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changes during the transport cycle. In addition, 
the BtuCD structure clears the way to structural 
studies of intermediate states, which should fur- 
ther advance our understanding of the translo- 
cation mechanisms. 
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Single-electron charging phenomena are 
ubiquitous in atoms, molecules, and small 
electronic devices, and their effects are cen- 
tral to an understanding of the physics and 
technology of nanoscale systems. Single- 
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electron effects arise because the number of 
electrons residing on a small, quasi-isolat- 
ed, conducting island is quantized. Adding 
an additional charge to such a quantum dot 
costs an electrostatic energy on the order of 
U = e2/C, where C is the capacitance of the 
dot and e is the electronic charge (1). This 
charging energy suppresses charge trans- 
port when U >> kBT, where kBT is the 
thermal energy, leading to the Coulomb 
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blockade of charge motion on and off the dot. 
Although Coulomb blockade phenomena 

have been studied extensively with transport 
measurements (2), such measurements lack the 
spatial discrimination necessary to probe the 
interior of a dot or to probe complex multidot 
systems. An alternative approach is to detect 
single-charge motion using scanned probe tech- 
niques, such as scanned capacitance microsco- 
py (3, 4), scanned single-electron transistors (5, 
6), and atomic force microsopy (AFM). The 
first two of these have excellent charge sensi- 
tivity but are technically very difficult; more- 
over, they are not easily able to image the 
topography of the device under study. AFM- 
based techniques, on the other hand, can be 
used both to image the sample and to interact 
with it in a variety of ways. For example, 
electrostatic force microscopy (EFM), which 
measures the electrostatic force between a sam- 
ple and a metallized AFM tip, has been used to 
detect the motion of single charges during con- 
tact electrification of insulating surfaces (7) and 
to image the potential profile in carbon nano- 
tubes (8). In addition, scanned gate microsopy 
(SGM), in which the AFM tip is used to perturb 
the conducting properties of a sample, has been 
used to image electron trajectories and scatter- 
ing centers in two-dimensional electron gases 
(9-11) and bariers in carbon nanotubes (8, 12. 
13). 
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Scanned Probe Imaging of 

Single-Electron Charge States in 

Nanotube Quantum Dots 

Michael T. Woodside' and Paul L. McEuen2 

An atomic force microscope was used to study single-electron motion in 
nanotube quantum dots. By applying a voltage to the microscope tip, the 
number of electrons occupying the quantum dot could be changed, causing 
Coulomb oscillations in the nanotube conductance. Spatial maps of these 
oscillations were used to locate individual dots and to study the electrostatic 
coupling between the dot and the tip. The electrostatic forces associated with 
single electrons hopping on and off the quantum dot were also measured. These 
forces changed the amplitude, frequency, and quality factor of the cantilever 
oscillation, demonstrating how single-electron motion can interact with a 
mechanical oscillator. 
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REPORTS 

We describe experiments that extend these 
AFM-based techniques into the single-electron 
regime, by using a low-temperature AFM (14) 
to perform single-electron scanned gate micros- 
copy (e-SGM) and single-electron electrostatic 
force microscopy (e-EFM). The samples we 
study are individual single-walled carbon nano- 
tubes grown by chemical vapor deposition 
(15) on a backgated Si substrate and attached 
to electrical contacts (16). Tunnel barriers 
arising from defects and/or imperfect electri- 
cal contacts to the nanotube define quantum 
dots in the tube (13, 16, 17). The charge state 
of a dot is controlled by changing either the 
position or the voltage of the AFM tip rela- 
tive to the dot (Fig. 1, top). This charge state 
is then probed by monitoring the conductance 
of the dot (e-SGM) or the mechanical oscil- 
lation of the AFM cantilever (e-EFM). These 
measurements allow us to explore not only 
the local properties of nanotube quantum dots 
but also the influence of single-electron mo- 
tion on a mechanical oscillator. 

We begin by discussing e-SGM, in which 
the charge state of a quantum dot is sensed by 
transport measurements. An e-SGM mea- 
surement of the conductance of a metallic 
nanotube device as a function of the tip volt- 
age tip is shown in Fig. 1A, made at T = 0.6 
K when the position of the AFM tip is fixed 
120 nm above the tube (18). The sharp peaks 
observed in the conductance are the Coulomb 
oscillations that occur at low temperature 
(kBT <c U) each time a single electron is 
added to a dot in the nanotube (1). These 
Coulomb oscillations arise because the tip 
voltage would like to induce a continuous 
charge q (the "control charge") on the dot, but 
the charge e that can actually be transferred to 
the dot is quantized. This produces periodic 
steps in the occupancy of the dot as a function 
of the gate voltage (Fig. 1A), resulting in 
peaks in the conductance each time an elec- 
tron is added to the dot. 

The control charge q induced on the dot 
by the AFM tip is given by: 

q(r,AV) = Ctd(r) * V (1) 

where Ctd(r) is the tip-dot capacitance as a 
function of the tip position r, and A V = Vti 
- Vdot - itd is the electrostatic potential 
difference between the tip and the dot (Itd 

- 
0.2 to 0.3 V is the work function difference 
between the tip and the dot). The conductance 
of the dot can thus be changed not only by 
varying Vti but also by moving the tip over 
the sample. Imaging the conductance of the 
device as a function of the tip position in (x,y) 
for fixed Vti = -200 mV (Fig. 2A), we 
observe two sets of concentric rings of con- 
ductance peaks, centered at different loca- 
tions on the nanotube. Each ring in the image 
corresponds to a single Coulomb oscillation 
on the dot enclosed by the ring: it is the locus 

of tip positions that correspond to the partic- 
ular control charge producing the conduc- 
tance peak. As the tip approaches the dot, Ctd 
grows, causing the negative tip bias to push 
electrons off the dot one by one, producing 
successive concentric rings. 

The two sets of rings in Fig. 2A indicate 
that there are two quantum dots in series 
along the tube, located at the center of each 

AFM tip 

I 1ip 'con act - <.T~,, nanotube 

~A do- quantum dot 
A 

0.3-"- n+lr" ? 
0.3-^ -- n -- o 

0.0A 1 - 

B00 2 L, 2I] 
10 r 

-250 -200 -150 -100 
C Kvtip (mV) 

0. 5- 

-0.2 . .. .... i. -300 -250 -200 -150 
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Fig. 1. Single-electron AFM measurements of 
Coulomb oscillations as a function of Vtip. (Top) 
Measurement confuguration. Tunnel barriers in 
the carbon nanotube create quantum dots. The 
dot occupancy is controlled by changing either 
the dc bias Vtip on the AFM tip or the position 
of the tip with respect to the dot. The dashed 
line shows tip positions that produce a con- 
stant dot occupancy for a given Vtip. (A) e-SGM 
measurement of the conductance of a nano- 
tube quantum dot at 0.6 K. Peaks occur each 
time a single electron is added to the dot. The 
dot occupancy is shown with a dotted line. n is 
an integer number of electrons on the dot. (B) 

same conditions. Peaks in the force occur at the 
same location as the peaks in the conductance. 
(C and D) e-EFM measurements of the fraction- 
al change in the resonant frequency (C) and Q 
(D) of the cantilever, for a differnt device. 
Both the frequency and Q decrease at the 
Coulomb oscillations because of the single- 
electron motion. 

set of rings. A defect or local potential 
perturbation in this nanotube apparently 
creates a tunnel barrier that breaks the tube 
into two dots (13, 19). The size of the 
elliptically shaped Coulomb oscillations for 
the dot on the right side of Fig. 2A indicates 
a dot of length L - 1.5 gnm, which corre- 
sponds well to the length of 1 to 2 rim that 
is inferred from the data in Fig. 1A (16, 
17). The rings around the dot on the left 
side are further apart and nearly perfectly 
circular, indicating that this dot is signifi- 
cantly smaller (L < 0.7 gum). These e-SGM 
images thus give valuable spatial informa- 
tion about the location and size of the 
quantum dots formed in nanotubes. 

We next consider e-EFM measurements, 
in which we measure the dynamical response 
of the AFM cantilever to the force from 
single-electron motion. The cantilever re- 
sponds to an external driving force Fe,, as a 
damped simple harmonic oscillator (20). The 

300 

-0.0 

-0.1 

-1 

Fig. 2. Coulomb oscillations as a function of tip 
position. In all images, dashed lines show the 
location of the nanotube and contacts, deter- 
mined from topographic AFM scans. (A) An 
e-SGM image of the conductance reveals two 
sets of concentric rings of conductance peaks 
from Coulomb oscillations on two dots in series 
in this nanotube. T- 6 K, Vtip 

= -200 mV. (B) 
An e-EFM image of the force from a different 
device. An ac voltage at the resonant frequency 
of the cantilever is applied to the sample elec- 
trodes. Concentric rings of force peaks are seen, 
enclosing two dots in series. T = 0.6 K, Vi = 
-400 mV. (C) An e-EFM image of the Q deg- 
radation from a third device. Two sets of con- 
centric rings where the Q is reduced enclose 
two dots in series. T = 0.6 K, Vtip = -300 mV. 
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force driving the cantilever in e-EFM is the 
electrostatic force exerted on the tip by a 
single electron moving on/off the quantum 
dot. This charge motion produces a change 
U/e in the electrostatic potential of the dot, 
which in turn exerts a force Fe on the tip (21) 

Fe Ctd(A V' U/e) (2) 

where Ctd = dCddz is the derivative of the 
tip-dot capacitance. For typical parameters 
[AV-- 0.5 V, U/e = 2 mV, and Cd = 3 X 
10-11 F/m (22)], we expect Fe - 30 fN. This 
force is two orders of magnitude larger than the 
sensitivity of the AFM on resonance (F, - 

0.3 fN/VHz) (14, 21), hence single-electron 
forces should be readily detectable (23). 

'I G SC (e2/h) 

-1_00 mV .1~~ ~ n3 

2 .001 

^wI I.! 
0 

Fig. 3. (A to H) Evolution of e-SGM features 
with tip voltage. In all images, dashed lines 
show the location of the nanotube and con- 
tacts. At large negative V p, concentric rings are 
seen as electrons are removed from the dot as 
the tip approaches. At large positive Vt,, rings 
are seen as electrons are added to the dot as 
the tip approaches. At V,p ~- 100 to 200 mV, 
the behavior is complex, and several noncircu- 
lar features can be observed. (I) Charge occu- 
pancy of dot inferred from image at Vi = 150 
mV. The tip can either increase or decrease the 
occupancy of the dot, depending on its posi- 
tion, as it screens the dot from its electrostatic 
environment. 

REPORTS 

To measure the single-electron force, we 
push an electron on/off the dot at the resonant 
frequency wo of the cantilever by oscillating 
at oo either the voltage between the tip and 
the dot or the height of the tip above the dot. 
A control charge modulation of 6q(o0) 
changes the occupancy of the dot by df(wo) = 
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control charge at the same locations as the 
Coulomb oscillations in transport (1). We 
therefore expect Coulomb oscillations in the 
force exerted by the dot. 

We look first at e-EFM measurements, 
using the tip-dot voltage to change the charge 
state of the dot. We apply a small ac voltage 
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that align with the Coulomb oscillations in 
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Fmax(o) 

- 15 fN, in good agreement with 
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quency w0 and the quality factor Q of the 
cantilever resonance. Measurements of the frac- 
tional changes CJo/w and 6Q/Q are shown as 
a function of Vtip for a second nanotube device 
(Fig. 1, C and D). Dips in both wo and Q are 
observed at the Coulomb oscillations: Single- 
electron motion decreases the cantilever's nat- 
ural oscillation frequency and leads to addition- 
al energy dissipation. Measurements on a num- 
ber of dots show that the size of the frequency 
shift signal is similar on different dots (8oo/ 

o - 5 x 10-6 to 5 X 10-5 at AV- 0.5 V), 
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dynamic properties of the cantilever. Taking 

into account the phase lag between the charge 
motion and the tip motion due to the finite 
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dot, this force has both real (in-phase) and 
imaginary (out-of-phase) components 

F(Goo)- k'z )(lo) I - -) 

(F2lU)(edfldq) 
where bk = - / -)2 1 - (o0/21 

_ (4) 

For a nanotube quantum dot of length --1 
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is the transmission coefficient for tunneling 
off the dot. The ratio o0/F -- 10 7/-i is 

very small, except for very opaque barriers. 
The real part of the force in Eq. 4 corre- 

sponds to an additional effective spring con- 
stant for the cantilever bk, producing a reso- 
nant frequency decrease 6w0o/W = k/2k. 
Physically, as the tip approaches the sample 
during each cycle of the oscillation, the ad- 
ditional charge induced on the dot pulls the 
tip toward the dot, slowing down the oscilla- 
tion and reducing o,. The magnitude expect- 
ed for typical parameters is (8tX(/wjoo) x - 

5 X 10'6, in good agreement with the ob- 
served values. 

The imaginary part of the force in Eq. 4 
corresponds to an effective damping term, 
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(-klk)(o(/F). Physically, this additional en- 
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from single electrons moving on and off the 
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manifestation of the well-known fluctation- 
dissipation theorem, which requires that the 
energy delivered to the cantilever by the fluc- 
tuating single-electron forces be balanced by 
additional dissipation. The single-electron 
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frequency of the cantilever ( I -- 10 7). This 
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from one dot to the next (or even from one 
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ferent nanotube by applying an ac voltage (?o,) 
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the conductance in Fig. 2A, each ring corre- 
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charge state of the quantum dot at the center of 
the rings. Figure 2C shows a measuremenit of 
the Q degradation as a function of tip position 
for yet another nanotube. Two sets of well- 
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defined concentric rings of Q degradation 
centered at two different locations in the 
nanotube are observed, corresponding to two 
distinct quantum dots. No electrical signal 
needs to be applied to the tube in this mea- 
surement, making it possible to measure tubes 
that are not electrically connected to external 
wires (27). Measurements on a number of 
samples show that multiple-dot behavior is 
quite common, with dot sizes ranging from 
<0.2 xLm to > 1.5 pLm (with an average of 0.5 
Rxm) in the six devices studied. 

Finally, we turn our attention to the electro- 
static information about the device that can be 
obtained by monitoring the charge state of the 
dot while varying both the tip position and the 
tip voltage. We restrict our discussion to e- 
SGM, but our comments are valid for the e- 
EFM techniques as well. A sequence of e-SGM 
images at different values of Vp is shown in 
Fig. 3, concentrating on the dot on the right side 
of Fig. 2A. At large negative V,p (Fig. 3A), a 
series of rings is seen that corresponds to the 
removal of electrons from the dot as the tip 
approaches the dot, whereas at large positive V,p 
(Fig. 3H), concentric rings corresponding to the 
addition of electrons are seen. The features 
evolve continuously with Vip between these 
limits but become complex near V - 100 mV. 
For example, in Fig. 31 we show the number of 
electrons induced on the dot as a function of tip 
position at Vti = 150 mV. We see that the tip 
can either add or subtract electrons from the 
dot, depending on its position. 

A full explanation of the behavior shown in 
Fig. 3 is beyond the scope of this report, but its 
origin can be understood qualitatively by con- 
sidering the effects of the electrostatic environ- 
ment of the quantum dot. In addition to the 
charge induced on the dot by the AFM tip, 
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sidering the effects of the electrostatic environ- 
ment of the quantum dot. In addition to the 
charge induced on the dot by the AFM tip, 
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charge is also induced by electric fields from the 
contacts, the backgate, and any fixed charges 
nearby on the sample. As the conducting tip 
moves over the sample, it screens these fields, 
changing the charge induced on the dot by the 
environment. It is the screening of these fields 
that gives rise to the complex spatial variation in 
the charge states of the dot. The effects of 
screening are most pronounced when the elec- 
trostatic potential difference between the tip 
and the dot is close to zero (here, when V,p 
100 to 200 mV). In this situation, the tip has 
little direct effect on the dot; instead, its main 
effect is to screen the dot from its electrostatic 
environment. This result emphasizes an im- 
portant lesson: Although scanned probe tech- 
niques have the exquisite sensitivity needed to 
image single electrons in nanostructures, they 
almost invariably alter the properties of the 
system they are measuring (4, 6, 11). 
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Creation and Manipulation of 

Three-Dimensional Optically 
Trapped Structures 

M. P. MacDonald,1 L. Paterson,1 K. Volke-Sepulveda,2 J. Arlt,3 
W. Sibbett,1 K. DholakiaT* 

An interferometric pattern between two annular laser beams is used to 
construct three-dimensional (3D) trapped structures within an optical twee- 
zers setup. In addition to being fully translatable in three dimensions, the 

trapped structure can be rotated controllably and continuously by intro- 

ducing a frequency difference between the two laser beams. These inter- 
ference patterns could play an important role in the creation of extended 
3D crystalline structures. 

At a microscopic level, transparent objects can of science, including force detection measure- 
be trapped and manipulated using the forces ments on biological samples, such as the deter- 
exerted by a tightly focused laser beam. This mination of the elastic response of DNA (3). 
technique, known as "optical tweezers" (1, 2), Recent work has also demonstrated the use of 
has enabled major advances in numerous areas optical tweezers for developing optical micro- 
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machines and micro-components (4-8). In par- 
allel with this, the extension of optical tweezers 
to multiple beam sites to create two-dimensional 
particle arrays (9, 10) has been investigated. We 
take this technique a step further by creating 
vertical arrays of particles (stacking) in multiple 
trapping sites, forming the basis for creating 3D 
trapped structures. 

Stacking of a small number of particles in 
standing-wave geometries (11) and Bessel light 
beams (12) has been observed experimentally, 
whereas Gauthier and Ashman theoretically pre- 
dicted stacking in a Gaussian beam (13). Exper- 
imentally, we have observed controlled stacking 
of large numbers of particles in optical tweezers 
using a single Gaussian beam. By extending this 
to multiple trapping sites, formed in the inter- 
ference pattern generated between two annular 
(Laguerre-Gaussian) light beams, we have cre- 
ated 3D trapped structures. Furthermore, we use 
the angular Doppler effect to achieve continuous 
and controlled rotation of the 3D structure. 

The mechanism for creating particle stacks 

machines and micro-components (4-8). In par- 
allel with this, the extension of optical tweezers 
to multiple beam sites to create two-dimensional 
particle arrays (9, 10) has been investigated. We 
take this technique a step further by creating 
vertical arrays of particles (stacking) in multiple 
trapping sites, forming the basis for creating 3D 
trapped structures. 

Stacking of a small number of particles in 
standing-wave geometries (11) and Bessel light 
beams (12) has been observed experimentally, 
whereas Gauthier and Ashman theoretically pre- 
dicted stacking in a Gaussian beam (13). Exper- 
imentally, we have observed controlled stacking 
of large numbers of particles in optical tweezers 
using a single Gaussian beam. By extending this 
to multiple trapping sites, formed in the inter- 
ference pattern generated between two annular 
(Laguerre-Gaussian) light beams, we have cre- 
ated 3D trapped structures. Furthermore, we use 
the angular Doppler effect to achieve continuous 
and controlled rotation of the 3D structure. 

The mechanism for creating particle stacks 

www.sciencemag.org SCIENCE VOL 296 10 MAY 2002 www.sciencemag.org SCIENCE VOL 296 10 MAY 2002 1101 1101 


	Cit r601_c613: 


