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vation by catastrophic floods (29). After this 
initial flood, possible later flows would have 
been smaller discharges of Eridania lake sub- 
basin A (Fig. 1A). 
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The Mass Disruption of Oort 

Cloud Comets 
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Robert Jedicke,3 Paul A. Wiegert,4 William F. Bottke Jr.' 

We have calculated the number of dormant, nearly isotropic Oort cloud comets 
in the solar system by (i) combining orbital distribution models with statistical 
models of dormant comet discoveries by well-defined surveys and (ii) com- 
paring the model results to observations of a population of dormant comets. 
Dynamical models that assume that comets are not destroyed predict that we 
should have discovered - 100 times more dormant nearly isotropic comets than 
are actually seen. Thus, as comets evolve inward from the Oort cloud, the 
majority of them must physically disrupt. 
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It has been over half a century since Jan Oort 
first argued that a roughly spherical cloud of 
comets, which extends to heliocentric dis- 
tances larger than 100,000 astronomical units 
(AU), surrounds the solar system (1). This 
structure, which is now known as the Oort 
cloud, is currently feeding comets into the 
inner solar system (with perihelion distances, 
q, of less than 3 AU) at a rate of about 12 
comets per year with an active comet abso- 
lute magnitude, HIo, <10.9 (2, 3). These 
comets as a whole are known as nearly iso- 
tropic comets (NICs) (4). NICs can be divid- 
ed into the following two subpopulations, 
based on their dynamical histories (5): (i) 
dynamically new NICs, which are on their 
first pass through the system and typically 
have semi-major axes, a, greater than 
- 10,000 AU, and (ii) returning NICs, which 
have previously passed through the inner so- 
lar system and typically have a - 10,000 AU. 
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One unsolved problem is that models of 
the orbital evolution of new NICs into return- 
ing NICs consistently predict many times 
more returning comets than are observed (2, 
6). This so-called "fading problem" cannot 
be due to previously unmodeled dynamical 
effects (2) and thus must be due to the phys- 
ical evolution of the comets' activity (7). An 
important issue, therefore, is to determine the 
fate of the missing comets; either they be- 
come extinct or dormant (8), or they disinte- 
grate entirely (9, 10). Here, we try to distin- 
guish between these two possible outcomes 
by comparing model results to observations 
of dormant comets. 

Large ground-based surveys have dis- 
covered 11 asteroidal objects, as of 3 De- 
cember 2001, that are on orbits consistent 
with active NICs with q < 3 AU (Table 1) 
(11) [see supporting online material 
(SOM)]. These 11 objects represent just a 
small fraction of the total population of 
dormant NICs, because ground-based sur- 
veys suffer from unavoidable observational 
biases (12). Thus, the main purpose of the 
work presented here is to estimate the total 
number of dormant NICs based on the 
available data. We accomplish this by the 
following steps: (i) we use numerical sim- 
ulations of cometary dynamics to produce a 
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set of fictitious dormant NICs, (ii) we run 
these fictitious NICs through a near-Earth 
object (NEO) survey simulator to deter- 
mine which ones would be discovered, and 
(iii) we compare the results of (ii) to obser- 
vations of the known dormant NICs to es- 
timate the total number and orbital element 
distribution of the entire real dormant NIC 
population. 

We determined the expected orbital el- 
ement distribution for the dormant NICs 
from long-term dynamical simulations that 
track thousands of fictitious new comets 
entering the planetary system from the Oort 
cloud for the first time. The simulations 
calculate the dynamical evolution of these 
objects' orbits caused by the gravitational 
influence of the Sun, planets, and Milky 
Way Galaxy. The objects' trajectories are 
followed until they are either ejected from 
the solar system, hit a planet, or strike the 
Sun. From this, we can develop a steady- 
state distribution of NICs by assuming that 
the influx rate of dynamically new comets 
is constant with time. 

We used simulations that were performed 
elsewhere (2, 13). Because of differing com- 
putational challenges, these simulations have 

Table 1. Known dormant NICs. 

Asteroid Desig. a e H 
(AU) e (Deg) (AU) 

(15504)1999 RG33 9.4 0.77 35 2.1 12.1 
2000 DG8 10.8 0.79 129 2.2 12.8 

(5335) Damocles 11.8 0.87 62 1.6 13.3 
2001 OG108 13.3 0.93 80 1.0 13.0 
1998 WU24 15.2 0.91 43 1.4 15.0 
1999 XS35 18.0 0.95 19 0.95 17.2 

(20461)1999 LD31 24.0 0.90 160 2.4 13.8 
2000 HE46 24.0 0.90 158 2.4 14.6 
1997 MD10 26.7 0.94 59 1.5 16.0 
2000 AB229* 52.5 0.96 69 2.3 14.0 
1996 PW* 287 0.99 30 2.5 14.0 

The columns are: Desig., designation; a, semi-major axis; 
e, eccentricity; i, inclination; q, perihelion distance; and H, 
Absolute Magnitude. See text for definitions. *All are 
type HTC, except the last two, which are ERCs. 
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divided returning NICs into two subclasses: 
external returning comets (ERCs) with peri- 
ods greater than 200 years, and Halley-type 
comets (HTCs) with orbital periods less than 
200 years (14, 15). 

We used Wiegert and Tremaine's model 
(2) to determine the orbital element distribu- 
tion that dormant ERCs would have if there 
were no disruptions. We also adopted the 
standard form for the cumulative absolute 
magnitude, H, distribution of N(< H) oc 10aH 
(16-18), where N is the total number of ob- 
jects brighter than H and a is the slope of the 
H distribution. We set oa = 0.28. This value 
of a is determined directly from our models 
of the HTCs, which are described below. It is 
much smaller (or the H distribution is much 
shallower) than is typically assumed. How- 
ever, it is consistent with a recent observa- 
tional study of active comets (19). 

With the above distribution of ERCs, we 
then used a survey simulator described in 
(20) to determine which objects would be 
discovered by modem NEO surveys. The 
survey simulator discovered 1 out of every 
22,000 dormant ERCs with q < 3 AU and 
H < 18 (21) in Wiegert and Tremaine's 
model (2). This result, combined with the fact 
that only 2 dormant ERCs actually have been 
discovered thus far (Table 1) (also see SOM), 
implies that there are a total of 44,000 ? 
31,000 dormant ERCs that are brighter than 
H = 18 and have a q < 3 AU in the solar 
system (22). 

The ERCs have orbital periods that are so 
long that it is traditional to express the pop- 
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ulation numbers in terms of the number of 
objects that pass through perihelion per year. 
Based on the two objects thus far discovered 
and the mean inverse orbital period of objects 
in Wiegert and Tremaine's model (2), we 
estimate that there should be 3.9 ? 2.7 dor- 
mant ERCs with H < 18 and q < 3 AU 
passing perihelion per year. Assuming no 
disruptions, Wiegert and Tremaine's model 
predicts that there should be -400 dormant 
ERCs with q < 3 AU passing perihelion per 
year (see SOM). The discrepancy between 
our estimate based on observing dormant 
NICs and the one based on dynamics alone 
implies that, when a comet becomes inactive, 
it only has a -3.9/400, or 1%, chance of 
becoming dormant. We can only conclude 
that the other -99% of these objects must 
have disrupted. 

To perform these calculations, we as- 
sumed a value of a = 0.28. We must 
therefore estimate how this choice affects 
our result concerning the disruption of 
ERCs. Previous estimates of a have ranged 
from 0.28 to 0.53 (23). As we discussed 
above, if we assume that a = 0.28, our 
survey simulator discovers 1/22,000 of the 
dormant ERCs with H < 18. If ca were 0.53, 
our survey simulator would discover 
1/43,000 of these objects, which is only a 
factor of 2 different from the a = 0.28 
result. Thus, changing a does not change 
our conclusion that -99% of the inactive 
ERCs disrupt. 

We now turn our attention to the HTCs. 
Levison et al. (13) studied the dynamical 

evolution of comets from the Oort cloud into 
HTC-like orbits (restricting themselves to 
HTCs with q < 2.5 AU). As with the ERCs, 
Levison et al. found a significant fading 
problem with the HTCs. In particular, Levi- 
son et al.'s models predict that there should 
be more than 15,000 active HTCs in the solar 
system, whereas the debiased estimate of ac- 
tive HTCs based on the observed population 
would suggest that there are only 50 (13). 
Thus, they concluded that -99% of these 
comets disappeared. 

To determine whether HTCs become 
dormant or disrupt, we compare a model of 
dormant HTC discoveries (i.e., we take the 
results of dynamical models with no dis- 
ruption and run them through our survey 
simulator) to actual discoveries. If we 
adopt Levison et al.'s models unaltered 
(see SOM), we are unable to construct 
models of the dormant HTC population that 
are consistent with observations (Fig. 1). 
Although the models produce reasonable 
inclination distributions (Fig. 1D), they fail 
to reproduce the observed semi-major axis 
distribution (Fig. 1C). In particular, the 
models predict a far larger number of dor- 
mant HTCs with a < 10 AU than has been 
observed. 

One reason Levison et al.'s model fails 
could be that it does not adequately account 
for the fact that comets suffering a close 
encounter with the Sun are more likely to 
disrupt than are comets that have larger peri- 
helion distances. Thus, we added a q-sensi- 
tive disruption law (24) to Levison et al.'s 
model and assumed that the absolute magni- 
tude power law index is oa = 0.28 (as before). 
We then recalculated Levison et al.'s fitting 
procedures and determined the model that 
provides the best fit to both the active and 
dormant HTC populations (see SOM). This 
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Fig. 1. The cumulative semi-major axis (a) distribution (A and C) and inclination distribution (B and 
D) for observed active HTCs (A) and (B) and dormant HTCs (C) and (D). The dotted curves represent 
the real objects observed in the solar system. The gray curves show the distributions of dormant 
comets as predicted by processing the unbiased best-fit dynamic model through our survey 
simulator [see (13) for the distribution of active comets]. The black curves show these distributions 
for our best-fit model. 
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Absolute Magnitude, H 
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Fig. 2. The cumulative absolute magnitude (H) 
distribution of dormant HTCs discovered by 
NEO surveys. The dotted curve represents the 
real objects. The solid curves show the distri- 
bution predicted by our best-fit model for three 
different values of a (0.23, 0.28, and 0.4). 
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model shows good agreement with the obser- 
vations (Fig. 1). 

Up to this point, we have been assuming a 
value of a. We could not determine a for the 
ERC simulations because there are only two 
known dormant ERCs. There are enough 
known dormant HTCs (nine of them), how- 
ever, to estimate a directly. The cumulative 
absolute magnitude distribution (25) for the 
observed dormant HTCs is clearly inconsis- 
tent with those detected by our survey simu- 
lator for values of a as large as 0.4 (Fig. 2). 
Indeed, the probability that the observed and 
modeled absolute magnitude distributions are 
drawn from the same parent distribution (fig. 
S2) shows that we can rule out any a larger 
than -0.35 and that the best fit is a = 0.23 + 
0.04 (1cr). We decided to adopt Weissman 
and Lowry's (19) value of 0.28 because it is 
consistent with our results and yet is based on 
a larger data set. The differences between 
models using a = 0.28 and at = 0.23 are 
small, and thus this choice will not measur- 
ably affect our results. 

With a = 0.28, the survey simulator dis- 
covers 1.1% of the dormant HTCs. Given that 
the NEO surveys have discovered 9 dormant 
HTCs (Table 1), we conclude that there are 
780 ? 260 dormant HTCs in the solar system 
with H < 18 and q < 2.5 AU. 

We can now compare our estimate of the 
number of dormant HTCs to what we would 
expect from dynamical models, assuming no 
disruption (26). Our model predicts that there 
should be 46,000 active and dormant HTCs 
with q < 1.3 AU, which implies - 106,000 
with q < 2.5 AU. Because dormant comets 
far outnumber active comets (27), we can 
conclude that -99% of ERCs disrupt before 
becoming HTCs. This percentage is similar 
to the fraction predicted for the ERCs alone. 

Jupiter-family comets (JFCs) do not ap- 
pear to disrupt at the same rate (28) as do the 
NICs. Bottke et al. (29) estimated the total 
number of dormant JFCs from the known 
population of NEOs, finding that there are 
61 + 43 dormant JFCs with q < 1.3 AU and 
H < 18. This number is consistent with esti- 
mates from dynamical simulations, assuming 
that all objects become dormant rather than 
disrupt [-60+4?% become dormant (30)]. 
Despite large uncertainties in this estimate, it 
is clear that a substantial fraction of JFCs 
must become dormant, and thus they behave 
differently from NICs (see SOM for addition- 
al arguments). 

It is surprising that NICs and JFCs behave 
so differently, because they are thought to be 
composed of similar mixtures of ice and rock. 
Their different disruption behaviors could be 
primordial, reflecting the chemical or physical 
characteristics of their formation locations. 
Most Oort cloud comets are believed to have 
formed in the region of the giant planets (1, 31), 
whereas JFCs are thought to have formed in the 

Kuiper belt beyond the giant planets (32-34). 
However, recent simulations of Oort cloud for- 
mation (35) suggest that -30% of the present- 
day Oort cloud originated in the Kuiper belt 
(although most of these objects left the Kuiper 
belt a long time ago). If these models are cor- 
rect, then the different disruption behaviors can- 
not stem from primordial differences, because 
the fraction of NICs that originated in the 
Kuiper belt is far larger than the -1% that 
avoid disruption. 

Alternatively, evolutionary processes 
could affect comets' susceptibility to disrup- 
tion. For example, over long time scales, 
Kuiper belt comets could have lost more 
volatiles than did Oort cloud comets because 
Kuiper belt comets have been stored at closer 
heliocentric distances and thus higher tem- 
peratures. Kuiper belt objects could be more 
porous, and thus less susceptible to disruption 
resulting from volatile pressure buildup, due 
to a relatively violent collisional environment 
(36). Finally, the dynamical pathways that 
NICs and JFCs take on their way into the 
inner solar system might lead to different 
thermal histories for the two populations. In 
one orbital period, most NICs evolve from 
distant orbits (with perihelia outside the plan- 
etary region) to orbits that closely approach 
the Sun. On the other hand, objects from the 
Kuiper belt slowly move through the plane- 
tary region, taking -10 million years to 
evolve onto orbits with q < 2.5 AU (33). It 
has been argued previously (3 7) that different 
thermal histories could lead to different dis- 
ruption rates, so perhaps NICs disrupt be- 
cause of strong thermal gradients or volatile 
pressure buildup, whereas JFCs survive be- 
cause they are warmed more slowly. 
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Identification of Signal Peptide 
Peptidase, a Presenilin-Type 

Aspartic Protease 

Andreas Weihofen,1 Kathleen Binns,2 Marius K. Lemberg,' 
Keith Ashman,2 Bruno Martoglio'* 

Signal peptide peptidase (SPP) catalyzes intramembrane proteolysis of some 
signal peptides after they have been cleaved from a preprotein. In humans, SPP 
activity is required to generate signal sequence-derived human lymphocyte 
antigen-E epitopes that are recognized by the immune system, and to process 
hepatitis C virus core protein. We have identified human SPP as a polytopic 
membrane protein with sequence motifs characteristic of the presenilin-type 
aspartic proteases. SPP and potential eukaryotic homologs may represent an- 
other family of aspartic proteases that promote intramembrane proteolysis to 
release biologically important peptides. 
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The discovery of intramembrane proteolysis 
has revealed alternative pathways in cell sig- 
naling, cell regulation, and protein processing 
(1). Dormant, membrane-bound transcription 
factors, like sterol regulatory element-bind- 
ing protein (1), activating transcription fac- 
tor-6 (2), and NOTCH (3), or the growth 
factor Spitz in Drosophila (4), are activated 
and liberated in regulated processes that cul- 
minate in proteolytic cleavage within their 
membrane anchor. Similarly, (-amyloid 
(A3) peptides, which are believed to be the 
main toxic component in Alzheimer's dis- 
ease, are generated from membrane-anchored 
P-amyloid precursor protein (P-APP) (5). 
The critical cleavage in the membrane anchor 
of P-APP is thought to be catalyzed by the 

aspartic protease presenilin (6). 
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Processing of signal peptides by an SPP is 
related to protein cleavage by presenilin. 
Both proteases cleave their substrates within 
the center of a transmembrane region (6, 7). 
The discovery of posttargeting functions of 
signal peptides, which are required primarily 
for the biosynthesis of secretory and mem- 
brane proteins, has pointed to a central role 
for SPP activity (8). Generation of cell sur- 
face histocompatibility antigen (HLA)-E 
epitopes in humans requires processing of 
signal peptides by SPP (9). HLA-E epitopes 
originate from the signal sequence of poly- 
morphic major histocompatibility complex 
(MHC) class I molecules and report biosyn- 
thesis of these molecules to the immune sys- 
tem (10). SPP activity is also required for 
processing hepatitis C virus polyprotein and 
hence is exploited by the pathogen to produce 
viral components (11). It is thought that SPP 
promotes the liberation of functional signal 
peptide fragments from the endoplasmic re- 
ticulum (ER) membrane (8). 

To identify human SPP, we synthesized a 

ligand affinity probe based on the SPP inhib- 
itor (Z-LL)2-ketone, which is thought to re- 
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