REPORTS

able conditions, circulate and cause cases of poliomyelitis has important implications for current and future strategies of the World Health Organization (WHO) initiative to eradicate polio worldwide (23). First, the eradication of wild poliovirus, now at an advanced stage (23), must be completed as soon as possible. At the same time, it is imperative that immunity gaps in nonendemic countries are prevented, especially in tropical developing countries where the risk for poliovirus circulation is highest (24). After certification of wild poliovirus eradication, a carefully planned strategy for the orderly cessation of OPV use worldwide should be implemented. Finally, sensitive global poliovirus surveillance must be maintained for the foreseeable future, and emergency stockpiles of poliovirus vaccine established, for use in the event of any recurrent poliovirus transmission from chronic poliovirus excretors (25), a breach in poliovirus containment (25), or circulating VDPV.

References and Notes

- F. C. Robbins, C. A. de Quadros, J. Infect. Dis. 175 (suppl. 1), S281 (1997).
- C. A. de Quadros et al., J. Infect. Dis. 175 (suppl. 1), S37 (1997).
- J. K. Andrus, P. M. Strebel, C. A. de Quadros, J. M. Olive, *Bull. WHO* 73, 33 (1995).
- M. A. Drebot et al., Appl. Environ. Microbiol. 63, 519 (1997).
- Pan American Health Organization, EPI Newsl. 18, 4 (1996).
- Supplementary figures and details of experimental procedures are available on Science Online at www. sciencemag.org/cgi/content/full/1068284/DC1.
- 7. L. De et al., J. Clin. Microbiol. 33, 562 (1995).
- P. A. Patriarca, R. W. Sutter, P. M. Oostvogel, J. Infect. Dis. 175, S165 (1997).
- O. M. Kew, M. N. Mulders, G. Y. Lipskaya, E. E. da Silva, M. A. Pallansch, Semin. Virol. 6, 401 (1995).
- 10. P. M. Strebel et al., Clin. Infect. Dis. 14, 568 (1992).
- 11. H.-M. Liu et al., J. Virol. 74, 11153 (2000).
- 12. L. M. Shulman et al., J. Clin. Microbiol. 38, 945 (2000).
- M. S. Oberste, K. Maher, D. R. Kilpatrick, M. A. Pallansch, J. Virol. 73, 1941 (1999).
- 14. A. R. Muzychenko et al., Virus Res. 21, 111 (1991).
- 15. N. Kawamura et al., J. Virol. 63, 1302 (1989).
- M. J. Bouchard, D. H. Lam, V. R. Racaniello, J. Virol. 69, 4972 (1995).
- M. Gromeier, B. Bossert, M. Arita, A. Nomoto, E. Wimmer, J. Virol. 73, 958 (1999).
- 18. P. D. Minor, *Curr. Top. Microbiol. Immunol.* **161**, 121 (1990)
- H. G. A. M. van der Avoort et al., J. Clin. Microbiol. 33, 2562 (1995).
- 20. P. D. Minor, G. Dunn, J. Gen. Virol. 69, 1091 (1988).
- Centers for Disease Control and Prevention, Morb. Mortal. Wkly. Rep. 50, 874 (2001).
- 22. _____, Morb. Mortal. Wkly. Rep. 50, 41 (2001).
- WHO, Wkly. Epidemiol. Rec. 76, 126 (2001); for updates see www.who.int/vaccines-polio.
- 24. N. Nathanson, J. R. Martin, *Am. J. Epidemiol.* **110**, 672 (1979).
- D. J. Wood, R. W. Sutter, W. R. Dowdle, *Bull. WHO* 78, 347 (2000).
- 26. We thank N. Dybdahl-Sissoko, N. Mishrik, D. Moore, M. Staples, and A. J. Williams for characterization of poliovirus isolates before sequencing; J. Kim and J. Golub for sequencing some of the wild poliovirus type 1 isolates; R. Campagnoli for performing growth-rate studies of poliovirus isolates; P. Chenoweth for assistance with the mapping of the confirmed polio cases; L. Anderson, V. Cáceres, W. Dowdle, H. Gary, C. Maher, and R. Sanders for

helpful discussions; two anonymous reviewers for their constructive comments; and the virologists from the WHO Global Polio Laboratory Network for contributing the wild poliovirus isolates used in our comparisons. 22 November 2001; accepted 6 February 2002 Published online 14 March 2002; 10.1126/science.1068284

Include this information when citing this paper.

Requirement for a Peptidoglycan Recognition Protein (PGRP) in Relish Activation and Antibacterial Immune Responses in *Drosophila*

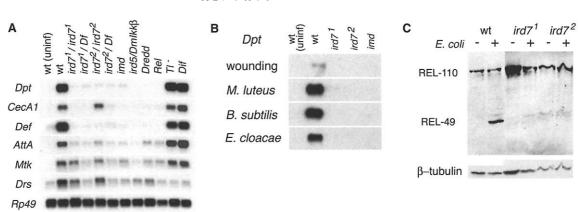
Kwang-Min Choe,^{1,2} Thomas Werner,³ Svenja Stöven,³ Dan Hultmark,³ Kathryn V. Anderson^{1,2}*

Components of microbial cell walls are potent activators of innate immune responses in animals. For example, the mammalian TLR4 signaling pathway is activated by bacterial lipopolysaccharide and is required for resistance to infection by Gram-negative bacteria. Other components of microbial surfaces, such as peptidoglycan, are also potent activators of innate immune responses, but less is known about how those components activate host defense. Here we show that a peptidoglycan recognition protein, PGRP-LC, is absolutely required for the induction of antibacterial peptide genes in response to infection in *Drosophila* and acts by controlling activation of the NF-kB family transcription factor Relish.

In response to infection, *Drosophila* activates the transcription of a battery of antimicrobial peptide genes in cells of the fat body (the insect analog of the liver). Two major branches of this humoral response have been identified; as in mammals, these responses require NF-κB transcription factors (1). One branch activates antifungal responses and requires the receptor Toll and the NF-κB family transcription factor Dif (2–4). The second branch, which is primarily antibacterial, requires the NF-κB protein Relish, an IκB kinase (IKK), a caspase, a mitogen-activated protein kinase kinase kinase, and the death-domain protein Imd (5–11).

We have taken a genetic approach to identifying genes required for the antibacterial response (12, 13). One gene that is absolutely required for the induction of the antibacterial response is *ird7* (*immune response deficient 7*). Two mutations in *ird7* identified in an ethylmethane sulfonate (EMS) mutagenesis screen (12, 13) prevented the induction of three antibacterial peptide genes, *Diptericin*, *Cecropin*, and *Defensin*, after infection by

¹Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA. ²Molecular and Cell Biology Program, Weill Graduate School of Medical Sciences, Cornell University, 445 East 69th Street, New York, NY 10021, USA. ³Umeå Centre for Molecular Pathogenesis, Umeå University, SE-901 87 Umeå, Sweden.


*To whom correspondence should be addressed. E-mail: k-anderson@ski.mskcc.org

either Gram-negative or Gram-positive bacteria (Fig. 1, A and B). Three other antimicrobial peptide genes, Attacin, Metchnikowin, and Drosomycin, also failed to be induced to normal levels. The profile of antimicrobial gene expression observed in the *ird7* mutants was similar to that observed in imd, DmIkkβ/ ird5, and Relish mutants after bacterial infection, but was distinct from that of Toll and Dif mutants (Fig. 1A). This pattern suggests that ird7 is an essential component of the same signaling pathway that requires imd and Relish, but is not required for the Toll-Dif pathway. Both ird7 mutants are homozygous viable and fertile, and blood cells from ird7 mutants can phagocytose bacteria (14); these findings suggest that ird7 is required specifically for the humoral immune response.

The transcription factor Relish directly activates antibacterial target genes in Drosophila. Relish is a compound protein similar to mammalian p100 and p105 (the precursors of the p52 and p50 subunits of NF-κB), with an NH2-terminal Rel homology and a COOH-terminal ankyrin repeat domain similar to that of the NF-kB inhibitor IkB (15). In response to immune challenge, full-length Relish (REL-110) is endoproteolytically clipped to generate the NH₂-terminal REL-68 fragment, which translocates into the nucleus, and the COOH-terminal REL-49 ankyrin repeat fragment, which remains stable in the cytoplasm (16) (Fig. 1C). In contrast to wildtype animals, no processing of Relish was detected in ird7 mutant larvae (Fig. 1C). The

REPORTS

Fig. 1. Phenotypes of ird7 mutants. (A) In ird7 mutants, Diptericin (Dpt), CecropinA1 (CecA1), Defensin (Def), AttacinA (AttA), Metchnikowin (Mtk), and Drosomycin (Drs) transcription is not induced normally after E. coli infection, as assayed by Northern hybridization. ird71 is a very strong or allele, whereas ird72 behaves like a strong hypomorph. RNA was prepared from adult

flies 6 hours after infection as described (13). The loading control was *Ribosomal protein49* (Rp49). Similar results were obtained in larvae (25). Genotypes: wt, wild type (the parental $P\{w^+ \ Dpt-lacZ\}$ ca stock); Df, Df(3L)29A6; imd, imd^1 ; $irdS/Dmlkk\beta$, $irdS^1$; Dredd, $Dredd^{DSS}$; Rel, $Relish^{EZO}$; Tl^- , $Df(3R)Tl^{9QRX}/Df(3R)ro^{XB3}$; Dif, Dif^1 . For quantitation, see (17). (B) irdT mutants fail to respond to both Gram-negative and Gram-positive bacteria. Adult flies were pricked with a sterile glass needle (wounding) or injected with Micrococcus luteus, Bacillus subtilis (Gram-positive), or Enterobacter cloacae (Gram-negative) and incu-bated for 6 hours, and total RNAs were prepared. Enterobacter Enterobacter cloacae (Gram-negative) and incu-bated for 6 hours, and total RNAs were prepared. Enterobacter Enterob

The induction of other antibacterial peptide genes by these bacteria in ird7 and imd mutants was also similar to that shown in (A) (25). (C) Relish is not endoproteolytically processed after infection in ird7 mutants. Protein extracts from the wild-type parental stock ($P[w^+ \ Dpt-lacZ]ca)$, $ird7^1$, and $ird7^2$ were prepared from uninfected (-) or infected (+) wandering third-instar larvae 30 min after E. coli injection (16). Protein from approximately 0.5 larva was loaded in each lane. After blotting, Relish processing was detected with a monoclonal antibody that recognizes the COOH-terminal ankyrin repeat domain of the protein. β -Tubulin was the loading control.

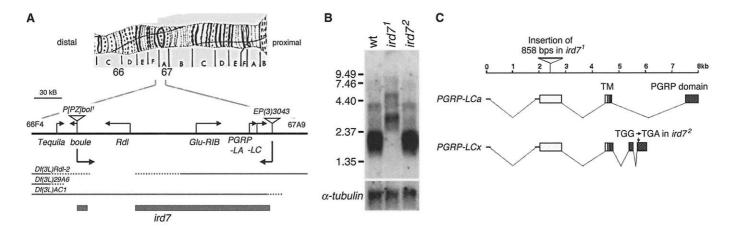


Fig. 2. Molecular identification of the *ird7* gene. (A) Genetic mapping of *ird7*. The *ird7* mutation failed to complement Df(3L)29A6 but complemented Df(3L)Rdl-2 and Df(3L)AC1. Deficiency breakpoints were defined by single-embryo polymerase chain reaction (PCR) (26). P element-induced male recombination mapping (27) placed the *ird7* locus between boule and EP(3)3043. Bars at bottom indicate the region that could include *ird7*. At all steps of mapping, X-Gal staining was used to monitor induction of Dpt-lacZ after E. coli infection. (B) Expression of PGRP-LC in wild-type and ird7 mutants. Polyadenylated RNA (4 μ g), prepared from wild-type ($P[w^+ Dpt$ -lacZ]ca) and ird7 adults, was loaded in each lane. Blots were hybridized with a radiolabeled probe from the second exon of

PGRP-LC, which is common to both splice variants. α-Tubulin was the loading control. (C) Molecular lesions in *PGRP-LC* in *ird7* mutants. The *ird7* allele is associated with an insertion of 858 bp in a common 5′ exon of *PGRP-LC* that introduces a stop codon and would generate a truncated cytoplasmic protein of 105 amino acids. The *ird7*² is associated with a nonsense mutation in the *x* PGRP domain of the *PGRP-LCx* isoform, which would truncate this isoform. Light gray bars represent the transmembrane domain. Dark gray bars represent peptidoglycan recognition domains. For cloning of *PGRP-LCx*, a larval-pupal cDNA library (LP library from Berkeley *Drosophila* Genome Project) was screened using a random-primed probe for putative exon *x* (18).

Rel domain of Relish failed to translocate to fat body nuclei in *ird7* mutants (17). These results indicate that *ird7* is required for Relish processing and nuclear translocation.

Recombination and deficiency mapping localized *ird7* to a small interval on the third chromosome, 66F5-67A9 (Fig. 2A). The *Drosophila* genome sequence annotation indicates the presence of 12 genes in this region, including two genes encoding peptidoglycan recognition protein (PGRP) domains, *PGRP-LA* and *PGRP-LC* (18). Pepti-

doglycan is a strong activator of innate immune responses in insects and mammals, and a PGRP was first identified in a silk moth (Bombyx) on the basis of its ability to bind peptidoglycan and activate one aspect of the immune response, the prophenoloxidase cascade (19). Later studies have implicated PGRPs in innate immune responses from arthropods to mammals (20, 21).

We identified sequence changes that would disrupt the function of *PGRP-LC* in both *ird7* alleles. The gene was represented

by several expressed sequence tag clones that encode a single splice form, designated PGRP-LCa. In addition, sequences encoding two additional exons encoding PGRP domains ("x" and "y") were identified in an intron of PGRP-LC (18). We screened a larval-pupal cDNA library with the x and y exons and identified an alternatively spliced form of PGRP-LC that included the x exon; we call this isoform PGRP-LCx. Both PGRP-LC isoforms encoded type II transmembrane proteins with common NH₂-terminal cyto-

Fig. 3. Both PGRP-LCa and PGRP-LCx isoforms rescue induction of the *Dpt-lacZ* reporter gene in *ird7* mutants. Full-length PGRP-LCa and PGRP-LCx cDNAs were cloned into the pUAST (w+) transformation vector (28) and introduced into y w flies by P element-mediated transformation (29). The second chromosome c564-GAL4 line, which is expressed in the fat body and other tissues (30), was used to drive expression of the UAS construct. Flies of indicated genotypes were injected with E. coli, incubated for 6 hours, and assayed for β-galactosidase activity using X-Gal. (A) c564-GAL4/ CyO; ird7¹ Dpt-lacZ/ird7¹ Dpt-lacZ (no UAS-cDNA) animals did not express the reporter gene. (B) UAS-PGRP-LCx/CyO; ird71 Dpt-lacZ/ird71 Dpt-lacZ (no GAL4 driver) did not express the reporter gene. The same result was obtained for UAS-PGRP-LCa/CyO; ird7¹ DptlacZ/ird7¹ Dpt-lacZ animals. (C) c564-GAL4/UAS-PGRP-LCa; ird7¹ Dpt-lacZ/ird7¹ Dpt-lacZ expressed the reporter gene at high levels after infection, as did c564-GAL4/UAS-PGRP-LCx; ird7¹ Dpt-lacZ/ird7¹ DptlacZ animals (D). The GAL4-driven transgenes also showed a low level of constitutive expression of DptlacZ without E. coli injection: (E) c564-GAL4/UAS-PGRP-LCa; ird7¹ Dpt-lacZ/ird7¹ Dpt-lacZ. (F) c564-GAL4/UAS-PGRP-LCx; ird71 Dpt-lacZ/ird71 Dpt-lacZ. In four repetitions of this experiment, the level of X-Gal staining in animals carrying both c564-GAL4 and the UAS-PGRP-LC transgene was greater in infected than in uninfected animals.

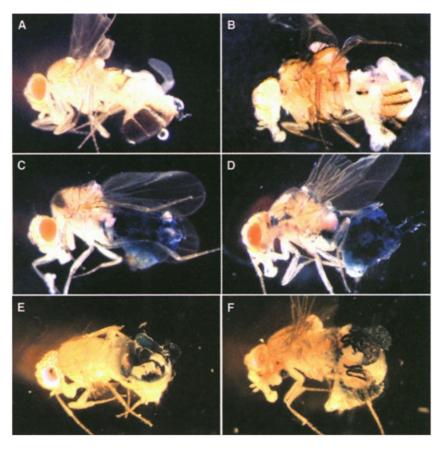
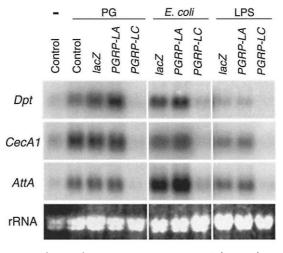



Fig. 4. Inactivation of PGRP-LC by transfection of dsRNA blocks induction of antibacterial gene expression in mbn-2 cells. Northern blot detection of Diptericin, Cecropin A1, and Attacin A in mbn-2 cells is shown after treatment with dsRNA from PGRP-LC, PGRP-LA, or lacZ and induction with the indicated elicitors. Ethidium bromide staining of ribosomal RNA was used as a loading control. mbn-2 cells were plated at a density of 1 million cells/ml and transfected 1 day later with 10 µg of dsRNA (31). For PGRP-LA the dsRNA corresponded to 935 bp from exons 2 to 5; for PGRP-LC the dsRNA corresponded to 861 bp from the common exons 2 and 3. Three days after transfection, the cells were induced with insoluble peptidoglycan

from *Micrococcus luteus* for 6 hours, live *E. coli* (*O55:B5*) for 6 hours, LPS from *E. coli* (*O55:B5*) for 2 hours, or sterile Ringer (-) as control. The pellet of an *E. coli* overnight culture was resuspended 1:100 in sterile Ringer, and 15 μ l were used per induction. Peptidoglycan and LPS had a final concentration of 1 μ g/ml. The cells were harvested after 2 or 6 hours, and total RNA was extracted. The loss of *PGRP-LA* and *PGRP-LC* mRNA due to RNAi was confirmed by reverse transcription PCR in a separate experiment. *Drosomycin* expression is not inducible in this *mbn-2* cell line, so the effect of *PGRP-LC* RNAi on its expression could not be assessed in this experiment.

plasmic and transmembrane domains but different extracellular domains. The extracellular PGRP domains of the two isoforms were only 38% identical (55 of 145 residues). Northern hybridization with a common *PGRP-LC* exon probe revealed transcripts about 2.0 kb in size in wild-type larvae, but

no transcript of that size in *ird7*¹ mutant animals; instead, a larger transcript of lower abundance was detected (Fig. 2B). Sequence analysis revealed an insertion of 858 base pairs (bp) of single-copy sequence into exon 2, which is the first coding exon in both isoforms, in the *ird7*¹ allele (Fig. 2C). This

insertion introduced a stop codon and would generate a truncated cytoplasmic protein. No sequence change in the PGRP-LCa isoform was identified in the ird72 allele. However, there was a G to A substitution in the x PGRP domain in the PGRP-LCx isoform of $ird7^2$, which introduced a stop codon that makes a truncated protein lacking the last 107 amino acids of this isoform (Fig. 2C). Because the ird72 allele alters only PGRP-LCx and has a profound effect on antimicrobial gene expression, this isoform must play a crucial role in vivo. The specific requirement for the PGRP-LCx isoform could be due to its ability to bind specific ligands or because its expression is limited to specific cell types by regulated RNA splicing. Overexpression of either of the PGRP-LC cDNAs rescued inducible expression of the Diptericin-lacZ reporter gene in homozygous ird7¹ mutant animals (Fig. 3), confirming that the phenotype of ird7 mutants was the result of the lack of PGRP-LC activity.

We used RNA interference (RNAi) to test the role of *PGRP-LC* in the response to bacterial components. Treatment of blood cells from the *mbn-2* line with peptidoglycan, *Escherichia coli*, or lipopolysaccharide (LPS) led to a robust induction of the antibacterial peptide genes. Introduction of double-stranded RNA (dsRNA) of *PGRP-LC*, but not *PGRP-LA*, effectively blocked induction of

REPORTS

Diptericin, CecropinA1, and AttacinA in response to all three stimuli (Fig. 4). Thus, PGRP-LC is required for the response to both peptidoglycan and LPS in these cells.

Because PGRP-LC is predicted to encode a transmembrane protein with an extracellular PGRP domain, PGRP-LC may act as a pattern recognition receptor that links recognition of microbial components with host immune responses (22). Because PGRP-LC is required for responses to both peptidoglycan and LPS, the extracellular domain of PGRP-LC may bind both peptidoglycan and LPS, and binding of either ligand may activate downstream signaling events. Alternatively, PGRP-LC may bind peptidoglycan (but not LPS) and may act as an essential subunit of a larger complex that includes other pattern recognition receptors that bind LPS. In mammals, signaling by Toll-like receptor 2 (TLR2) is activated by peptidoglycan (23). PGRP-LC might act in a complex with another transmembrane protein similar to TLR2.

Twelve PGRP genes have been identified in the *Drosophila* genome (18). Another *Drosophila* gene, *PGRP-SA*, encodes a soluble peptidoglycan recognition protein that is essential for activation of the Toll signaling pathway in response to infection by Gram-positive bacteria (21). Four PGRP genes have already been identified in the

human genome (24). Given the evolutionary conservation of many proteins required for innate immune responses, it will be important to evaluate whether PGRPs function as a family of pattern recognition receptors in human innate immune responses.

References and Notes

- R. S. Khush, F. Leulier, B. Lemaitre, *Trends Immunol.* 22, 260 (2001).
- 2. B. Lemaitre, E. Nicolas, L. Michaut, J.-M. Reichhart, J. A. Hoffmann, *Cell* **86**, 973 (1996).
- X. Meng, B. S. Khanuja, Y. T. Ip, Genes Dev. 13, 792 (1999).
- 4. S. Rutschmann et al., Immunity 12, 569 (2000).
- 5. M. Hedengren et al., Mol. Cell 4, 827 (1999).
- Y. Lu, L. P. Wu, K. V. Anderson, Genes Dev. 15, 104 (2001).
- M. Elrod-Erickson, S. Mishra, D. Schneider, Curr. Biol. 10, 781 (2000).
- 8. S. Rutschmann et al., Nature Immunol. 1, 342 (2000).
- 9. F. Leulier, A. Rodriguez, R. S. Khush, J. M. Abrams, B. Lemaitre, *EMBO Rep.* 1, 353 (2000).
- 10. S. Vidal et al., Genes Dev. 15, 1900 (2001).
- 11. P. Georgel et al., Dev. Cell 1, 503 (2001).
- 12. L. P. Wu, K. V. Anderson, Nature 392, 93 (1998).
- L. P. Wu, K.-M. Choe, Y. Lu, K. V. Anderson, *Genetics* 159, 189 (2001).
- K.-M. Choe, N. Matova, K. V. Anderson, unpublished data.
- M. S. Dushay, B. Åsling, D. Hultmark, Proc. Natl. Acad. Sci. U.S.A. 93, 10343 (1996).
- S. Stöven, I. Ando, L. Kadalayil, Y. Engström, D. Hultmark, EMBO Rep. 1, 347 (2000).
- See supplemental material on Science Online at www. sciencemag.org/cgi/content/full/1070216/DC1.
- T. Werner et al., Proc. Natl. Acad. Sci. U.S.A. 97, 13772 (2000).

- H. Yoshida, K. Kinoshita, M. Ashida, J. Biol. Chem. 271, 13854 (1996).
- D. Kang, G. Liu, A. Lundström, E. Gelius, H. Steiner, *Proc. Natl. Acad. Sci. U.S.A.* 95, 10078 (1998).
- T. Michel, J. M. Reichhart, J. A. Hoffmann, J. Royet, Nature 414, 756 (2001).
- 22. C. A. Janeway, Cold Spring Harbor Symp. Quant. Biol. 54, 1 (1989).
- 23. O. Takeuchi et al., Immunity 11, 443 (1999).
- C. Liu, Z. Xu, D. Gupta, R. Dziarski, J. Biol. Chem. 276, 34686 (2001).
- 25. K.-M. Choe, K. V. Anderson, data not shown.
- L. S. Hatton, K. O'Hare, Elsevier Trends Journals Technical Tips Online T01816, http://tto.trends.com (1999).
- B. Chen, T. Chu, E. Harms, J. P. Gergen, S. Strickland, Genetics 149, 157 (1998).
- 28. A. H. Brand, N. Perrimon, Development 118, 401 (1993)
- A. C. Spradling, in Drosophila: A Practical Approach,
 D. M. Roberts, Ed. (IRL, Oxford, 1986).
- D. A. Harrison, R. Binari, T. S. Nahreini, M. Gilman, N. Perrimon, *EMBO J.* 14, 2857 (1995).
- 31. S. M. Hammond, E. Bernstein, D. Beach, G. J. Hannon, *Nature* **404**, 293 (2000).
- 32. We thank R. Artero and P. Morcillo for technical advice; B. Lemaitre for *Drosophila* and bacterial stocks; P. J. Lewis for bacterial stocks; D. Ferrandon, N. Perrimon, and the *Drosophila* Stock Center for *Drosophila* stocks; and T. Bestor for helpful comments on the manuscript. Supported by grants from the NIH and the Lita Annenberg Hazen Foundation (K.V.A.) and from the Göran Gustafsson Foundation for Scientific Research, the Swedish Natural Science Research Council, and the Swedish Natural Science Research Council (D.H.) and the Swedish Natural Science Research Council (S.S.).
 - 25 January 2002; accepted 19 February 2002 Published online 28 February 2002; 10.1126/science.1070216 Include this information when citing this paper.

So instant, you don't need water...

NEW! Science Online's Content Alert Service

There's only one source for instant updates on breaking science news and research findings: *Science*'s Content Alert Service. This free enhancement to your *Science* Online subscription delivers e-mail summaries of the latest research articles published each Friday in *Science* – **instantly**. To sign up for the Content Alert service, go to *Science* Online – and save the water for your coffee.

For more information about Content Alerts go to www.sciencemag.org. Click on Subscription button, then click on Content Alert button.