
A protein's rate of evolution is thought to 
depend both on its dispensability to the or- 
ganism and on the proportion of potential 
amino acid changes that are compatible with 
proper protein function (1). We recently an- 
alyzed functional genomic data (2) in con- 
junction with genomic comparisons (3) to 
confirm and further characterize the relation 
between protein dispensability and evolution- 
ary rate (4). Here we apply a similar ap- 
proach to investigate how protein function 
constrains evolution. Early studies of the 
structure and function of individual proteins 
suggested that, because molecular interac- 
tions require precisely specified structures, 
they impose constraints on sequence evolu- 
tion (5, 6). Recent advances in the rapid 
detection of protein-protein interactions (7- 
9), as well as in the sequencing of complete 
genomes, allow us to expand the scale on 
which the evolutionary effects of molecular 
interactions are investigated and shift from a 
focus on individual proteins to a broad survey 
of the proteome and characterization of the 
general relation between protein interaction 
and evolution. 

We compiled a list of 3541 interactions 
between 2445 different yeast proteins (10). 
To estimate the evolutionary rates of these 
proteins, we compared putatively ortholo- 
gous sequences between Saccharomyces cer- 
evisiae and the nematode Caenorhabditis el- 
egans (11). A subclass of putative orthologs, 
which we called "well-conserved orthologs," 
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exhibited >50% amino acid identity over 
aligned regions; 1531 sequence pairs met our 
criteria for putative orthologs, and 309 of 
these were in the well-conserved class. For 
each pair of orthologs, we estimated the evo- 
lutionary distance (K) that separates the two 
sequences, where K is defined as the number 
of substitutions per amino acid site that have 
taken place since the fungi-animal split (12). 
There were 164 yeast proteins for which we 
had both an estimate of the number of inter- 
actors and a well-conserved ortholog in the 
nematode. Among these proteins, there is a 
significant negative correlation between each 
protein's number of interactors I and protein 
evolutionary rate, as estimated by distance K 
[Fig. 1; linear regression: K = -0.01751 + 
0.8995, Pearson's rIK = -0.24, P = 0.002; 
Spearman's rank correlation rIK = -0.21, 
P = 0.007 (13)]. We have corroborated this 
relation between protein interaction and rate 
of evolution with data from two recent stud- 
ies (14, 15) that were not considered in our 
initial compilation of protein interactions 
[supplemental fig. 1 (16)]. 
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Interactions could reduce evolutionary 
rate in two distinct ways (Fig. 2). First, if 
different interactions depend on different 
sites, proteins with more interactors could 
evolve more slowly because a greater propor- 
tion of the protein is involved in protein 
functions (Fig. 2, arrow a). Alternatively, if 
proteins with many interactors have a greater 
effect on organism fitness, they could evolve 
more slowly, not because a greater proportion 
of the sequence is required for proper func- 
tion, but because the entire sequence is sub- 
ject to stronger selection against slightly del- 
eterious mutations (4). Under this hypothesis, 
the correlation shown in Fig. 1 emerges be- 
cause a protein's number of interactors is 
correlated with its effect on organism fitness, 
which in turn affects rate of evolution (Fig. 2, 
arrows b and c). To determine which of these 
two hypotheses provides a more likely expla- 
nation for the correlation between number of 
interactors and evolutionary rate, we ana- 
lyzed our data on interactions and evolution- 
ary rate in conjunction with results from ge- 
netic footprinting (17) and parallel analysis 
(2), high-throughput methods for estimating 
the growth rates of yeast strains in which a 
single gene has been disrupted or deleted. As 
expected in view of the recent demonstration 
that highly interactive proteins are more like- 
ly to be required for viability (18), we found 
that a protein's fitness effect F, estimated as 
the reduction in relative growth rate due to 
deleting or disrupting the gene that encodes 
the protein, is positively correlated with that 
protein's number of interactors I; with fitness 
effects measured by parallel analysis for 2235 
proteins for which interaction data were 
available, rIF = 0.15, P = 3.4 X 10-13. In 
addition, among all putative orthologs, evo- 
lutionary rate is negatively correlated with 
fitness effect (4); with parallel analysis data 
for 1484 yeast proteins with putative or- 
thologs, rFK = -0.13, P = 4.3 X 10-7 (19). 
Thus, among all putative orthologs, both cor- 
relations required by our second hypothesis 
are present: Number of interactors is corre- 
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Fig. 1. The relation be- 
tween the number of 
protein-protein inter- 
actions (I) in which a 
yeast protein partici- 
pates and that pro- 
tein's evolutionary 
rate, as estimated by 
the evolutionary dis- 
tance (K) to the pro- 
tein's well-conserved 
ortholog in the nema- 
tode C. elegans. 
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High-throughput screens have begun to reveal the protein interaction network 
that underpins most cellular functions in the yeast Saccharomyces cerevisiae. 
How the organization of this network affects the evolution of the proteins that 
compose it is a fundamental question in molecular evolution. We show that the 
connectivity of well-conserved proteins in the network is negatively correlated 
with their rate of evolution. Proteins with more interactors evolve more slowly 
not because they are more important to the organism, but because a greater 
proportion of the protein is directly involved in its function. At sites important 
for interaction between proteins, evolutionary changes may occur largely by 
coevolution, in which substitutions in one protein result in selection pressure 
for reciprocal changes in interacting partners. We confirm one predicted out- 
come of this process-namely, that interacting proteins evolve at similar rates. 
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lated with fitness effect (Fig. 2, arrow b), 
which is correlated with evolutionary rate 
(Fig. 2, arrow c). 

However, when we consider only well-con- 
served orthologs, for which the correlation be- 
tween protein interaction and evolutionary rate 
is strongest (Fig. 1), no relation between fitness 
effect and evolutionary rate (Fig. 2, arrow c) is 
detected. Therefore, protein fitness effect is 
very unlikely to mediate the correlation be- 
tween protein interaction and evolutionary rate. 
We can confirm this conclusion statistically by 
using parametric (20) and nonparametric (21) 
partial correlation to estimate the correlation 
between number of interactors and evolutionary 
rate while fitness effect is held constant. The 
parametric path coefficient (pK = -0.25, P = 

0.001) and nonparametric partial measure of 
association (Kendall's partial T'K = -0.15, 
P = 0.002) indicate a significant correlation 
between number of interactions and evolution- 
ary rate that does not depend on overall protein 
fitness effect. 

Protein sites may be involved in interactions 
directly, through participation in intermolecular 
contacts; or indirectly, through effects on over- 
all protein conformation. In either category of 
sites, substitutions would be likely to perturb 
proper interaction and would often be removed 
by selection. However, removal might not 
occur if a substitution in one protein were 
followed by a complementary change in its 
interacting partner. In this case, the pair of 
substitutions might be fixed by drift or positive 
selection (22). If such coevolution is indeed an 
important mode of change in proteins con- 
strained by interactions, then interacting pro- 
teins should evolve at similar rates. We tested 
this prediction by examining all 411 protein 
interactions in which each protein had a puta- 
tive ortholog in C. elegans and showed no 
significant sequence similarity with its interact- 
ing partner. For each interaction, we calculated 
AK, the difference between the evolutionary 
distances separating the yeast proteins from 
their respective orthologs in the nematode. We 

Fig. 2. The causal model 
for alternative hypothe- Protein Interactions (I) ja. 
ses to explain the correla- [ 
tion between number of b. 
interactors and evolution- Evolutionary 
ary rate. One hypothesis, Protein Fitness Effect (F) Rate (K) 
represented by arrow a, is 
that protein interactions 
impose structural con- 
straints, which limit the Random Effects 
number of substitutions 
that are compatible with 
proper protein function. A second hypothesis, represented by arrows b and c, is that proteins with 
more interactions have a greater effect on organism fitness and are therefore subject to stronger 
purifying selection. The second hypothesis can be rejected because the effect of protein interac- 
tions on evolutionary rate is not mediated by protein fitness effect. 

then averaged these differences across all 411 
interactions to find the mean difference in evo- 
lutionary rate between interacting proteins, 
AK* = 1.3 substitutions per site. To assess the 
significance of this difference, we repeatedly 
permuted our list of 411 interactions into ran- 
dom protein pairs and calculated the mean dif- 
ference in evolutionary rate between arbitrarily 
paired proteins: 10,000 permutations yielded 
the distribution of AK values shown in Fig. 3A. 
In all but 44 of the 10,000 permutations, our 
observed AK* < A, indicating that interacting 
proteins evolve at rates significantly closer than 
is expected to occur by chance (P = 0.0044). 

Although coevolution provides an appeal- 
ing explanation for the similarity in the evo- 
lutionary rates of interacting proteins, alter- 
native hypotheses must be considered. The 
proteins in an interacting pair presumably act 
in the same functional pathway and therefore 
are likely to have similar effects on organism 
fitness. Because the dispensability of a pro- 
tein influences its rate of evolution (4), the 
similarity in the evolutionary rates of inter- 
acting proteins could be a consequence of 
similarity in their fitness effects. Our test of 
this hypothesis involved two steps. 

First, we tested whether proteins that 
interact do indeed have similar effects on 
organism fitness. A randomization test 
showed that the mean difference in fitness 
effects between interacting proteins, AF* 
= 0.41, was significantly smaller than the 
mean difference between arbitrarily paired 
proteins AF (P < 10-5) (Fig. 3B). Thus, 
interacting proteins do have similar effects 
on organism fitness. 

Second, we determined whether the ob- 
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The mean difference in 
evolutionary rate between proteins that interact (AK* = 1.3 substitutions per site) C 
is indicated by an arrow. (B) The distribution of mean difference in fitness effect (AF) Random Effects 
between yeast proteins randomly chosen from the list of all 2821 interactions in Protein 1 Evol. Rate (K) 
which the effect on growth rate of deleting each protein was estimated by parallel Protein 1 Fitness Effect (F1) PIKl 
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(AF* = 0.41) is indicated by an arrow. (C) The causal model for path analysis I,...... p 'K12 
to determine whether similarity in fitness effects between interacting pro- Protein 2 Fitness Effect (F2) ) 
teins explains the similarity in their evolutionary rates. The correlation -~ Protein 2 Evol. Rate(K) <_ 
between evolutionary rates of interacting proteins that is expected to result from Random Effects I 
observed correlations between fitness effects (rF F) and between fitness effect and 
evolutionary rate (pFK) can be estimated as r?K ~ (p )2r/ . The observed correlation between evolutionary rates is much larger than that expected 
to result from fitness effects (rK,K >> rK,K2) indicaing that one or more additional factors must contribute to the similarity of evolutionary rates of interacting 
proteins. (Observed correlation coefficients, including essential proteins: rFpF2 = 0.16, P < 10-~s15; PFK = -0.06, P = 0.02; rK,K2 = 0.11, P = 0.03. Excluding 
essential proteins: rF1F2 = 0.07, P = 0.01; PFK = -0.14, P = 2 X 10-5.) 
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served similarity in fitness effects of interacting 
proteins was sufficient to explain the similarity 
in their rates of evolution. Path analysis based 
on the causal model shown in Fig. 3C indicated 
that the correlation between the fitness effects 
of interacting proteins contributes only slightly 
to the correlation between their evolutionary 
rates. Thus, similarity in fitness effects is not 
sufficient to explain the observed similarity in 
the evolutionary rates of interacting proteins. 

We also considered two other alternatives 
to the coevolutionary hypothesis. First, inter- 
acting proteins might evolve at similar rates 
simply because they have similar numbers of 
interactors, and, as shown in Fig. 1, the num- 
ber of interactors influences the rate of evo- 
lution. However, we found that proteins that 
interact do not have similar numbers of inter- 
actors (r,1, = 0.02, P = 0.26). A second 
possibility is that interacting proteins evolve 
at similar rates because they exhibit structural 
homology and therefore have similar distri- 
butions of constrained sites. The most likely 
origin of structural homology between inter- 
acting proteins is duplication of the gene that 
encodes a homodimeric protein, followed by 
evolution of one copy of the gene. This pro- 
cess would result in homology not only be- 
tween the structures, but also between the 
sequences, of interacting proteins. Hence, we 
have ensured that none of the interactions in 
our data set occur between proteins that ex- 
hibit detectable sequence similarity. Thus, to 
account for the similarity in evolutionary 
rates that we observe, structural similarity 
would have to be independent of sequence, 
which would be difficult to explain evolu- 
tionarily. In sum, having considered a num- 
ber of alternative hypotheses, we conclude 
that the coevolution of interacting proteins 
may be largely responsible for the observed 
similarity in their rates of evolution. 

Beyond describing the relation between a 
protein's interactions and its rate of evolu- 
tion, the correlations presented here could 
find application in the rapid assessment of 
functional genomic data. Much as gene ex- 
pression levels have recently been used to 
assess protein-protein interaction data sets 
(23), the correlation between protein interac- 
tion and evolutionary rate may allow one to 
use simple genomic sequence comparisons to 
statistically assess the quality of large inter- 
action data sets. More generally, correlations 
between protein interaction, fitness effect, 
and evolutionary rate may provide a means 
by which multiple bioinformatic data sets can 
be quickly cross-referenced to assess the re- 
liability of any single method or data set. 
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Genetic linkage analysis has traditionally fo- 
cused on mapping loci that affect one or a 
small number of organism-level phenotypes. 
DNA microarray technology (1, 2) makes it 
possible to apply such analysis to global pat- 
terns of gene expression, with the transcript 
abundance of each of thousands of genes 
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treated as a quantitative phenotype (3). Al- 
though it has recently become clear that ge- 
netic variation has a strong effect on gene 
expression (4-7), little is known about the 
genetic basis of natural variation in expres- 
sion levels (the number and type of loci 
involved, the effect of each locus, and the 
interaction between loci). 

We carried out linkage analysis of global 
expression levels in a cross between two 
strains of the budding yeast Saccharomyces 
cerevisiae. The parents were haploid deriva- 
tives of a standard laboratory strain (BY) and 
a wild isolate from a California vineyard 
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To begin to understand the genetic architecture of natural variation in gene 
expression, we carried out genetic linkage analysis of genomewide expression 
patterns in a cross between a laboratory strain and a wild strain of Saccha- 
romyces cerevisiae. Over 1500 genes were differentially expressed between the 
parent strains. Expression levels of 570 genes were linked to one or more 
different loci, with most expression levels showing complex inheritance pat- 
terns. The loci detected by linkage fell largely into two categories: cis-acting 
modulators of single genes and trans-acting modulators of many genes. We 
found eight such trans-acting loci, each affecting the expression of a group of 
7 to 94 genes of related function. 
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