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Fig. 5. (A) Binding of E2F6.com-1 to the target promoters in vivo. Chromatin immunoprecipitation 
was performed from Go (top) and G1 (bottom) cells with the indicated antibodies. The presence of 
target genes in the immunoprecipitates was detected by PCR with primers that amplify E2F-1, 
cdc25A, c-myc, and TK promoters as well as P-actin-coding region. (B) Model of repression by 
E2F6.com-1 via formation of transcriptionally inactive chromatin. 

Fig. 5. (A) Binding of E2F6.com-1 to the target promoters in vivo. Chromatin immunoprecipitation 
was performed from Go (top) and G1 (bottom) cells with the indicated antibodies. The presence of 
target genes in the immunoprecipitates was detected by PCR with primers that amplify E2F-1, 
cdc25A, c-myc, and TK promoters as well as P-actin-coding region. (B) Model of repression by 
E2F6.com-1 via formation of transcriptionally inactive chromatin. 

As illustrated in Fig. 5B, E2F6.com-l could be 
recruited on E2F- and Myc-responsive genes via 
sequence-specific DNA binding domains in the 
complex (top), and it could methylate proximate 
nucleosomes (middle) and load HPly and PcG 
proteins (bottom). This recruitment could form a 
"platform" that is required for nucleating PcG 
proteins and which thus contribute to the prop- 
agation of inactive chromatin, leading to entire 
repressed regions. 

It is intriguing that E2F6.com-l is present in 
HeLa cells that cannot enter the quiescent stage, 
even though it does not occupy target genes. 
Revealing the details of these processes would 
provide further insights into mechanisms where- 
by normal cells can enter quiescent stage, 
whereas malignant tumor cells cannot. 

Note added in proof: In contrast to our data, 
Takahashi et al. (22) reported that p130 and 
E2F4 occupy the target promoters in Go and 
early G1 stages. We believe that this discrepancy 
could be due to different cell types and condi- 
tions for Go induction. Takahashi et al. used 
T98G human glioblastoma cells, whereas we 
used human BJ-1 fibroblasts. Moreover, they 
arrested the cell cycle by serum starvation, 
whereas we first arrested the cycle by contact 
inhibition, then by serum starvation. 
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X chromosome inactivation is the silencing mechanism eutherian mammals use to 
equalize the expression of X-linked genes between males and females early in 
embryonic development. In the mouse, genetic control of inactivation requires 
elements within the X inactivation center (Xic) on the X chromosome that influence 
the choice of which X chromosome is to be inactivated in individual cells. It has long 
been posited that unidentified autosomal factors are essential to the process. We 
have used chemical mutagenesis in the mouse to identify specific factors involved 
in X inactivation and report two genetically distinct autosomal mutations with 
dominant effects on X chromosome choice early in embryogenesis. 

During early preimplantation development, undergo X chromosome inactivation, the epi- 
female cells have two active X chromosomes. genetic process that results in the stable si- 
As these cells begin to differentiate, they lencing of a majority of genes on one X 
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chromosome (1-4). Historically, control of 
inactivation has been attributed to a geneti- 
cally defined region on the X chromosome 
known as the X inactivation center (Xic); 
three elements have been mapped to Xic that 
play a role in the mechanism of inactivation. 
A key component is the Xist gene and its 
product (5), a large untranslated RNA that 
coats the inactive X chromosome (Xi). It is 
transcribed from the Xi, whereas it is re- 
pressed on the active X (Xa). Xist is required 
in cis for initiation and propagation of silenc- 
ing (2, 3, 6). Its antisense counterpart, Tsix 
(7), is transcribed exclusively from Xa and 
appears to repress Xist before initiation of X 
inactivation, thereby maintaining two active 
X chromosomes (7, 8). Once silenced, the 
inactive X maintains its state by a variety of 
epigenetic regulatory mechanisms, including 
modification of both classic and variant his- 
tones, methylation of Xi DNA, and late rep- 
lication timing (2-4). 

The most elusive component of the X 
inactivation pathway remains the initial 
choice between the two X chromosomes, the 
earliest step in the process. In the mouse, 
choice is under the control of the X-control- 
ling element (Xce), a third locus within the 
Xic (9-12). Three Xce alleles (Xcea, Xceb, and 
Xcec) have been described (13, 14), and mu- 
tation studies of the Xist and Tsix genes sug- 
gest that they also play a role in choice (2, 3). 
Further, DXPas34, a region downstream from 
the Tsix promoter, is hypermethylated on Xce 
alleles that are more likely to remain active 
(15). It has long been hypothesized that mul- 
tiple trans-acting autosomal factors interact 
with cis-acting elements in the Xic to deter- 
mine X chromosome choice (16-19). Recent 
identification of CTCF-binding sites within 
Tsix suggests that the general transcriptional 
regulator CTCF may behave as one such 
factor (20), although there is no genetic evi- 
dence that CTCF influences X inactivation 
(21). To identify specific trans-acting ele- 
ments that act on the choice process, we 
conducted a phenotype-driven genetic screen 
involving chemical mutagenesis in the 
mouse. 

The screen took advantage of a quantita- 
tive mouse model of choice in which the 
effect of different Xce alleles is used as a 
baseline measure of the X inactivation pattern 
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(22). Nonrandom choice occurs when a 
"strong" Xce allele (one that is more likely to 
be on the active X, such as the Xcec allele 
derived from Mus musculus castaneus mice) 
is inherited in combination with a "weak" 
allele (one that is less likely to be on the 
active X, such as Xcea or Xceb derived from 
Mus musculus domesticus mice). In these 
heterozygous animals, 25 to 30% of cells 
choose the X bearing the weaker Xce allele as 
the Xa, instead of the 50% expected for a 
completely random process (10-14, 22). The 
use of Xcea/c and Xceb/c heterozygotes in the 
genetic screen facilitated recovery of muta- 
tions disrupting general aspects of X chromo- 
some choice as well as those specifically 
involved in Xce allelic discrimination. 

The X inactivation phenotype was first 
established in two unmutagenized control 
populations of Xcea/ and Xceb/c heterozy- 
gotes to provide a basis for screening the 
mutagenized populations (22, 23). We then 
screened 84 Xcea/c and 252 Xceb/ G1 female 
progeny of males treated with N-ethyl-N-ni- 
trosourea (ENU) (Fig. 1, A and D) (23, 24). 
We considered any G, animals with X inac- 
tivation patterns greater than two standard 
deviations from the mean of the control pop- 
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ulations candidates for X inactivation mu- 
tants. To avoid recovering animals in which 
deleterious X-linked mutations unrelated to 
the X inactivation choice pathway caused 
highly skewed X inactivation patterns sec- 
ondary to differential cell survival (25), we 
concentrated on animals that preferentially 
maintained the mutagenized X chromosome 
as the Xa. To determine the heritability of the 
putative mutations, we progeny tested G, 
females fulfilling the candidate mutant 
criteria. 

Two GI females, 24.21 and 1.19 (26), 
transmitted the altered X inactivation pattern 
to their female offspring and were investigat- 
ed further. Both pedigrees segregated the mu- 
tant X inactivation pattern through at least the 
seventh generation and demonstrated domi- 
nant inheritance patterns (Fig. 1, B, C, E, and 
F). In both pedigrees, carrier females (26) 
displayed X inactivation patterns significant- 
ly different from those predicted by their 
respective Xce genotypes, as the X chromo- 
some bearing the strong Xce allele was the Xi 
in a significantly higher proportion of cells 
than expected (22). Phenotyping several gen- 
erations of outcrossed control animals con- 
firmed that the aberrant X inactivation pat- 
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Fig. 1. Mutagenesis screen and progeny tests of two mutants: 24.21 and 1.19. Distribution of the 
X inactivation pattern in 84 G1 Xcea/c (closed circles) (A) and 252 G1 Xceb/c (open circles) (D) 
female progeny of ENU-treated males. Females 24.21 and 1.19 are designated by diagonal arrows 
in (A) and (D), respectively. The X inactivation pattern reflects the proportion of M. musculus 
domesticus allele transcription relative to total RNA levels of both M. musculus domesticus and M. 
musculus castaneus alllees (22, 24). Progeny tests of the Xcea/' G, female 24.21 (B) and the Xceb/c 

G, female 1.19 (E) demonstrate dominant transmission of each mutant phenotype through the 
seventh generation. Unaffected females from each pedigree generated only unaffected female 
progeny [right (B) and (E)]. In (A), (B), (D), and (E), the horizontal arrowhead represents the mean 
X inactivation pattern, and the dashed lines represent the 2 SD demarcation of matched control 
(unmutagenized) populations (22, 26). Representative branches of the 24.21 (C) and 1.19 (F) 
pedigrees demonstrate dominant segregation of each mutation through affected females (half- 
filled circles) and through carrier males with a wild-type X chromosome (squares with a dot) but 
not through unaffected females (open circles). Affected females are defined by phenotypes that are 
at least 2 SD greater than the mean of controls. Carrier status was confirmed by transmission of 
the affected phenotype to at least two female offspring (26). 
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postcoitus (dpc) and 7.5 dpc control female embryos (open circles) and in 6.5 dpc 24.21 and 7.5 dpc 1.19 carrier embryos (closed circles). Carrier status 
of 24.21 embryos was established by genotyping at loci on chromosome 15 (34). Carrier status of 1.19 embryos was assigned on the basis of X 
inactivation patterns > 2 SD above the control mean of postnatal tissues (dashed line). 

terns did not result from genetic background 
variability (27), consistent with previous 
studies (22). As further validation of the mu- 
tant phenotypes, we progeny tested unaffect- 
ed female siblings in both pedigrees; as ex- 
pected, their offspring demonstrated X inac- 
tivation patterns not significantly different 
from controls of the same cross (P > 0.1) 
(Fig. 1, B, C, E, and F). 

Neither carrier males nor females exhibit- 
ed obvious developmental defects, impaired 
fertility, or reduced segregation of the mutant 
phenotypes in either pedigree, which indi- 
cates specificity of the mutant phenotype to X 
inactivation. We characterized carrier mice 
for each mutation at three different X-linked 
loci: Xist, Pctk, and Pgk-1 (24). The results of 
the assays were highly concordant for fe- 
males tested in both pedigrees (Fig. 2, A and 
D), which indicates that the phenotypes re- 
flect the chromosomal pattern of X inactiva- 
tion and do not reflect, for example, simple 
locus-specific effects. We also characterized 
the X inactivation pattern in a variety of 
tissues representing the three embryonic lin- 
eages and determined that all tissues are sim- 
ilarly affected in carrier females from both 
pedigrees (Fig. 2, B and E). 

Because X inactivation occurs early in 
embryonic development (1, 28-31), these ob- 
servations suggested that the mutations likely 
act on an early step in the X inactivation 
pathway. To address this directly, we assayed 
the X inactivation pattern in early embryos, 
after choice has occurred (2, 3, 32) but before 
any secondary cell selection might have taken 
place (25). Indeed, we detected the mutant 

Fig. 3. Genome scan of pedigree 
24.21 demonstrates linkage of 
the mutant phenotype to chro- 
mosome 15. Five affected G4 
and G5 females were genotyped 
with microsatellite markers 
spaced evenly throughout the 
genome with a maximum spac- 
ing of 30 cM (34). The location of 
the markers is designated by ar- 
rowheads on the left of each 
chromosome. Genotypes for the 
five individual females are repre- 
sented as vertical bars 1 through 
5 for each chromosome. Unfilled 
regions of the bars represent 
wild-type genotypes (from the 
nonmutagenized parent); filled 
regions represent BALB/cByJ 
alleles inherited from the ENU- 
treated founder male. The prob- 
ability that the ENU-treated al- 
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leles were inherited in the proximal region of chromosome 15 by chance is P < 0.004. Alleles from 
the ENU-treated male were not observed on chromosomes 4, 6, 7, 8, 11, 16, 17, and 18 (Other 
Chs.) (27) [fig. S1 (35)]. 

phenotype in early embryos of both families 
(Fig. 2C), confirming that the mutations have 
a primary effect on X inactivation and clearly 
ruling out secondary cell selection as the 
mechanism responsible for the mutant phe- 
notypes. Further, the mutation segregating in 
pedigree 24.21 induced the mutant phenotype 
when transferred to a different Xce heterozy- 
gous genotype, which confirms the effect of 
this mutation on X chromosome choice and 
rules out the possibility of a strain-specific 
oddity (27). Carrier females from both pedi- 
grees exhibited appropriate imprinting of the 
well-characterized H19 gene (27, 33). To- 

gether, these data strongly indicate that the 
mutations detected in pedigrees 24.21 and 
1.19 specifically affect an early step of the X 
inactivation pathway to result in primary X 
inactivation patterns that are significantly dif- 
ferent from those predicted by their Xce 
genotypes. 

To determine whether the mutations were 
X-linked, we examined segregation of the 
mutant phenotype through two categories of 
male siblings: those carrying either a wild- 
type or an ENU-treated X chromosome. If the 
mutation were X-linked, none of the males in 
the first category and all in the second should 
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transmit the mutation to each of their daugh- 
ters. On the other hand, if the mutation were 
autosomal, half the males in each category 
should transmit the phenotype to half their 
daughters. Indeed, about half the males in 
both categories in each family clearly trans- 
mitted the abnormal X inactivation pattern to 
a subset of their daughters (27), which indi- 
cates autosomal dominant modes of inheri- 
tance. Analysis of X-linked microsatellite 
markers in affected and unaffected family 
members in both pedigrees confirmed these 
observations (27). These data rule out X link- 
age in both families and are consistent with 
expectations of autosomal inheritance. 

To localize the mutation in pedigree 
24.21, we conducted a genome scan that 
took advantage of the genetic cross used to 
generate the pedigree. In this cross, we 
outcrossed the mutagenized Go BALB/ 
cByJ founder male (23, 26) and all subse- 
quent generations to a tester strain carrying 
a M. musculus castaneus X chromosome 
(22, 23). For the mapping analysis, we 
genotyped five affected and five unaffected 
distantly related females from the fourth 

(G4) and fifth (G5) generations with micro- 
satellite markers evenly spaced across the 
genome with a maximum spacing of 30 
centimorgans (cM) [Fig. 3 (27, 34); fig. S1 
(35)]. We observed alleles from the mu- 
tagenized BALB/cByJ founder male at the 
expected frequency, about 6.25 and 3.13% 
in G4 and G5 animals, respectively. The 
proximal half of chromosome 15 was the 
only region of the genome with significant 
linkage to the mutant phenotype (P < 

0.004) [Fig. 3 (34); fig. S1 (35)]. This 
region does not contain any genes for fac- 
tors known to be involved in any aspect of 
X inactivation or epigenetic silencing (in- 
cluding CTCF), which indicates that the 
mutation affects a specific factor in the X 
inactivation pathway. To determine wheth- 
er the mutation in pedigree 1.19 involves 
the same locus, we genotyped chromosome 
15 in affected animals from this pedigree 
(27); we observed no association between 
the mutant phenotype and chromosome 15. 
Although mapping of the 1.19 mutation to a 
specific location has been hindered by the 
lack of suitable informative markers that 
distinguish the strains used in this cross 
(26, 27), these data indicate that the muta- 
tion segregating in the 1.19 pedigree in- 
volves an autosomal locus distinct from 
that mutated in the 24.21 pedigree. 

These mutations, which we designate X- 
inactivation autosomal factors 1 and 2 (Xiafl 
and Xiaf2), represent direct genetic evidence 
of autosomal factors in X inactivation. Func- 
tional and genetic studies of possible interac- 
tions between Xiafl and Xiaf2 and elements 
of the Xic (16-19), as well as further genetic 
mapping and positional cloning, will be re- 

quired to elucidate the role of these autoso- 
mal factors in the X inactivation pathway. 
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