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where 8HTZ', (V4s0)j, and (VS60)i are the data at 
the i-th station (i = 1,. . .,8) and 8HTz( . ) is a 
ftunction of the variables Y410 and Y660. The 
cumulative errors ci are computed for 8HT'z 
and accournt for urncertainties of tdi (V4S0'660)i, 
R, and alnVslaT. The solution (Fig. 5A) is 
consistent with the mineralogic Clapeyron 
slopes of the olivine transformations (14). The 
width of the error ellipses accounts for our 
measurement uncertainties as well as for possi- 
ble lateral variations in R (+40%) and n Vs/8 T 
(?30%). Unlike the slope of the straight line in 
Fig. 4B, the solution of Eq. 1 is not sensitive to 
the two extremal data points; excluding either 
or both results in a small displacement of the 
best-fit point and a slight widening of the cr 
ellipses (Fig. 5B). 

The correlation between tdiff and V T 

(and thus between the TZ thickness and tem- 
perature) in East Asia-Australia (Fig. 4) con- 
trasts the weak correlation inferred from 
global tdiff data sets and tomographic models 
(12, 13, 29). We suggest that this inconsis- 
tency is due to differences in spatial resolu- 
tion of tdiff measurements, on the one hand, 
and of VTZ or VTZ values from global tomog- 
raphy, on the other. The resolution of global 
wavespeed heterogeneity in the TZ is most 
uniform (30, 31) at wavelengths that are 
much larger (>3000 km) than the spatial 
resolution of the tdiff measurements (-500 
km), and this may obscure existing tdiff - VTZ 
correlations. Our study, in which tdiff and 
VT'Z relate to the same spatial length scale, 
corroborates models in which the phase trans- 
formations in olivine cause both 410 and 660. 
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Identity and Search 
in Social Networks 

Duncan J. Watts,l 23* Peter Sheridan Dodds,2 M. E. J. Newman, 

Social networks have the surprising property of being "searchable": Ordinary 
people are capable of directing messages through their network of acquain- 
tances to reach a specific but distant target person in only a few steps. We 
present a model that offers an explanation of social network searchability in 
terms of recognizable personal identities: sets of characteristics measured along 
a number of social dimensions. Our model defines a class of searchable net- 
works and a method for searching them that may be applicable to many 
network search problems, including the location of data files in peer-to-peer 
networks, pages on the World Wide Web, and information in distributed da- 
tabases. 

In the late 1960s, Travers and Milgram (1) 
conducted an experiment in which randomly 
selected individuals in Boston, Massachu- 
setts, and Omaha, Nebraska, were asked to 
direct letters to a target person in Boston, 

each forwarding his or her letter to a single 
acquaintance whom they judged to be closer 
than themselves to the target. Subsequent 
recipients did the same. The average length of 
the resulting acquaintance chains for the let- 
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ters that eventually reached the target (rough- 
ly 20%) was about six. This reveals not only 
that short paths exist (2, 3) between individ- 
uals in a large social network but that ordi- 
nary people can find these short paths (4). 
This is not a trivial statement, because people 
rarely have more than local knowledge about 
the network. People know who their friends 
are. They may also know who some of their 
friends' friends are. But no one knows the 
identities of the entire chain of individuals 
between themselves and an arbitrary target. 

The property of being able to find a target 
quickly, which we call searchability, has been 
shown to exist in certain specific classes of 
networks that either possess a certain fraction 
of hubs [highly connected nodes which, once 
reached, can distribute messages to all parts 
of the network (5-7)] or are built upon an 
underlying geometric lattice that acts as a 
proxy for "social space" (4). Neither of these 
network types, however, is a satisfactory 
model of society. 

Here, we present a model for a social 
network that is based upon plausible social 
structures and offers an explanation for the 
phenomenon of searchability. Our model fol- 
lows naturally from six contentions about 
social networks. 

1) Individuals in social networks are en- 
dowed not only with network ties, but iden- 
tities (8): sets of characteristics attributed to 
them by themselves and others by virtue of 
their association with, and participation in, 
social groups (9, 10). The term "group" refers 
to any collection of individuals with which 
some well-defined set of social characteris- 
tics is associated. 

2) Individuals break down, or partition, 
the world hierarchically into a series of lay- 
ers, where the top layer accounts for the 
entire world and each successively deeper 
layer represents a cognitive division into a 
greater number of increasingly specific 
groups. In principle, this process of distinc- 
tion by division can be pursued all the way 
down to the level of individuals, at which 
point each person is uniquely associated with 
his or her own group. For purposes of iden- 
tification, however, people do not typically 
do this, instead terminating the process at the 
level where the corresponding group size g 
becomes cognitively manageable. Academic 
departments, for example, are sometimes 
small enough to function as a single group 
but tend to split into specialized subgroups as 
they grow larger. A reasonable upper bound 
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on group size (9) is g- 100, a number that 
we incorporate into our model (Fig. 1A). We 
define the similarity xi, between individuals i 
and j as the height of their lowest common 
ancestor level in the resulting hierarchy, set- 
ting xi = 1 if i and j belong to the same 
group. The hierarchy is fully characterized by 
depth 1 and constant branching ratio b. The 
hierarchy is a purely cognitive construct for 
measuring social distance, and not an actual 
network. The real network of social connec- 
tions is constructed as follows. 

3) Group membership, in addition to de- 
fining individual identity, is a primary basis 
for social interaction (10, 1]) and therefore 
acquaintanceship. As such, the probability of 
acquaintance between individuals i and j de- 
creases with decreasing similarity of the 
groups to which they respectively belong. We 
model this by choosing an individual i at 
random and a link distance x with probability 
p(x) = cexp[-cx], where ot is a tunable 
parameter and c is a normalizing constant. 
We then choose a second node j uniformly 
among all nodes that are a distance x from i, 
repeating this process until we have con- 
structed a network in which individuals have 
an average number of friends z. The param- 
eter cx is therefore a measure of homophily- 
the tendency of like to associate with like. 
When e-- << 1, all links will be as short as 
possible, and individuals will connect only to 
those most similar to themselves (i.e., mem- 
bers of their own bottom-level group), yield- 
ing a completely homophilous world of iso- 
lated cliques. By contrast, when e-- = b, any 
individual is equally likely to interact with 
any other, yielding a uniform random graph 
(12) in which the notion of individual simi- 
larity or dissimilarity has become irrelevant. 

4) Individuals hierarchically partition the 

social world in more than one way (for ex- 
ample, by geography and by occupation). We 
assume that these categories are independent, 
in the sense that proximity in one does not 
imply proximity in another. For example, two 
people may live in the same town but not 
share the same profession. In our model, we 
represent each such social dimension by an 
independently partitioned hierarchy. A 
node's identity is then defined as an H-di- 
mensional coordinate vector vi, where v' is 
the position of node i in the hth hierarchy, or 
dimension. Each node i is randomly assigned 
a coordinate in each of H dimensions and is 
then allocated neighbors (friends) as de- 
scribed above, where now it randomly choos- 
es a dimension h (e.g., occupation) to use for 
each tie. When H = 1 and e-a << 1, the 
density of network ties must obey the con- 
straint z < g. 

5) On the basis of their perceived similar- 
ity with other nodes, individuals construct a 
measure of "social distance" yfj, which we 
define as the minimum ultrametric distance 
over all dimensions between two nodes i and 
j; i.e., yij = min* xh. This minimum metric 
captures the intuitive notion that closeness in 
only a single dimension is sufficient to con- 
note affiliation (for example, geographically 
and ethnically distant researchers who collab- 
orate on the same project). A consequence of 
this minimal metric, depicted in Fig. iB, is 
that social distance violates the triangle in- 
equality-hence it is not a true metric dis- 
tance-because individuals i and j can be 
close in dimension hI, and individuals j and k 
can be close in dimension h2, yet i and k can 
be far apart in both dimensions. 

6) Individuals forward a message to a 
single neighbor given only local information 
about the network. Here, we suppose that 

Fig. 1. (A) IndividuaLs A 
(dots) belong to groups A1=4 
(ellipses) that in turn b-2 
belong to groups of = x=3x 
groups, and so on, giv- /' 
ing rise to a hierarchical 
categorization scheme. g=6 
In this example, groups , . . . . * , 
are composed of g = 6 0. W . 0 
individuals and the hi- 
erarchy has I = 4 lev- 
eLs with a branching ra- B h=l h=2 
tio of b = 2. 1ndividuaLs 
in the same group are 
considered to be a dis- 
tance x = 1 apart, and 
the maximum separa- i,j k i j,k 
tion of two individuaLs 
is x = 1. The individuaLs i and j belong to a category two leveLs above that of their respective groups, 
and the distance between them is X,7 = 3. IndividuaLs each have z friends in the model and are more 
likely to be connected with each other the closer their groups are. (B) The complete model has many 
hierarchies indexed by h = 1... H, and the combined social distancey.. between nodes i andj is taken 
to be the minimum ultrametric distance over all hierarchiesy.. = min xh.. The simple example shown 
here for H = 2 demonstrates that social distance can violate the triangle inequality: y.. = 1 because i 
andj belong to the same group under the first hierarchy and similarlyyjk = 1 but i and k remain distant 
in both hierarchies, giving, V, = 4 > V;;+Vu, = 2. 
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each node i knows only its own coordinate 
vector vi, the coordinate vectors V of its 
immediate network neighbors, and the coor- 
dinate vector of a given target individual 'V, 
but is otherwise ignorant of the identities or 
network ties of nodes beyond its immediate 
circle of acquaintances. 

Individuals therefore have two kinds of 
partial information: social distance, which 
can be measured globally but which is not a 
true distance (and hence can yield misleading 
estimates); and network paths, which gener- 
ate true distances but which are known only 
locally. Although neither kind of information 
alone is sufficient to perform efficient search- 

Fig. 2. (A) Regions in H-oL space A 6 
where searchable networks exist _, 
for varying numbers of individual 5 
nodes N (probability of message I 
failure p = 0.25, branching ratio 4 
b = 2, group size g =100, av- I 3 
erage degree z = g- 1 = 99, 
105 chains sampled per net- 2 / - 'N 

work). The searchability criterion / 
is that the probability of mes- 1 
sage completion q must be at - 
least r = 0.05. The lines corre- 0 
spond to boundaries of the 1 3 5 7 9 11 13 15 
searchable network region for H 
N = 102,400 (solid), N = B _0 __ 
204,800 (dot-dash), and N = 10 
409,600 (dash). The region of 
searchable networks shrinks with 
N, vanishing at a finite value of 101 
N that depends on the model 
parameters. Note that z < g is / 
required to explore H-ot space 2 
because for H = 1 and cx suffi- 10 
ciently large, an individual's 
neighbors must all be contained 
within their sole local group. (B) 10 
Probability of message comple- 1 3 5 7 9 11 13 15 
tion q(H) when cx = 0 (squares) H 
and cx = 2 (circles) for the N = 102,400 data set used in (A). The horizontal line shows the position 
of the threshold r = 0.05. Open symbols indicate that the network is searchable (q ' r) and closed 
symbols mean otherwise. For cx = 0, searchability degrades with each additional hierarchy. For the 
homophilous case of cx = 2 with a single hierarchy, less than 1% of all searches find their target 
(q _ 0.004). Adding just one other hierarchy increases the success rate to q 0.144, and q slowly 
decreases with H thereafter. 

Fig. 3. Comparison between n(L), the number 12 
of completed chains of length L, taken from the _ 
original small-world experiment (1) (bar graph) 1a0 
and from an example of our model with N = 8 
108 individuals (filled circles with the line being s: 6 
a guide for the eye). The experimental data 4 
shown are for the 42 completed chains that 2 6 H- 
originated in Nebraska. (We have excluded the 0__ _______ _ _ 
24 completed chains that originated in Boston 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
as this would correspond to N 106.) The L 
model parameters are H = 2, a = 1, b = 10, 
g = 100, and z = 300; message attrition rate is set at 25%; n(L) for the model is compiled from 
106 random chains and is normalized to match the 42 completed chains that started in Nebraska. 
The average chain length of Milgram's experiment is -6.5, whereas the model yields (L)- 6.7. The 
distributions compare well: A two-sided Kotmogorov-Smirnov test yields a P-value of P _ 0.57, 
whereas for a x2 test, x2 5.46 and P 0.49 (seven bins). (A large value of P supports the 
hypothesis that the distributions are similar.) Even without attrition, the model's average search 
time is (L) 8.5 and the median chain length is 8. The model does not entirely match the 
experimental data because the former requires approximately 360 initial chains to achieve 42 
completions as compared with 196. 

es, here we show that a simple algorithm that 
combines knowledge of network ties and so- 
cial identity can succeed in directing messag- 
es efficiently. The algorithm we implement is 
the same greedy algorithm Milgram suggest- 
ed: Each member i of a message chain for- 
wards the message to its neighbor j who is 
closest to the target t in terms of social dis- 
tance; that is, yj1 is minimized over all ] in i's 
network neighborhood. 

Our principal objective is to determine the 
conditions under which the average length 
(L) of a message chain connecting a random- 
ly selected sender s to a random target t is 
small. Although "small" has recently been 

taken to mean that (L) grows slowly with the 
population size N (13, 14), Travers and Mil- 
gram found only that chain lengths were 
short. Furthermore, these message chains had 
to be short in an absolute sense because at 
each step, they were observed to terminate 
with probability p -0.25 (1, 15). We there- 
fore adopt a more realistic, functional notion 
of efficient search, defining for a given mes- 
sage failure probability p, a searchable net- 
work as any network for which q, the prob- 
ability of an arbitrary message chain reaching 
its target, is at least a fixed value r. In terms 
of chain length, we formally require q = 
((1 - p)L) ' r, and from this we can obtain 
an estimate of the maximum required (L) 
using the approximated inequality (L) ' lnr/ 
ln(1 - p). For the purposes of this study, we 
set r = 0.05 and p = 0.25, yielding the 
stringent requirement that (L) ' 10.4 inde- 
pendent of the population size N. Figure 2A 
presents a typical phase diagram in H and ox, 
outlining the searchable network region for 
several choices of N, g = 100, and z = g - 
1 = 99. 

Our main result is that searchable net- 
works occupy a broad region of parameter 
space (cx,H) which, as we argue below, cor- 
responds to choices of the model parameters 
that are the most sociologically plausible. 
Hence our model suggests that searchability 
is a generic property of real-world social 
networks. We support this claim with some 
further observations and demonstrate that our 
model can account for Milgram's experimen- 
tal findings. 

First, we observe that almost all search- 
able networks display cx > 0 and H > 1, 
consistent with the notion that individuals are 
essentially homophilous (that is, they associ- 
ate preferentially with like individuals) but 
judge similarity along more than one social 
dimension. Neither the precise degree to 
which they are homophilous, nor the exact 
number of dimensions they choose to use, 
appears to be important-almost any reason- 
able choice will do. The best performance, 
over the largest interval of Co, is achieved for 
H = 2 or 3-an interesting result in light of 
empirical evidence (16) that individuals 
across different cultures in small-world ex- 
periments typically use two or three dimen- 
sions when forwarding a message. 

Second, as Fig. 2B shows, although in- 
creasing the number of independent dimen- 
sions from H = 1 yields a dramatic reduction 
in delivery time for values of o > 0, this 
improvement is gradually lost as H is in- 
creased further. Hence the window of search- 
able networks in Fig. 2A exhibits an upper 
boundary in H. Because ties associated with 
any one dimension are allocated independent- 
ly with respect to ties in any other dimension, 
and because for fixed average degree z, larger 
H necessarily implies fewer ties per dimen- 
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sion, the network ties become less correlated 
as H increases. In the limit of large H, the 
network becomes essentially a random graph 
(regardless of ot) and the search algorithm 
becomes a random walk. An effective decen- 
tralized search therefore requires a balance 
(albeit a highly forgiving one) of categorical 
flexibility and constraint. 

Finally, by introducing parameter choices 
that are consistent with Milgram's experiment 
(N = 108, p = 0.25) (1), as well as with 
subsequent empirical findings (z = 300, H = 2) 
(17, 16), we can compare the distribution of 
chain lengths in our model with that of Travers 
and Milgram (1) for plausible values of a and b. 
As Fig. 3 shows, we obtain (L) -6.7 for a = 
1 and b = 10, indicating that our model cap- 
tures the essence of the real small-world prob- 
lem. This agreement is robust with respect to 
variations in the branching ratio, showing little 
change over the range 5 < b < 50. 

Although sociological in origin, our model 
is relevant to a broad class of decentralized 
search problems, such as peer-to-peer network- 
ing, in which centralized servers are excluded 
either by design or by necessity, and where 
broadcast-type searches (i.e., forwarding mes- 
sages to all neighbors rather than just one) are 
ruled out because of congestion constraints (6). 
In essence, our model applies to any data struc- 
ture in which data elements exhibit quantifiable 
characteristics analogous to our notion of iden- 
tity, and similarity between two elements- 
whether people, music files, Web pages, or 
research reports-can be judged along more 
than one dimension. One of the principal diffi- 
culties with designing robust databases (18) is 
the absence of a unique classification scheme 
that all users of the database can apply consis- 
tently to place and locate files. Two musical 
songs, for example, can be similar because they 
belong to the same genre or because they were 
created in the same year. Our model transforms 
this difficulty into an asset, allowing all such 
classification schemes to exist simultaneously, 
and connecting data elements preferentially to 
similar elements in multiple dimensions. Effi- 
cient decentralized searches can then be con- 
ducted by means of simple, greedy algorithms 
providing only that the characteristics of the 
target element and the current element's imme- 
diate neighbors are known. 
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Ascent of Dinosaurs Linked to 
an Iridium Anomaly at the 
Triassic-Jurassic Boundary 

P. E. Olsen,1 D. V. Kent,12 H.-D. Sues,3 C. Koeberl,4 H. Huber,4 
A. Montanari,5 E. C. Rainforth,l S. J. Fowell,6 M. J. Szajna,7 

B. W. Harttine7 

Analysis of tetrapod footprints and skeletal material from more than 70 lo- 
calities in eastern North America shows that large theropod dinosaurs appeared 
less than 10,000 years after the Triassic-Jurassic boundary and less than 30,000 
years after the last Triassic taxa, synchronous with a terrestrial mass extinction. 
This extraordinary turnover is associated with an iridium anomaly (up to 285 
parts per trillion, with an average maximum of 141 parts per trillion) and a fern 
spore spike, suggesting that a bolide impact was the cause. Eastern North 
American dinosaurian diversity reached a stable maximum less than 100,000 
years after the boundary, marking the establishment of dinosaur-dominated 
communities that prevailed for the next 135 million years. 

One of the most striking events in the Mesozoic 
was the rise to dominance of dinosaurs in ter- 
restrial ecosystems. The cause and timing of 
their early Mesozoic ascent have been debated 
(1-4), with difficulties in global correlation and 
low sampling density limiting the utility of glob- 
al compilations and obscuring relations to pos- 
sible forcing mechanisms. However, terrestrial 
vertebrate assemblages in eastern North Amer- 
ica are temporally better constrained than else- 
where and provide high-resolution biological 
and geochemical data bearing on this issue. This 
region was within the tropics during the Triassic 
and contained rift valleys, which were formed 
during the incipient fragmentation of Pangea. 
These basins contain kilometer-thick sections of 
continental strata, termed the Newark Super- 
group, which have recorded the rise of dinosaurs 
across 150 of paleolatitude (5). Milankovitch- 
type climate cycles permeate the lacustrine stra- 
ta of these basins, and in conjunction with 
paleomagnetic reversal stratigraphy, all of the 
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fossils can be placed within a high-resolution 
astronomically tuned time scale (6, 7) (Fig. 1). 

Here, we focus on material from 80 localities 
in four Newark Supergroup basins, consisting of 
reptile footprints (8, 9), skeletal remains (2, 10), 
and palynological material (11) keyed into the 
astronomically tuned time scale (Figs. 1 and 2). 
The footprints are abundant, well-preserved, and 
diverse, and they offer a temporal sampling of 
terrestrial vertebrate communities that is better 
than the sampling from skeletal material around 
the Triassic-Jurassic boundary (4, 8). On the 
basis of comparisons between the reconstructed 
osteology of footprints and known skeletal 
remains, the ichnogenus level generally corre- 
sponds to an osteological family or higher taxo- 
nomic level (Table 1). However, footprints sam- 
ple the terrestrial communities directly, and 
major changes in footprint assemblage compo- 
sition probably represent important ecological 
changes (12). Even with uncertainty in the nature 
of the trackmakers, well-preserved footprints of- 
fer a useful independent proxy of faunal change 
(13), and the observed stratigraphic changes in 
the ichnological assemblages are consistent with 
the changes seen in osteological remains (Fig. 1). 

On the basis of compiled ranges tied to the 
time scale (Fig. 1), Newark Supergroup dino- 
saurian ichnotaxa show a slow increase in rela- 
tive abundance and a stepped increase in maxi- 
mum size below the Triassic-Jurassic boundary 
(9). The omithischian dinosaurian ichnogenus 
Atreipus (14) is the most common dinosaurian 

www.sciencemag.org SCIENCE VOL 296 17 MAY 2002 1305 


	Cit r604_c624: 
	Cit r603_c623: 


