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tistical analyses included multipoint ASP (15) 
and nonparametric linkage (NPL) analyses (16) 
and logistic regression analysis (17) to test for 
intersample heterogeneity of sharing in ASPs 
and for linkage while taking intersample heter- 
ogeneity into account (18). Results are shown 
in Fig. 1 [for details, see Web table 3 (14)]. 
Only one of the individual samples [National 
Institute of Mental Health (NIMH)] produced a 
nominally significant result (P = 0.049) near 
the Finnish isolate peak (9). We observed no 
other significant results in individual samples or 
in the combined sample. 

There are several possible explanations for 
the absence of support for linkage in this large 
sample, aside from the possibility of undetected 
genotyping errors or differences in diagnostic 
practice. Ethnicity could be a factor (19). How- 
ever, many families in the University of Wales 
College of Medicine (Cardiff) and Virginia 
Commonwealth University (VCU)/Ireland 
samples had ethnic backgrounds (Scottish, 
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Reports of substantial evidence for genetic linkage of schizophrenia to chro- 
mosome lq were evaluated by genotyping 16 DNA markers across 107 cen- 
timorgans of this chromosome in a multicenter sample of 779 informative 
schizophrenia pedigrees. No significant evidence was observed for such linkage, 
nor for heterogeneity in allele sharing among the eight individual samples. 
Separate analyses of European-origin families, recessive models of inheritance, 
and families with larger numbers of affected cases also failed to produce 
significant evidence for linkage. If schizophrenia susceptibility genes are present 
on chromosome lq, their population-wide genetic effects are likely to be small. 
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Schizophrenia causes severe morbidity in 0.2 
to 1% of the world's population, with a her- 
itability of 0.70 to 0.85 attributable to com- 
plex inheritance (1). No specific genetic vari- 
ation has been convincingly associated with 
susceptibility. Some genome-wide scans 
have produced significant evidence for link- 
age, but no result has been consistently rep- 
licable (2). In small genome scans of complex 
disorders, the largest estimated genetic ef- 
fects often reflect a substantial upward bias, 
requiring evaluation in independent, larger 
samples (3). The present multicenter pedigree 
sample was assembled to determine the de- 
gree of support for schizophrenia candidate 
regions (4, 5). 

Several recent reports have suggested 
schizophrenia susceptibility loci of major ef- 
fect on chromosome lq. Brzustowicz et al. 
(6) reported a significant multipoint lod score 
(logarithm of the odds ratio for linkage) of 
6.50 between markers D1S1653 and 
D1S1679 [162 to 163 cM from the p terminus 
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(7)] in 22 Canadian-Celtic families. Nearby, 
Gurling et al. (8) reported a multipoint lod 
score of 3.2 (176.6 cM) in 13 British and 
Icelandic pedigrees. More distally, Ekelund 
et al. (9) reported lod scores of 3.2 (240.4 
cM) in 168 Finnish nuclear families, and of 
2.30 (222 cM) in 53 families from an isolated 
subpopulation. Finally, the Disrupted in 
Schizophrenia (DISC) genes DISC-1 and 
DISC-2 (10) (238.5 cM) are disrupted by a 
balanced (1;11) (q42.1;q14.3) translocation 
that segregates with schizophrenia and mood 
disorders in a Scottish pedigree (11). 

To evaluate these findings, we genotyped 16 
microsatellite markers (12) on chromosome lq 
in 779 informative pedigrees containing 984 
affected sibling pairs (ASPs) and 1918 geno- 
typed individuals with schizophrenia or schizo- 
affective disorder, from eight independently 
collected samples (13) [Web tables 1 and 2 
(14)]. The chromosome lq findings were re- 
ported after formation of the multicenter sample 
(i.e., there was no selection bias). Primary sta- 
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Welsh, Irish, Anglo-Saxon) similar to the Celtic 
Canadian sample. Although the peak Cardiff 
NPL score (0.92, 160 cM) was near the Cana- 
dian peak, any genetic effect would be small; in 
this sample, the estimate of 53% identical-by- 
descent (IBD) allele sharing, with 22.7% of 
ASPs sharing 0 alleles by descent, predicts a 
locus-specific relative risk to siblings of 1.1. 
The only nominally significant result observed 
here was on distal Iq, in the ethnically diverse 
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NIMH sample. We then analyzed 679 Europe- 
an-origin and 58 African-origin families sepa- 
rately [Web table 4 (14)] (20). For European- 
origin families, maximum values were Za = 
0.08 (222 cM) and maximum lod score 
(MLS) = 0.48 (222 cM, 51% IBD sharing). 
Three samples produced NPL scores of >1.0 
[NIMH, 2.35, 222 cM, P = 0.015; Johns Hop- 
kins University (JHU), 1.52, 258.1 cM, P = 
0.09; Australia/U.S. (AU/US), 1.33, 213.9 cM, 
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Fig. 1. Results of ASP analysis (A) and NPL analysis (B). Shown are multipoint MLS (A) and NPL 
scores (B) for each sample and for all families combined. Applied Biosystems map locations (7) are 
shown. Locations of reported linkage peaks were extrapolated from markers common to the 
Marshfield (7) and Applied Biosystems maps-for example, for the Canadian data set (6), the peak 
at about 168.8 (Marshfield) is shown at 162.5 cM (2 cM proximal to D1S1679); for U.K./lceland (9) 
at D1S196 (genotyped here; 176.6 cM); for the Finnish national data set (9) at D1S2709 (240.4 cM); 
for the Finnish isolate (9) at D15245 (222.0 cM); and for DISC-1 (10) near D1S251 [245.05 
(Marshfield) shown at 238.52 cM]. 

P = 0.126); only the NIMH sample produced 
an MLS value of >1.0 (1.32, 222 cM, 60% 
IBD sharing, P = 0.032). At the Canadian peak 
location, no single sample produced an MLS 
value of >0.16 or an NPL score of >0.91. For 
African-origin families, maximum values were 
NPL= 1.25 (193.3 cM, P = 0.18) and MLS = 
0.55 (193.3 cM, 56% sharing, P = 0.18). Note 
that genetic distances among Europeans are 
small compared with other world populations, 
although Finns and Icelanders are outliers (21). 
Our sample does not include comparable fam- 
ilies to evaluate the possibility of linkage spe- 
cifically in Finnish families on distal Iq (9) or 
in Icelandic families on proximal Iq (8). 

There were more affected individuals per 
family in the Canadian sample (mean =3.6) 
than in the present data set (mean = 2.5). 
Analysis of 209 families with three or more 
affected cases produced MLS = 0.21 (222.0 
cM, 52% IBD sharing) and ZaI = 0.87 (222.0 
cM). The 52 families with four or more cases 
produced MLS = 0.04 (193.3 cM, 51% IBD 
sharing) and Zai = 0.46 (258.1 cM). Thus, 

larger families did not produce evidence for 
linkage [Web table 5 (14)]. Finally, the MLS 
in the Canadian study was observed for a 
parametric analysis under a recessive genetic 
model. We reanalyzed our data under several 
recessive genetic models by two-point and 
multipoint analyses [Web table 6 (14)1 (22). 
The largest heterogeneity lod score (Z,,.) for 
the entire sample was 0.31 (multipoint, unaf- 
fecteds coded as unknown diagnosis; 185.2 
cM), and the largest Zmax in an individual 
sample was 0.65 (multipoint, affecteds only: 
210.5 cM, in the VCU/Ireland sample). Our 
sample would be expected to have 100%/ 
power to detect a large genetic effect under 
the reported recessive model, and to have 
good power for hsibs (relative risk to siblings) 
values of 1.30 or greater (23). Thus, our 
failure to find evidence for a major schizo- 
phrenia susceptibility locus on proximal Iq 
could not be explained by ethnicity, statistical 
approach, or pedigree size. The most parsi- 
monious explanation is that the genetic effect 
reported in the Canadian data set was due to 
the upward bias caused by maximizing scores 
across the genome (3), particularly for small 
data sets and for loci of small effect, because 
the underlying genetic parameters are being 
maximized along with the evidence for link- 
age: "If one assumes that a published locus- 
specific effect-size estimate ... is accu- 
rate . . . , one most likely overestimates the 

power to replicate, perhaps greatly so.... A 
corollary is that failure of replication does not 
imply that a reported finding is false, even 
though . . . the locus-specific effect-size esti- 
mate from the initial study is likely an over- 
estimate" (3). We cannot determine whether 
the Canadian finding is a false-positive or a 
true-positive result whose genetic effect is 
smaller than reported. 
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In this large multicenter sample, we 
were unable to detect a schizophrenia sus- 
ceptibility locus of major effect on chromo- 
some lq. It remains possible that the genes 
identified as disrupted in the Scottish trans- 
location finding (10, 11), or genes in the 
regions supported by the Finnish (9) and/or 
Canadian (6) samples, will be shown to 
have small effects on schizophrenia suscep- 
tibility in other populations, or that the 
pathways in which these genes participate 
will have more major effects. Identifying 
such genes to elucidate the pathogenesis of 
this devastating disorder remains a major 
goal of schizophrenia research. 
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causes alternative behavioral phenotypes, whereas changes in gene expression 
can influence the initiation of behavior at different ages. We show that the 
age-related transition by honey bees from hive work to foraging is associated 
with an increase in the expression of the foraging (for) gene, which encodes a 
guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase (PKG). 
cGMP treatment elevated PKG activity and caused foraging behavior. Previous 
research showed that allelic differences in PKG expression result in two Dro- 
sophila foraging variants. The same gene can thus exert different types of 
influence on a behavior. 
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