
The value of long-term studies in ecology has 
become widely recognized among scientists 
and the media (1-3). Less widely appreciated 
is the similar value to be gained from long- 
term studies of evolution in nature. A classic 
study, spanning 49 years, was carried out by 
H. D. Ford and E. B. Ford (4) on phenotypic 
variation in a European butterfly, Melitaea 
aurinia (Marsh Fritillary). The most impor- 
tant discovery was made after about 40 years 
of monitoring that began with the collecting 
of specimens by amateur naturalists in 1881. 
In the early 1920s an outburst of phenotypic 
and presumed genetic variation occurred in 
association with a rapid increase in butterfly 
numbers from an extremely low density 
caused by parasitoids. Variation then de- 
clined to a lower and stable level, with phe- 
notypes in the late 1920s being recognizably 
different from those in the same population at 
the beginning of the study. The inferred ge- 
netic reorganization helped to frame ideas 
about evolution in contemporary time, in- 
spired other long-term studies of butterflies 
(5) and moths (6), and contributed to the 
development of at least one model of specia- 
tion (7). 

Long-term studies of evolution involving 
annual or more frequent sampling have many 
potential benefits. These include documenta- 
tion and understanding of slow and cryptic 
directional evolutionary change, perhaps in 
association with gradual global warming, re- 
versals in the direction of evolution, rare 
events with strong effects such as genetic 
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bottlenecks caused by population crashes, 
phenomena recurring at long intervals, and 
processes with high interannual variability 
such as erratic and intermittent gene flow. 
These benefits are beginning to be realized 
(8-15), but few studies have persisted long 
enough for us to be able to generalize about 
the temporal pattern and predictability of ba- 
sic evolutionary processes in unconstrained 
natural populations. 

Here, we report the results of a 30-year 
study of evolution of size and shape traits 
in two populations of Darwin's finches 
based on annual sampling and measure- 
ment. Distinctive features of the study are 
its length, continuity, entirely natural envi- 
ronmental setting, the availability of pedi- 
gree information to construct and interpret 
evolutionary change, and the macroevolu- 
tionary context of an adaptive radiation. 
The study reveals the irregular occurrence, 
frequency, and consequences of two evolu- 
tionary processes that are more often in- 
ferred than directly studied: natural selec- 
tion and introgressive hybridization. 

Natural selection and evolution. Pop- 
ulations of Geospiza fortis (medium ground 
finch) and G. scandens (cactus finch) have 
been studied on the Galapagos island of 
Daphne Major every year since 1973; adults 
that year were born (hatched) no later than 
1972. Survival of marked and measured in- 
dividuals has been recorded every year, and 
reproduction of most individuals has been 
recorded in most years (16). Six measured 
traits on adults whose growth has ceased have 
been reduced by principal components anal- 
yses to three interpretable synthetic traits: 
body size, beak size, and beak shape (17-20). 

The null expectation is that, subject to sam- 
pling error, means of these traits have re- 
mained constant across the period of study. 

This expectation of no change is clearly 
not supported by the data (Fig. 1). Lack of 
independence of samples in successive years 
precludes year-by-year significance testing of 
the total samples. Nevertheless, comparisons 
across years show nonoverlapping 95% con- 
fidence estimates of the means at different 
times. Mean body size and beak shape were 
markedly different at the end of the period 
(2001) than at the beginning (1973) in both 
species (21). Between these two times mean 
body and beak size of G. fortis initially de- 
creased, then increased sharply, and de- 
creased again more slowly (Fig. 1, A and B). 
Beak shape abruptly became more pointed in 
the mid-1980s and remained so for the next 
15 years (Fig. 1C). G. scandens, a larger 
species, displayed more gradual and uniform 
trends toward smaller size and blunter beaks 
(Fig. 1, D to F), thereby converging toward 
G. fortis in morphology. 

Apart from random sampling effects, an- 
nual changes in morphological means are 
caused by selective losses, as a result of 
mortality and emigration, and selective gains, 
as a result of breeding and immigration (22). 
Previous work has demonstrated directional 
natural selection on beak and body size traits 
associated with survival, in G. fortis at three 
times and in G. scandens once, when a scar- 
city of rain caused a change in the composi- 
tion of the seed supply that forms their dry- 
season diets (23-25). Evolutionary responses 
of G. fortis to the two strongest selection 
episodes occurred in the following genera- 
tions (26), as expected from the high herita- 
bilities of the morphological traits [h2 = 0.5 
to 0.9 after corrections for misidentified pa- 
ternity arising from extrapair copulations (18, 
27)]. 

Figure 2 provides the long-term perspec- 
tive of repeated natural selection in both spe- 
cies (28). There are four main features of the 
figure. First, body and beak size traits were 
subject to selection more often than was beak 
shape. Setting o at 0.01, to allow for the lack 
of complete independence of the traits (29), 
we find that body size was subject to selec- 
tion about once every 3 years in both species 
(30), that is, once each generation of 4.5 years 
(G. fortis) or 5.5 years (G. scandens) (31) on 
average. Second, considering only the statis- 
tically significant selection differentials, the 
species differed in the directions of net selec- 
tion on size traits. G. fortis experienced se- 
lection in both directions with equal frequen- 
cy (Fig. 2, A to C), whereas G. scandens 
experienced selection that repeatedly favored 
large body size and in no instance favored 
small beak size (Fig. 2, D and E). Third, 
unidirectional selection occurred in succes- 
sive years, up to a maximum of 3 years in 
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both species (Fig. 2, A, D, and E). Fourth, 
selection events in the two species were usu- 
ally not synchronous, except in the late 
1970s, when large size was selectively fa- 
vored in both species during a drought (23). 
The demonstration here of natural selection 
occurring repeatedly in the same populations 
over a long time complements the widespread 
detection of natural selection in many differ- 
ent species of plants and animals over much 
shorter times (32, 33, 34). As in these broad 
surveys, and in three studies of birds lasting 
for 11 to 18 years (15, 35, 36), the magnitude 
of selection on the finch populations was 
usually less than 0.15 SD and rarely more 
than 0.50 SD (33, 34). Median values (0.03 to 
0.06) are well within the normal range (0.00 
to 0.30) of other studies (34). 

Evolution followed as a consequence of 
selection in both species because all traits are 
highly heritable (18, 20, 27). We compared 

G. fortis 

the mean of a trait before selection with the 
mean of the same trait in the next generation 
by one-tailed t tests (P < 0.05) (26). Signif- 
icant evolutionary events occurred in G. for- 
tis eight times (body size, four; beak size, 
three; beak shape, one) and in G. scandens 
seven times (body size, two; beak size, five). 
Evolution below the level of statistical detect- 
ability may have followed other instances of 
directional selection, may have been masked 
by annual variation in environmental effects 
on growth to final size (3 7), or may have been 
nullified by countervailing selection on cor- 
related traits not included in the analyses 
(32). Magnitudes of evolution of the two 
independent beak traits (size and shape) are 
correlated with values predicted from the 
products of selection differentials and herita- 
bilities (Fig. 3). Similar results were obtained 
in analyses of the direct effects of selection 
on the six measured traits of G. fortis at two 

G. scandens 

0) 
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Fig. 1. Morphological trajectories of adult Geospiza fortis (A to C) and G. scandens (D to F). In the 
absence of change, mean trait values should have remained within the 95% confidence intervals 
(horizontal broken lines) of the estimates from the 1973 samples (body size: G. fortis, n = 115, G. 
scandens, n = 37; beak traits: G. fortis, n = 173, G. scandens, n = 62). Sample sizes varied from 45 
(1997) to 976 (1991) for G. fortis and from 30 (1999) to 336 (1983) for G. scandens. The 1972 sample 
is composed of the adults (=1 year old) in 1973. 

times of intense selection, taking into account 
genetic correlations among them (26). Thus 
evolution, as an immediate response to selec- 
tion, was predictable. 

Introgressive hybridization. Annual 
changes in morphology (Fig. I) are largely 
but not entirely accounted for by selective 
losses. The greatest discrepancy is in the 
1990s when the single occurrence of natural 
selection on beak shape in G. scandens at the 
beginning (at P < 0.05; Fig. 2F) does not 
account for the continuing change in mean 
beak shape over the decade (Fig. lF). There- 
fore, we next consider selective gains as a 
result of nonrandom recruitment to the adult 
population. 

There are four potential contributors to 
nonrandom additions: conspecific and het- 
erospecific residents and immigrants. Breed- 
ing immigrants are not known in G. scandens 
and are extremely rare in G. fortis (16). Bi- 
ased conspecific breeding has minor effects 
on morphological trajectories. Prior analyses 
indicate some evidence for sexual selection 
on morphological traits (38), yet little influ- 
ence of morphological variation on lifetime 
fitness as measured by the production of off- 
spring that survive to breed (39). However, 
hybridization does occur rarely between res- 
ident G. fortis and G. scandens, and G. fortis 
also breeds with a rare immigrant species, G. 
fuliginosa (small ground finch) (40). In both 
cases there is generally little or no fitness loss 
(41, 42). After the dry period of the late 
1970s, and beginning in the extraordinarily 
prolonged wet season of 1983 (El Ninfo year), 
successful breeding of F1 hybrids and back- 
crosses was documented (40-43). Effects of 
introgression on morphological means and 
variances have not been tested before, but are 
to be expected in view of the large additive 
genetic variation underlying the size and 
shape traits of both G. fortis and G. scandens 
(18, 20, 27). 

A specific prediction of the introgression 
hypothesis is an increase in variance and 
skewness in the morphological distributions, 
beginning in 1983 in G. fortis and 1987 in G. 
scandens (42). Increases are expected to be 
greater in G. scandens than in G. fortis. de- 
spite bidirectional gene exchange, because F 
hybrids and first-generation backcrosses 
made a proportionately greater numerical 
contribution to the G. scandens samples (Fig. 
4, A and B) (43). The predicted increases in 
beak shape variance and skewness are ob- 
served in G. scandens (Fig. 5, E and F) and 
are scarcely noticeable in G. fortis (Fig. 5. B 
and C). Beak shape variance in G. scandens 
doubled from 0.430 in 1973 (95%o confidence 
intervals 0.311, 0.636; n = 62) to 1.026 
(0.674, 1.762; n = 35) in 2001, whereas the 
variance in G. bfortis beak shape remained 
stationary: 0.627 (0.493, 0.824; n = 173) in 
1973, and 0.887 (0.744, 1.316: n = 114) in 
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2001. Beak size and body size variances (not 
shown) are not as well estimated and show no 
significant variation across the study period 
(95% confidence intervals broadly overlap). 
Skewnesses in beak size and body size dis- 
tributions vary in parallel with beak shape 
skewness: negatively in G. scandens, project- 
ing toward G. fortis; and positively in G. 
fortis, projecting toward G. scandens. 

A second prediction is that variance and 
skewness will decrease if F1 hybrids and 
first-generation backcrosses are deleted from 
the total samples. Deletions of these two 
classes of birds do indeed effectively elimi- 
nate the increases in skewness and variance 
in G. scandens beak shape, and reduce the 
degree to which the mean changed (Fig. 5, D 
to F), because on average F1 hybrids and 
first-generation backcrosses are smaller in 
body size and beak size and have less pointed 
beaks than the parental G. scandens species 
(44). We conclude that introgressive hybrid- 
ization caused a change in means and other 
moments of the frequency distributions of G. 
scandens measurements. Selection may have 
contributed as well but to a minor extent (Fig. 
2F). Deletions had no obvious effect on the 
distributions of G. fortis traits (Fig. 5, A to C) 
(44, 45). 

The proportionally greater gene flow from 
G. fortis to G. scandens than vice versa has 
an ecological explanation. Adult sex ratios of 
G. scandens became male biased after 1983 
(Fig. 4C) as a result of heavy mortality of the 
socially subordinate females. High mortality 
was caused by the decline of their principal 
dry-season food, Opuntia cactus seeds and 
flowers; rampantly growing vines smothered 
the bushes (16). G. fortis, more dependent on 
small seeds of several other plant species, 
retained a sex ratio close to 1:1 (Fig. 4C). 
Thus, when breeding resumed in 1987 after 2 
years of drought, competition among females 
for mates was greater in G. fortis than in G. 
scandens. All 23 G. scandens females paired 
with G. scandens males, but two of 115 G. 
fortis females paired interspecifically. All 
their F1 offspring later bred with G. scandens 
(43) because choice of mates is largely deter- 
mined by a sexual imprinting-like process on 
paternal song (42). 

Conclusion. The long-term study of Dar- 
win's finch populations illustrates evolution- 
ary unpredictability on a scale of decades. 
Mean body size and beak shape of both spe- 
cies at the end of the study could not have 
been predicted at the beginning. Moreover, 
sampling at only the beginning and at the end 
would have missed beak size changes in G. 
fortis in the middle. The temporal pattern of 
change shows that reversals in the direction 
of selection do not necessarily return a pop- 
ulation to its earlier phenotypic state. Evolu- 
tion of a population is contingent upon envi- 
ronmental change, which may be highly 
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Fig. 3. Predicted and observed 
evolutionary responses to natu- 
ral selection on beak size (0) and 
shape (0) in G. fortis and beak 
size in G. scandens (A). Values 
are in standard deviation units. 
The line is drawn with a slope of 
1.0 through the origin. Predic- 
tions are the products of stan- 
dardized selection differentials 
(Fig. 2, P < 0.01) and heritabili- 
ties (18, 27). Predicted and ob- 
served values are correlated (r = 
0.832, n = 10, P = 0.0028). The 
signs of the beak shape variable 
are arbitrary with respect to the 
beak size axis, but this has little 
effect on the correlation when 
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have not been included because of complications arising from introgressive hybridization (Figs. 4 
and 5). Body size has not been included because it is not independent of beak size (29). 
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Fig. 4. Total samples of 
measured birds (A), propor- 
tional contributions of F, 
hybrids and first-generation 
backcrosses to the totals 
(B), and minimal frequen- 
cies of adult males (C) be- 
fore and after habitat and 
demographic changes were 
caused by the El Nino event 
of 1983; G. fortis (C) and G. 
scandens (A). In (B), the de- 
cline in proportion of hy- 
brids in the G. scandens 
samples after 1999 reflects 
the addition of birds of un- 
known parents. They have 
been classified as G. scan- 
dens, but some were prob- 
ably unidentified hybrids 
and backcrosses. In (C), 
birds of unknown sex in fe- 
male-like plumage (0 to 
10%) have been added to 
the female samples, and 
therefore proportions of 
males are minima. Sexes of 
all birds were known in 
some years (e.g., 1989). 
Data for 1984 and 1985 are 
not shown because of the 
large proportion of birds of 
unknown sex (>15%) pro- 
duced in 1983 and 1984, 
comprising both males and 
females. 
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irregular, as well as on its demography and 
genetic architecture (33, 46). 

The study also illustrates how the value of 
long-term studies increases with time. Not 
only is regular monitoring at short intervals 
desirable, but sampling for many years is to 
be recommended, especially for long-lived 
organisms like vertebrates and perennial 
plants. Yet evolutionary studies are rarely 
pursued in the field for as many as 10 years 
(33). If we had stopped sampling after 10 
years, our conclusions would have been dif- 
ferent because at that time the only difference 
from the starting point was in beak size of G. 
fortis. By persisting beyond then, we wit- 
nessed a natural-selection event that affected 
beak shape in G. fortis, documented inter- 
breeding and morphological effects of intro- 
gression on G. scandens, and gained a better 
quantitative estimate of the frequency of evo- 
lutionary events. 

Unlike the Marsh Fritillary study (4), we 
did not witness a release of genetic varia- 
tion following a population crash. The evo- 
lutionary dynamics were different. Natural 
selection occurred frequently in our study, 
occasionally strongly, unidirectionally in 
one species and oscillating in direction in 
the other as a result of their dependence on 
different food supplies (16). Introgressive 
hybridization, a phenomenon whose impor- 
tance has been relatively underappreciated 
until recently, except in plants (47), had 
different effects on the two species for 
demographic reasons. Hybridization and 
selection are often connected through the 
selective disadvantage experienced by hy- 
brids and backcrosses (13, 40, 47, 48). In 
the present study they appear to have been 
connected synergistically in the sense that 
interbreeding may have been facilitated in 
part by selection for more pointed, G. scan- 
dens-like, beaks in the G. fortis population 
in the mid-1980s. Choice of mates is partly 
determined by imprinting on parental beak 
morphology, as well as on paternal song 
(41). The principal causes of selection have 
been identified as changes in food supply 
(23-26) mediated in large part by droughts. 
The ultimate cause of repeated natural se- 
lection and introgressive hybridization may 
have been a change in the seasonal move- 
ment of water masses in the eastern sub- 
tropical and tropical Pacific (49, 50), trig- 
gering altered climatic patterns, including 
the intensification of El Nifio and La Ninia 
cycles. 

Regardless of the precise chain of cau- 
sality, field studies such as ours, in con- 
junction with multigenerational studies of 
microorganisms in the laboratory (51, 52) 
and experimental studies of selection in the 
field (53-55), provide an improved basis 
for extrapolating from microevolution to 
patterns of macroevolution; in the present 
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case, from evolutionary dynamics of popu- 
lations on the scale of decades to speciation 
and further adaptive radiation on the scale 
of hundreds of thousands of years (56). In 
conclusion, the long-term unpredictability 
of evolutionary change that arises from un- 
predictable ecological change, together 
with the need to strengthen generalizations 
about the frequency and importance of se- 
lection and hybridization, are reasons for 
encouraging additional, continuous, long- 
term studies of evolution in nature. 
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