
When the brain initiates a movement, it also 
generates internal information that is used by 
sensory systems to adjust for resultant chang- 
es to peripheral receptors and by motor plan- 
ning systems to prepare subsequent move- 
ments (1-7). Information about an impending 
movement arises as a correlate, or corollary 
discharge, of the neuronal movement com- 
mand (8). The concept of corollary discharge 
has been invaluable for understanding dispar- 
ate behaviors such as the circling of insects, 
fish, and amphibians after visual field inver- 
sion (9, 10), electrolocation in fish (4), and 
song learning in birds (11). In humans, psy- 
chophysical studies have demonstrated that 
corollary discharge signals exist (3, 5, 6) and 
lesion studies have emphasized that the thal- 
amus and cerebral cortex are crucial for using 
corollary discharge information (2, 12-14). 
Some neurons in the cerebral cortex of non- 
human primates receive corollary discharge 
signals (15-17), but where these signals 
come from has remained unknown. 

To identify neurons as conveying corol- 
lary discharge signals, one must show that 
they have movement-related activity and 
project upstream, away from motor neurons, 
instead of downstream, toward motor neu- 
rons. That is, their activity must transmit 
information about movement without causing 
movement. A promising system in which to 
look for such neurons is that for producing 
saccadic eye movements. An important node 
in this system is the superior colliculus- 
specifically its intermediate layer, which con- 
tains neurons that fire just before saccade 
generation (18). Some projections of the in- 
termediate layer go downstream to saccade- 
generating circuits in the midbrain and pons 
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(19), and some go upstream to mediodorsal 
thalamus (MD) relay neurons that project to a 
frontal lobe region known as the frontal eye 
field (20). Our hypothesis is that the ascend- 
ing pathway carries corollary discharges of 
saccadic commands. 

To test this hypothesis, first we recorded 
from 46 MD relay neurons in Macaca mu- 
latta (21), all physiologically verified as 
receiving input from the superior colliculus 
and projecting to the frontal eye field (Fig. 
1A). We studied their activity while mon- 
keys made delayed saccades to visual tar- 
gets (Fig. lB), a procedure that facilitates 
determining whether the activity is related 
to vision or to movement (21). Most neu- 
rons (74%; 34/46) had increased activity 
just before saccades (Fig. lB) that began on 
average 144 ms before saccade generation 
(SD, 106 ms; median, 101 ms; range, 23 to 
392 ms). Because this activity began before 
movement, it could not have represented 
proprioception. Most of the saccade-related 
neurons (82%; 28/34) were spatially tuned, 
firing most strongly for saccades made 
within a restricted range of amplitudes and 
directions. For all tuned neurons, the best 
direction was contraversive. 

Second, we reversibly inactivated MD by 
injecting muscimol unilaterally at the sites of 
previously recorded MD relay neurons (Fig. 
2A) (21). Muscimol is a y/-aminobutyric acid 
type A (GABAA) agonist and inhibits neuron 
cell bodies, not axons (22), so it should sup- 
press MD relay neurons without affecting 
transthalamic fibers passing nearby. We test- 
ed monkeys on a double-step task, in which 
they had to make successive saccades to two 
flashed targets (Fig. 2B, top) (21, 23, 24). 
Correct execution of the second saccade re- 
quires knowledge about the first saccade's 
metrics. Visual feedback regarding perfor- 
mance is not available, because the saccades 
begin after the targets disappear, and propri- 
oception is unlikely to contribute because it 
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plays little if any role in the online control of 
saccades (25-28). The ability to make a cor- 
rect second saccade, therefore, is thought to 
rely critically on corollary discharge informa- 
tion about the first saccade (12-14). If inac- 
tivation totally disrupts corollary discharge 
(Fig. 2B, bottom), a monkey will be able to 
make a first saccade correctly but will have 
no internal information that the saccade was 
made. If the monkey then tries to complete 
the trial by making a saccade to the second 
target location, the second saccade will travel 
as if starting from the fixation point. The 
observed effect will be a contraversive shift 
of the second saccade end points. 

Results from an example injection are 
shown in Fig. 2C. Before inactivation, the 
monkey made saccadic sequences correct- 
ly. Because the saccades were made in total 
darkness, first saccades were shifted slight- 
ly upward (29). Second saccades went near- 
ly straight up, which indicates that corol- 
lary discharge was intact. During inactiva- 
tion, the second saccade end points shifted 
contraversively, which indicates that corol- 
lary discharge was impaired. Quantitatively 
(Fig. 2D) (21), the second saccade end 
points were indeed shifted horizontally 
[contraversive 2.5? shift; P < 0.001 (21)] 
but not vertically during the injection. Nei- 
ther the initial fixation locations nor the 
first saccade end points were shifted signif- 
icantly in either direction. 

We performed a total of seven muscimol 
experiments in which there were a total of 22 
cases of before versus during saccadic se- 
quence pairs to analyze (21). In every case, 
the principle for identifying a corollary dis- 
charge deficit was the same as in Fig. 2. In 
82% of the cases (18/22), there was a contra- 
versive shift in second saccade end points 
(Fig. 3A), and the overall mean shift (1.12?) 
was significantly greater than zero. The con- 
traversive shift in 11 of these cases was in- 
dividually significant [and always reversible 
(30)]. First saccade end points did not exhibit 
a significant mean horizontal shift (Fig. 3B); 
neither did initial fixation locations (-0.09? 
shift; P > 0.025). In the vertical direction, 
there were no mean shifts in any of the data 
(31). For controls, we randomly interleaved 
trials in which targets appeared ipsilaterally. 
Identical target configurations were used but 
were flipped across the vertical meridian. In 
these trials, the first saccades were ipsiver- 
sive, a direction poorly represented by MD 
relay neurons. Accordingly, we found no cor- 
ollary discharge deficits: the mean horizontal 
shift for second saccade end points was not 
significantly different from zero (-0.41?: 
P > 0.025). 

We also considered whether inactivation 
might have degraded a monkey's ability to 
see the second target or to remember its 
location. If visual or memory deficits oc- 
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curred, there should have been greater scat- 
ter of the second saccade end points during 
inactivation because of greater uncertainty 
about the second target location. This did 
not occur, however (Fig. 3C). If there were 
subtle visual or memory deficits, they did 
not appear to affect performance in our 
task. 

Although we consistently observed ef- 
fects indicative of impaired corollary dis- 
charge, we never found as large a shift in 
second saccade end points as expected from 
a total deficit. In Fig. 2D, for example, 
second saccade end points shifted 2.5? hor- 
izontally instead of the 10? expected (cf. 
Fig. 2B); hence, in this case there was a 
25% deficit. On average, there was a 19% 
deficit (Fig. 3D). We see three possible 
reasons for the partial deficit. (i) Other 
pathways may also contribute to oculomo- 
tor corollary discharge (20). (ii) Our injec- 
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Fig. 1. Saccade-related activity in the ascend- 
ing pathway from superior colliculus (SC) to 
frontal eye field (FEF) via MD. (A) We record- 
ed from relay neurons in MD that were anti- 
dromically activated by electrical stimulation 
in FEF and orthodromically activated by stim- 
ulation in SC. (B) Activity of an MD relay 
neuron that exhibited a presaccadic burst. 
The task performed by the monkey is depict- 
ed above, and neuronal activity (rasters of 
individual action potentials and spike density 
curve of the averaged firing rate) is shown 
below, with scale at right (sp, spikes). (Left) 
After the monkey looked at a fixation spot 
(dot in circle), a target appeared in the pe- 
riphery (right circle). (Middle) After a delay 
period of 500 to 1000 ms, the fixation spot 
disappeared (dotted circle), which was the 
cue to move. (Right) The monkey then made 
a saccade (arrow) to the target location. 
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Fig. 3. Results from all the inactivations. (A) Histogram of the horizontal shift in second saccade end 
points for all cases (n = 22). Mean shift is indicated. Cases that were individually significant are shown 
in black. Ipsi, ipsiversive; Contra, contraversive. (B) Histogram of the horizontal shift in first saccade end 
points. (C) Scatter of second saccade end points. Standard deviations (SD) of end-point clusters are 
plotted during (ordinate) and before (abscissa) inactivation. Horizontal and vertical SDs are plotted 
separately. Filled symbols represent significant differences during inactivation (F test, P < 0.025 
criterion). SD increased during inactivation in only one case (filled circle above dashed unity line). (D) 
Severity of deficits for the 11 individual cases in which there was a significant horizontal, contraversive 
shift in second saccade end points. See text for calculation of percent deficit. 
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Fig. 4. Single saccade controls. (A) Vector diagram showing mean (a 
points for one experiment. All saccades started at the center and 
possible visual targets. (B) Graphs summarizing the dynamics of 
saccades. Curves show logarithmic fits. 

tions may have been too small, so that we 
failed to inactivate all the MD relay neu- 
rons. (iii) The monkeys may have been able 
to exploit proprioceptive input after losing 
corollary discharge signals during inactiva- 
tion. 

In principle, the monkeys could have 
made preplanned sequences of saccades (32). 
For example, the target flashes shown in Fig. 
2B could have triggered a saccadic program 
to "look right then look up." With this strat- 
egy, corollary discharge signals could be ig- 
nored. We discouraged this by randomizing 
the target configurations across trials and 
modifying them between experiments (21). 
Inactivation never caused deficits consistent 
with disruption of preplanned sequences 
(such as generation of errant sequences or 
random scattering of first and second saccade 
end points). 

Finally, we examined whether MD inac- 
tivation impaired the general ability to 
execute saccades. Notably, recall that inacti- 
vation did not impair first saccades in the 
double-step task (Fig. 3B). To test this in 
more detail, with four muscimol injections 
we also had monkeys make single saccades to 
visual or remembered targets at several ec- 
centricities and directions (21). An example 
is shown in Fig. 4A; in this experiment, there 
were no significant changes in single saccade 
accuracy during inactivation, although there 
were significant deficits in the double-step 
task (similar to the deficits shown in Fig. 2). 
Overall, significant changes in the accuracy 
(and reaction time) of single saccades were 
infrequent, small, and dissimilar between ex- 
periments. To examine saccadic dynamics, 
we plotted peak speed versus amplitude (Fig. 
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