conformation- 
al change when the "excitation pressure" 
rises, resulting in a nonradiative energy dis- 
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