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Three-dimensional (3D) movement of neuroprosthetic devices can be con- 
trolled by the activity of cortical neurons when appropriate algorithms are used 
to decode intended movement in real time. Previous studies assumed that 
neurons maintain fixed tuning properties, and the studies used subjects who 
were unaware of the movements predicted by their recorded units. In this study, 
subjects had real-time visual feedback of their brain-controlled trajectories. Cell 
tuning properties changed when used for brain-controlled movements. By using 
control algorithms that track these changes, subjects made long sequences of 
3D movements using far fewer cortical units than expected. Daily practice 
improved movement accuracy and the directional tuning of these units. 

Ever since cortical neurons were shown to 
modulate their activity before movement, re- 
searchers have anticipated using these signals 
to control various prosthetic devices (1, 2). 
Recent advances in chronic recording elec- 
trodes and signal-processing technology now 
open the possibility of using these cortical 
signals efficiently in real time (3, 4). 

However, many neurons may be needed 
to predict intended movement accurately 
enough to make this technology practical. 
Estimates range from 150 to 600 cells or 
more being necessary (4, 5), based on open- 
loop experiments that recreate three-dimen- 
sional (3D) arm trajectories from cortical data 
offline (6). Here, we compare this approach 
to a closed-loop paradigm in which subjects 
have visual feedback of the brain-controlled 
movement. We then incorporate a movement 
prediction algorithm that tracks learning-in- 
duced changes in neural activity patterns. 

Rhesus macaques made real and virtual 
arm movements in a computer-generated, 3D 
virtual environment by moving a cursor from 
a central-start position to one of eight targets 
located radially at the corners of an imaginary 
cube. The monkeys could not see their actual 
arm movements, but rather saw two spheres 
(the stationary "target" and a mobile "cur- 
sor") with motion controlled either by the 
subject's hand position ("hand-control") or 
by recorded neural activity ("brain-control") 
(see supplementary material). 

We examined the effect of visual feed- 
back on movements derived from cortical 
signals by comparing "open-loop" trajecto- 
ries, created offline from cortical signals re- 
corded during hand-controlled cursor move- 
ments, with "closed-loop" trajectories made 
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by the cursor under real-time brain control. In 
the closed-loop case, subjects saw the cursor 
movements created from their cortical signals 
in real time. In the open-loop case, the tra- 
jectories were created offline, after the exper- 
iment, from the cortical activity recorded dur- 
ing the movement blocks where the cursor 
was under hand control (7). Therefore, the 
subject had no knowledge of these offline 
brain-predicted trajectories. In both the open- 
and closed-loop cases, the same cortical de- 
coding algorithm was used to generate trajec- 
tories. This decoding algorithm assumed that 
the cells' tuning functions remained constant 
under both conditions. 

This experiment was conducted with 
monkeys "L" and "M" for 32 and 40 days, 
respectively. In both subjects, about 18 cells 
were used to create open- and closed-loop 
trajectories. As expected, with so few cells, 
the open-loop trajectories were not very ac- 
curate. Although these trajectories went to- 
ward the correct targets more often than they 
would have by chance, they usually had at 
least one of the X, Y, or Z components 
pointing in the wrong direction. 

Closed-loop trajectories ended in the tar- 
get more often than did open-loop trajectories 
(Table 1). Both animals improved their 
closed-loop target hit rate over the course of 
the experiment, which suggests that the sub- 
jects learned to modulate their brain signals 
more effectively with visual feedback (8). 

Many of the cortical units we recorded 
were stable from day to day. Some were 
stable for more than 2 years. Other units 
showed significant changes in their wave- 
forms and movement properties between 
days (9). The brain-control algorithm was 
adjusted daily to make use of the current 
properties of the recorded units. Therefore, 
subjects had to learn a slightly different 
brain-to-cursor-movement relation each day. 
We looked for trends within days that would 
indicate learning of each new relation. Paired 
t tests showed that subjects initially improved 
their target hit rate by about 7% from the first 
to the third block of eight closed-loop move- 
ments each day (P < 0.002). 

Subjects had 10 to 15 s to move the cursor 
to each target-enough time to use visual 
feedback to make online error corrections in 
the closed-loop case. We tested a subject's 
ability to make more ballistic brain-con- 
trolled movements by continuing the experi- 
ment in monkey M for an additional 20 days 
with an increased brain-controlled cursor 
gain and the movement time constrained to 
800 ms. As in the slow-movement case, the 
closed-loop trajectories still hit the targets 
more often than did the open-loop trajectories 
(42 ? 5% versus 12 ? 5% of targets hit; P < 
0.0001). Again, there was significant im- 
provement with daily practice (0.9%/day; 
P < 0.009) as well as an initial improvement 
of about 7% within each day (first to third 
block; P < 0.05) (10). Despite the shorter 
movement time, visual feedback still allowed 
the subject to learn from consistent errors in 
the brain-controlled trajectories. 

In these experiments, the movement-pre- 
diction algorithms were based on fixed tuning 

Table 1. Mean ? standard deviation of daily statistics from the open- versus closed-loop experiment. 
Percent time in the correct octant was calculated per movement as the % time the trajectory's X,Y, and 
Z components had the same signs as the target [based on coordinate system with (0, 0, 0) at the center 
start position and each target located equal distance in the ? X, Y, and Z directions]. Differences between 
the open- and closed-loop values were significant in all six categories (P < 0.0001). 

Monkey 

L M Both 

Closed-loop brain-controlled trajectories 
% Targets hit 52 + 14 46 ? 18 49 ? 17 
% Time in correct octant 36 ? 9 34 ? 11 35 ? 11 

Open-loop brain-predicted trajectories 
% Targets hit 32 ? 11 23 ? 5 27 ? 9 
% Time in correct octant 23 ? 9 23 ? 9 23 ? 9 

Miscellaneous 
Cells used 18 ? 4 18 ?3 18 ? 4 
Mean R2 0.63 ? 0.07 0.64 ? 0.09 0.64 ? 0.08 
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properties obtained from neural activity re- 
corded each day during a baseline set of 
hand-controlled cursor movements. This type 
of calibration cannot be carried out in move- 
ment-impaired patients. We have developed a 
"coadaptive" movement prediction algorithm 
that does not require physical limb move- 
ments or any a priori knowledge of cell tun- 
ing properties. By iteratively refining esti- 
mates of cell tuning properties as the subject 
attempted 3D brain-controlled cursor move- 
ments, we were able to track learning-in- 
duced changes in cell tuning properties. 

We tested this coadaptive method in two 
healthy macaques by restraining both arms 
during a brain-control task after first record- 
ing each day's baseline hand-controlled 
movements and calculating each cell's tuning 
properties. At the end of each day's experi- 
ment, tuning functions were also calculated 
directly from the cortical activity collected 
during the brain-controlled movements. Fig- 
ure 1A shows a unit whose directional tuning 
differed significantly between the brain-con- 
trolled movements and the hand-controlled 
movements made earlier that day. Both well- 
isolated individual cells and inseparable 
multi-cell groups showed substantial changes 
in their preferred directions between the two 
tasks. On average, the magnitude of these 
changes increased over the course of the ex- 
periment (Fig. 1B), and the direction of these 
changes varied from cell to cell (Fig. 1C). By 
the last 2 weeks of the experiment, these 
individual shifts in preferred direction be- 
came consistent from day to day (Fig. 1D). 

Across days, the directional tuning of 
most units improved in the brain-control task 
versus the hand-control task (Fig. 2, A and B) 
(11). This increase in tuning quality was due, 
in part, to an improved fit of the units' firing 
rates to a cosine tuning equation under brain 
control (12). Although the control algorithm 
was designed to accommodate the most com- 
mon deviations from cosine tuning (i.e., larg- 
er increases in rate with movements in the 
preferred direction than decreases in rate with 
movements opposite the preferred direction, 
as can be seen in Fig. 2C), the units still 
showed changes in their average tuning prop- 
erties that were closer to a true linear function 
of the cosine of the angle between movement 
and preferred direction (Fig. 2D). These 
changes may have provided more uniform 
control and stability over the workspace (13). 
The daily improvement in cosine tuning was 
mirrored by a steady increase in the accuracy 
of the brain-controlled movements (Fig. 2E). 

This technique shows how we could train 
immobile patients to make 3D cursor move- 
ments by coadapting a prediction algorithm 
to their changing cell tuning properties. How- 
ever, for patients to control useful prosthetic 
devices, they would need to use this predic- 
tion algorithm without continued adaptation 
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Fig. 1. Changes in cortical activity between hand-control and brain-control tasks in subject M. (A) 
Cell with a 107? change in tuning direction between the hand-control (HC) and brain-control (BC) 
tasks (the unit waveform is shown in black). Each dot is the mean firing rate during one movement. 
HC rates are in the right column and BC rates are in the left column of each square. The eight 
squares correspond to the eight target directions (center four = distal; outer four = proximal). (B) 
Daily mean angles (thick lines) between hand- and brain-controlled preferred directions for all cells 
significantly tuned during both tasks (black = contralateral and gray = ipsilateral units to the arm 
moved during the hand-control task). The thin diagonal lines are linear fits with slopes significant 
at P < 0.006 (contra) and P < 0.0001 (ipsi). (C) Lines connecting hand-controlled preferred 
directions with brain-controlled preferred directions (circle ends) projected onto a unit sphere (day 
28, only cells significantly tuned in both tasks; black = contra.; dotted = ipsi.). (D) Change in the 
X, Y, and Z components of the preferred direction unit vectors between the hand- and brain- 
controlled tasks plotted day-against-day for eight random pairs of days (days 27 or later, only units 
that were significantly tuned in both tasks on both days; 35 ? 3 units per pair of days) (see 
supplementary material). 

of its parameters, and they would want to 
make a wider variety of movements than the 
ones practiced during the coadaptive training. 

We tested these issues by following sev- 
eral days' coadaptation training with an ad- 
ditional movement task, the constant-param- 
eter prediction algorithm (CPPA) task, which 
used fixed tuning parameters, added novel 
target positions, and required 180? changes in 
movement directions (Fig. 3). 

There was no significant difference be- 
tween the novel and trained target hit rates in 
either animal, and both monkeys improved 
their performance with daily practice (Table 
2) (14). Movies of these brain-controlled 
movements are included in the supplementa- 
ry material. 

Our work shows that visual feedback 
combined with an algorithm that tracks 
changes in cortical tuning parameters im- 
proves the efficacy of cortical activity as a 
control signal for both fast and slow brain- 
controlled movements. Switching from the 
hand-controlled to the brain-controlled task 
caused global changes in the tuning param- 
eters of the recorded neuronal population. 

How the rest of the population shaped and 
supported these changes is still an open 
question. The increased consistency of 
these changes across days combined with 
the improvement in performance suggests 
that the learning process settled on an ef- 
fective set of parameters for the imposed 
control scheme. 

During the first several days of the co- 
adaptive experiment, our monkeys pushed 
methodically against the arm restraints in 
the direction they needed the cursor to 
move. However, this behavior quickly sub- 
sided as performance improved. Spot 
checks of electromyographic (EMG) activ- 
ity on the well-adapted days showed sup- 
pression of EMG activity throughout the 
brain-control task. This indicates that it is 
possible to develop effective brain-control 
modulation patterns in the absence of phys- 
ical limb movements or normal muscle ac- 
tivation patterns. 

Although the healthy, arms-restrained an- 
imal model may not address all the issues 
related to retraining cortex altered from dis- 
use after an injury or illness, recent magnetic 
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Fig. 2. Changes in cell tuning quality and performance. (A) Daily average R2 from regressing each 
cell's mean firing rate per movement against target direction. The dotted line shows hand-control 
R2 values. The black line shows brain-control R2 values. The closed circles indicate days when brain- 
and hand-control R2 values were significantly different (paired t test, P < 0.05). (B) Difference in 
R2 values (brain-control minus hand-control). The thin diagonal line is the linear fit (P < 0.0001). 
(C and D) show average normalized firing rates to each target plotted as a function of the 
component of the movement in each cell's preferred direction for day 39. The lines are linear fits 
to all points with cos O above zero (gray) or below zero (black). (C) Hand-controlled task (gray line, 
R2 = 0.65; black line = 0.04). (D) Brain-controlled task (gray line, R2 = 0.67; black line = 0.54). (E) 
Daily minimum (solid line) and mean (dotted line) target radii used to maintain a 70% target hit 
rate. The diagonal dotted line is the linear fit of the daily mean (P < 0.0001). The bottom horizontal 
line shows the minimum target radius allowed (1.2 cm) (see supplementary material). 

Table 2. Mean ? standard deviation of daily 
performance statistics during the coadaptive and 
CPPA tasks. "# Units recorded" includes "noise" 
units that were removed during coadaptation. Co- 
adaptive target hit rates were recalculated with 
targets at various radii based on movements made 
after the algorithm had converged. 

Monkey 

M O 

CPPA task 
% Targets hit 

Novel 80 ?26 73 ? 29 
Trained 77 ? 24 62 ? 30 
Center after novel 80 ? 22 72 ? 25 
Center after trained 82 ? 19 70 ? 21 

Average movement time (s) 
Novel 1.5 ? 0.5 2.0 ? 0.6 
Trained 1.5 ? 0.6 2.6 ? 0.7 
Center after novel 1.3 ? 0.7 2.0 ? 1.1 
Center after trained 1.6 ? 0.8 2.0 ? 0.9 

# Days in calculations 12 5 
# Units recorded 64 ? 2 31 ? 2 
# Units used 38 ? 2 17 ? 2 

Coadaptive task 
% Targets that would have 

been hit at the 
following target radii 

1.2cm 76?12 20?22 
2.0 cm 86 ? 8 47 + 21 
3.0 cm 94 ? 4 69 ? 9 
4.0 cm 98 ? 3 81 ? 8 

# Days in calculations 13 14 
# Units recorded 64 ? 2 35 ? 6 
# Units used 39 ? 2 21 ? 4 

Fig. 3. Monkey M's 
brain-controlled trajec- 
tories in the CPPA task. 
Trajectories start from 
the exact center, go to 
an outer target (colored 
circles), and retum to 
the center target (gray 
circle). Trajectories are 
color-coded to match 
their intended targets. 
The black dots indicate 
when the intended outer 
or center target was hit 
The three letters by each 
target indicate Left (L)/ 
Right (R), Upper (U)/ 
Lower (L), and Proximal 
(P)/Distal (D) target lo- 
cations. The dashes indi- 
cate a middle position. 
(A and B) are to the 
eight "trained" targets 
used in the coadaptive 
task (C and D) are to 
the six "novel" targets. 

resonance imaging research indicates that the 
underlying motor maps are maintained, even 
after years of paralysis (15). Additionally, 
there are a few cases where completely im- 
mobile or "locked-in" patients have had cor- 
tical electrodes implanted and have been 

taught to communicate by scrolling through a 
sequence of letters using the activity of a few 
motor cortex cells. These human case studies 
suggest that cortical cells can regain and 
maintain the level of activity needed to per- 
form prosthetic control tasks-even after 

long periods of complete immobility (16). 
Our results show that neural activity can be 
reorganized within minutes and, with the 
proper algorithm, used to achieve brain-con- 
trolled virtual movements with nearly the 
same accuracy, robustness, and speed as nor- 
mal arm movements. 
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Irreversible processes as diverse as mechan- 
ically induced protein unfolding, the fracture 
of stressed materials, and the sudden forma- 
tion of crystallization nuclei all involve the 
time evolution of states far removed from 
equilibrium. To characterize these nonequi- 
librium states, it is generally necessary to 
specify numerous details of the system and its 
surroundings. By contrast, reversible process- 
es are idealizations in which a system passes 
only through a succession of equilibrium 
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states, which can be described completely 
with only a few variables such as pressure 
and temperature. Reversible processes are 
powerful tools in thermodynamics because 
they make it possible to relate the measured 
heat and work to the thermodynamic state 
variables. Yet many processes in nature relax 
to equilibrium only very slowly, precluding 
quasi-reversible experiments and thus pre- 
venting measurement of the thermodynamic 
state variables. Solving the problem of recov- 
ering thermodynamic variables from irrevers- 
ible experiments remains one of the unfin- 
ished tasks in thermodynamics. 

It follows from the laws of thermodynam- 
ics, first formulated in the early 19th century, 
that the increase in Gibbs free energy AG and 
the mean work (w) needed to bring about that 
increase are related by AG ' (w). The equal- 
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ity holds when a process is carried out revers- 
ibly, and the inequality holds otherwise. In 
1951, Callen and Welton realized that for any 
system that remains near equilibrium, the 
energy dissipated is proportional to the sys- 
tem's fluctuations (1). With this fluctuation- 
dissipation relation, researchers acquired a 
better estimate of AG for irreversible process- 
es: AG (w) - 3o'2/2, where ur is the stan- 
dard deviation of the work distribution and 
p-1 - kBT (where T is absolute temperature 
and kB is Boltzmann's constant) (2-4). Un- 
fortunately, this AG estimate is valid only in 
the near-equilibrium regime, and so it was 
thought that free energies could only be 
obtained for processes remaining close to 
equilibrium. 

This state of affairs changed in 1997, 
when Jarzynski derived an equality (5-8) that 
relates the free energy difference separating 
states of a system at positions 0 and z along a 
reaction coordinate, AG(z), to the work done 
to irreversibly switch the system between two 
states, 

exp[- 3AG(z)] =limN__(exp[- f3wi(z,r)])N 

(1) 

where ( )N denotes averaging over N work 
trajectories, wi(z,r) represents the work of the 
ith of N trajectories, and r is the switching 
rate (9). The mechanical work wi(z,r) re- 
quired to switch the system between positions 
0 and z under the action of a force F is 

ity holds when a process is carried out revers- 
ibly, and the inequality holds otherwise. In 
1951, Callen and Welton realized that for any 
system that remains near equilibrium, the 
energy dissipated is proportional to the sys- 
tem's fluctuations (1). With this fluctuation- 
dissipation relation, researchers acquired a 
better estimate of AG for irreversible process- 
es: AG (w) - 3o'2/2, where ur is the stan- 
dard deviation of the work distribution and 
p-1 - kBT (where T is absolute temperature 
and kB is Boltzmann's constant) (2-4). Un- 
fortunately, this AG estimate is valid only in 
the near-equilibrium regime, and so it was 
thought that free energies could only be 
obtained for processes remaining close to 
equilibrium. 

This state of affairs changed in 1997, 
when Jarzynski derived an equality (5-8) that 
relates the free energy difference separating 
states of a system at positions 0 and z along a 
reaction coordinate, AG(z), to the work done 
to irreversibly switch the system between two 
states, 

exp[- 3AG(z)] =limN__(exp[- f3wi(z,r)])N 

(1) 

where ( )N denotes averaging over N work 
trajectories, wi(z,r) represents the work of the 
ith of N trajectories, and r is the switching 
rate (9). The mechanical work wi(z,r) re- 
quired to switch the system between positions 
0 and z under the action of a force F is 

(2) (2) wi(z,r) Fi(z',r)dz' 
J o 

wi(z,r) Fi(z',r)dz' 
J o 

where F,(z',r) is the external force applied to the 
system at position z' with switching rate r (10). 
Equations 1 and 2 state that the free energy 
change for a reaction can be determined by 
averaging Boltzmann-weighted work values 
obtained from repeated irreversible switching 
of the system (11, 12). Unlike most expressions 
relating equilibrium and nonequilibrium statis- 
tical mechanics, Jarzynski's equality holds for 
systems driven arbitrarily far from equilibrium 
[for other relations that are valid in the far- 
from-equilibrium regime, see, e.g. (13-20)]. 
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