
main gonadal (steroid) pheromone released by 
a 25-g female goldfish (33). Interference with 
this pheromone system offers an attractive tar- 
get for selective and environmentally benign 
control of the sea lamprey, whose invasion of 
the Great Lakes represents arguably the worst 
ecological disaster ever to befall a large water- 
shed (34). 
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Full-length complementary DNAs (cDNAs) are essential for the correct annotation 
of genomic sequences and for the functional analysis of genes and their products. 
We isolated 155,144 RIKEN Arabidopsis full-length (RAFL) cDNA clones. The 3'-end 
expressed sequence tags (ESTs) of 155,144 RAFL cDNAs were clustered into 
14,668 nonredundant cDNA groups, about 60% of predicted genes. We also 
obtained 5' ESTs from 14,034 nonredundant cDNA groups and constructed a 
promoter database. The sequence database of the RAFL cDNAs is useful for 
promoter analysis and correct annotation of predicted transcription units and 
gene products. Furthermore, the full-length cDNAs are useful resources for 
analyses of the expression profiles, functions, and structures of plant proteins. 
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Arabidopsis thaliana has been adopted as a 
model organism in the study of plant biology 
because of its small size, short generation 
time, and high efficiency of transformation 
(1). To sequence its small genome [125 
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chromosomes were sequenced in 2000 (2). 
About 127,000 expressed sequence tags 

(ESTs) from Arabidopsis had been deposited 
in the EST database (dbEST) as of May 2001, 
including sequences from large-scale EST 
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projects promoted by laboratory consortia in 
France (6, 7), the United States (8, 9), and 
Japan (10). These projects have produced 
EST data from different tissues, organs, 
seeds, and developmental stages (6-10). 
However, these EST projects are based on 
cDNA libraries in which most of the inserts 
are not full-length. ESTs are useful for mak- 
ing a catalog of expressed genes, but not for 
further study of gene function. Consequently, 
genome-scale collections of the full-length 
cDNAs of expressed genes become important 
for the analysis of the structure and function 
of genes and their products in the functional 
genomics era. 

We previously made full-length cDNA 
libraries using the biotinylated CAP trapper 
method (11, 12) from Arabidopsis plants 
(13). Here, we constructed Arabidopsis 
full-length cDNA libraries from plants 

grown under different conditions as report- 
ed previously (11-15) by the biotinylated 
CAP trapper method using trehalose-ther- 
moactivated reverse transcriptase. We used 
XZAP (11, 13) and XFLC (16) vectors for 
construction of the cDNA libraries. The 
XFLC vectors accommodate cDNAs in a 
broad range of sizes and are useful for the 
high-efficiency cloning of long cDNA frag- 
ments (16). The XFLC vectors can also be 
bulk-excised by a Cre-lox-based system 
free of size bias to produce the plasmid 
libraries. In the construction of full-length 
cDNA libraries [RIKEN Arabidopsis full- 
length (RAFL) 12, 13, 14, 15, 16, 17, 18, 
19, and 21 (Table 1)], we used a single- 
strand linker ligation method (17), which 
uses DNA ligase to add a double-stranded 
(ds) DNA linker to single-stranded (ss) 
full-length cDNA. Subsequent sequencing 

Table 1. Summary of 3'-end single-pass sequencing of RAFL cDNA clones 
isolated from A. thaliana full-length cDNA libraries. 155,144 RAFL cDNA clones 
were clustered by mapping of the 3'-end single-pass-sequencing data on the 

genomic sequence to produce more than 14,668 cDNA groups. n.d., not deter- 
mined; UV, ultraviolet; ABA, abscisic acid; JA, jasmonic acid; SA, salicylic acid; GA, 
gibberellin; BTH, benzo-(1,2,3)-thio-diazole-7-carbothionic acid S-methyl ester. 

Standard/ Number of 
Library Plant materials Vector normalization/ cDNA clones Number of 

no. subtraction subjected to cDNA groups 
clustering 

RAFL1 Cold-treated leaves and stems XZap Standard* 11lt n.d. 
RAFL2 Rosette plants XZap Standard 256 130 
RAFL3 Dehydration-treated plants XZap Standard 223 115 
RAFL4 Cold-treated plants XZap Standard 1,029 862 
RAFL5 Dehydration-treated plants XZap Standard 2,030 1,672 
RAFL6 Plants at various developmental XZap Standard 6,139 1,461 

stages and those treated 
with dehydration 
and cold 

RAFL7 Cold-treated plants XFLC-1-Bt Standard 2,591 751 
RAFL8 Dehydration-treated plants XFLC-1-B Standard 2,637 584 
RAFL9 Plants at various developmental XFLC-1-B Standard 22,929 3,368 

stages and those treated with 
dehydration and cold 

RAFL11 Plants at various developmental XFLC-1-B Normalization? 2,242 339 
stages and those subjected 
to various stress (dry, cold, 
NaCl, heat, and UV) and 
ABA treatments. Plants 
grown under dark 
conditions. Silique 
tissues 

RAFL12 Cold-treated plants XFLC-1-Et Subtraction? 22 2 
RAFL13 Dehydration-treated plants XFLC-1-E Subtraction 72 5 
RAFL14 Roots XFLC-1-E Standard 23,302 1,371 
RAFL15 Siliques and flowers XFLC-1-E Standard 13,661 816 
RAFL16 Dark-grown plants XFLC-1-E Standard 25,466 1,227 
RAFL17 Dehydration-treated plants XFLC-1-E Subtraction 14,035 452 

Rehydration (after dry 10 
hours)-treated plants 

RAFL18 Cold-treated plants XFLC-1-E Subtraction 1,213 41 
RAFL19 Siliques and flowers XFLC-1-E Subtraction 24,951 970 
RAFL21 Plants treated with various XFLC-1-E Subtraction 12,346 502 

stress (heat and UV), 
hormone (ABA, auxin, 
ethylene, JA, SA, GA, and 
cytokinin), and BTH 
treatments 

*cDNAs were neither normalized nor subtracted in the construction of standard full-length cDNA libraries. tThese RAFL cDNAs were not used for clustering, because only 5'-end 
single-pass sequencing had been done on these clones. tThe information on XFLC-1-B and XFLC-1-E vectors was described previously (16). ?cDNAs were normalized or 
subtracted in the construction of normalized or subtracted full-length cDNA libraries as described previously (18). 
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of clones and translation of proteins from 
full-length cDNA are easier and more effi- 
cient because of the elimination of the GC 
tail. Normalization and subtraction proce- 
dures (18) were also introduced in the con- 
struction of full-length cDNA libraries 
[RAFL1l, 12, 13, 17, 18, 19, and21 (Table 
1)] to reduce the representation of highly 
expressed mRNAs in the library and to 
remove cDNAs already categorized by 
means of one-pass sequencing, respective- 
ly. The method is based on hybridization of 
the first-strand full-length cDNA with sev- 
eral RNA drivers, including starting mRNA 
as the normalizing driver and run-off tran- 
scripts from rearrayed clones as subtracting 
drivers. This method should dramatically 
enhance the discovery of new cDNAs. The 
overall strategy for preparing cDNA librar- 
ies, including standard, normalized, and 
subtracted libraries, has been described 
previously (19). We constructed 19 full- 
length cDNA libraries from Arabidopsis 
plants grown under various stress, hor- 
mone, and light conditions from plants at 
various developmental stages and from var- 
ious plant tissues. 

We performed single-pass sequencing of 
the cDNA clones from the 3' end. The 
155,144 3' ESTs were clustered and then 
mapped onto the Arabidopsis genome (Fig. 1 
and supplemental text) (15). Finally, 14,668 
nonredundant RAFL cDNA clones were 
identified and mapped on the Arabidopsis 
genome (Table 1 and Fig. 1). The informa- 
tion on the 14,668 RAFL cDNA clones (the 
"RAFL cDNA" genes) is available in Web 
tables 1 and 2 (20). Assuming that the total 
number of Arabidopsis genes is about 25,000, 
the RAFL clones should account for about 
60% of all Arabidopsis genes. Our evaluation 
of 349 RAFL cDNA clones by single-pass 
sequencing showed that -98% of the clones 
contained both start and stop codons. Thus, 
the cDNA libraries constructed by the biotin- 
ylated CAP trapper contained a very high 
proportion of full-length cDNAs. 

From the 5'-end sequences of mRNAs, 
the promoter sequences can be obtained by 
comparison with the Arabidopsis genomic 
sequences. We also obtained 5' ESTs of 
14,034 RAFL cDNA clones and constructed 
a promoter database (21) using the PLACE 
database (22). The Arabidopsis promoter da- 
tabase shows genomic sequences 1000 base 
pairs (bp) upstream from the 5' termini of 
each RAFL cDNA clone and about 300 cis- 
acting elements known from plants (Web 
table 1) (20). 

Of the 14,668 RAFL cDNA clones 
mapped onto the Arabidopsis genome, 
13,831 were matched to Munich Information 
Center for Protein Sequences (MIPS) protein 
entry codes (Fig. 2), leaving 837 RAFL 
cDNA clones unmatched (Fig. 2, Web fig. 
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>100 bp: For Clustering 2 

155,144 RAFL cDNA clones 

Registration into RIKEN Arabidopsis cDNA database 

Clustering 1 
Extract 3'-end sequence ID tag (100 bp) 
Clustering (>80 bp overlap and >90% identity) 

Clustering 2 
Extract 3'-end sequence ID tag (100 bp) 
Clustering (>100 bp overlap and >98% identity) 

Mapping the 3'-end sequence data of the representative clones 
(after clustering 2) on the Arabidopsis genomic sequence 
(> 100 bp overlap and >95% identity) 

14,878 RAFL cDNA groups 
Mapping the 5'-end sequence data of the representative clones 
on the Arabidopsis genomic sequence 
(>100 bp overlap and >95% identity) 

14,668 independent RAFL cDNA groups 
Fig. 1. Strategy for clustering of the RAFL cDNA clones. A total of 155,144 RAFL cDNA clones isolated 
from 19 full-length cDNA libraries were subjected to single-pass sequencing from the 3' ends of the 
cDNA. The 3'-end single-pass sequencing data were used in the two steps for clustering as described in 
supplemental methods (15). After the second clustering, the best quality sequence was chosen as the 
representative of the group. The 3' EST of each representative clone was then mapped onto the 
Arabidopsis genome as described in the supplemental text (15). As a result, 14,878 nonredundant 
representative 3' ESTs were mapped on the Arabidopsis genome. Next, the 14,878 cDNA clones were 
subjected to single-pass sequencing from the 5' end of the cDNA. The 5' end sequencing data were then 
mapped onto the Arabidopsis genome with the BlastN program (15). Finally, the 14,668 nonredundant 
RAFL cDNA clones mapped on the Arabidopsis genome were identified. 

Identified genes:17,956 

"Reported 
EST or cDNA" 
Genes:l 4,682 

Predicted genes:26,285 

"RAFL cDNA" 
Genes:1 4,668 

Fig. 2. Current compilation of expressed genes in Arabidopsis. The left-hand Venn diagram shows 
the two classes of the 17,956 experimentally identified genes. Of these genes, there are 14,668 
RAFL cDNA genes isolated in this study (red and pink circles) and 14,682 reported EST or cDNA 
genes (yellow circle), including EST genes identified by EST analysis, CERES cDNAs, and Arabidopsis 
expressed genes that Arabidopsis researchers have cloned and sequenced by traditional cloning. Of 
14,668 RAFL cDNA genes, 837 newly identified genes that were not predicted and 2437 newly 
identified genes that were predicted existed. The right-hand Venn diagram shows the intersection 
between the total number of predicted genes (26,285, blue circle) and the experimentally identified 
genes (17,956, pink circle). The green region of intersection shows the 17,119 experimentally 
identified genes that have been predicted. The blue region of nonintersection shows the 9286 
predicted genes that have not been experimentally confirmed yet. The pink region of noninter- 
section shows the 837 identified genes that are not predicted by AGI. In addition, in some cases, 
pairs of seemingly separate predicted genes correspond to a single experimentally identified gene. 
Conversely, single predictions sometimes correspond to more than two experimentally identified 
genes. The last two facts explain why 17,119 genes correspond to 16,999 predicted genes. 
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1C, and Web table 3-3) (20). These 837 
RAFL cDNAs have not yet been predicted by 
the Arabidopsis Genome Initiative (AGI) and 
thus represent false negatives in the genome 
annotation. 

To analyze all known expressed Arabi- 

dopsis genes, we used data from: (i) 5100 

complete cDNAs that Arabidopsis re- 
searchers have sequenced and deposited in 
GenBank as of 18 August 2001 (23), (ii) 
127,031 Arabidopsis ESTs identified as of 
22 May 2001 (24), and (iii) 5000 Arabi- 

dopsis full-length cDNAs that Ceres, Inc., 
released to The Institute for Genomic Re- 
search on 19 December 2000 (25). Alto- 

gether, these genes (the "reported EST or 
cDNA" genes) were subjected to homology 
search (26) against the sequence database 
of its corresponding MIPS protein entry 
code using the BlastN program. The report- 
ed EST or cDNA genes covered a total of 

14,551 MIPS protein entry codes (Fig. 2). 
Also, 2437 of the RAFL cDNAs mapped to 
the MIPS protein entry codes were novel 

genes not identified so far (Fig. 2). ESTs or 
cDNA genes have been reported for 3288 
MIPS protein entry codes, but no RAFL 
cDNA genes have been identified (Fig. 2). 
A total of 11,394 genes corresponded to 
both reported EST or cDNA and RAFL 
cDNA genes. These results bring the total 
number of Arabidopsis genes whose ex- 

pression has been experimentally con- 
firmed to 17,956 (Fig. 2). In comparison, 
AGI lists 17,119 experimentally confirmed 

genes, of which 16,999 were predicted 
(Fig. 2). The discrepancies are likely due to 
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two predicted genes corresponding to a sin- 

gle experimentally identified gene (Web 
fig. 1A) (20), or single predicted genes 
corresponding to more than two experimen- 
tally identified genes (Web fig. lB) (20). 
Some RAFL cDNA clones correspond to 
each of these circumstances (Web tables 
3-1 and 3-2) (20). 

We conclude that 9286 predicted genes 
need further data to be confirmed as ex- 

pressed genes or unidentified genes (Fig. 2). 
Because these unidentified genes have not 
been confirmed by any ESTs, some of the 

predicted genes represent false positives or 

pseudogenes. Alternatively, these unidenti- 
fied genes might have remained undetected 

by the EST approach because of their weak 

expression in specific tissues. 
The biological roles and biochemical 

functions of RAFL cDNA clones were 
identified by homology search using the 
BLAST program (Table 2). The results 
show that cDNA clones of some functional 

categories, such as energy production, pro- 
tein synthesis, and ion homeostasis are well 

represented in RAFL. More than 80% of 
cDNAs for genes involved in energy pro- 
duction, protein synthesis, and ionic ho- 
meostasis were found in RAFL, and -70% 
of cDNAs for genes involved in metabo- 

lism, protein destination, cellular transport 
and transport mechanisms, and cellular or- 

ganization were found in RAFL. It has been 
estimated that -1500 transcription factor 

genes (27) and about 1000 protein kinase 

genes (28) exist in the Arabidopsis genome. 
The RAFL cDNA collection includes 1087 

Table 2. Functional classification of RAFL cDNA clones. 

No. of No. of RAFL 
Functional category predicted genes cDNA clones* 

Metabolism 757t 521 (68.8%) 
Energy 122t 98 (80.3%) 
Cell growth, cell division, and DNA synthesis 96t 54 (56.3%) 
Transcription 583t 331 (56.8%) 
Protein synthesis 170t 145 (85.3%) 
Protein destination 236t 169 (71.6%) 
Transport facilitation 252t 151 (60.0%) 
Cellular transport and transport mechanisms 119t 89 (74.8%) 
Cellular biogenesis 177t 107 (60.5%) 
Cellular communication/signal transduction 482t 262 (54.4%) 
Cell rescue, defense, death, and aging 325t 172 (52.9%) 
Ionic homeostasis 4t 4(100%) 
Cellular organization 365t 255 (69.9%) 
Motility it 0 (0%) 
Development 75t 40 (53.3%) 
Transposable elements and viral and plasmid proteins 132t 2 (1.5%) 
Organism-specific proteins it 0 (0%) 
Classification not yet clear-cut 691t 398 (57.6%) 
Unclassified proteins 17,213t 8,745 (50.8%) 
Protein kinase 1,067: 506 (47.4%) 
Transcription factor 1,533? 1,087 (70.9%) 

*The number of RAFL cDNA clones corresponding to the predicted genes in each category was calculated with the BLAST 
program. The percentages of the RAFL cDNA clones in each category are given in parentheses. tThese numbers 
represent the number of predicted genes in each category of the MIPS functional catalog (29). IThis number 
represents the number of Arabidopsis protein kinase genes in the PlantsP database (28). ?A recent paper (27) 
estimates 1533 genes coding for transcription factors in Arabidopsis. 

transcription factor and 506 protein kinase 

genes (Table 2). 
Although many algorithms have been 

written to predict a transcription unit from 

genomic sequence data, the accuracy of their 

predictions is still limited. A more direct and 
efficient approach to identifying coding se- 

quences is to sequence full-length cDNAs. 

Complete sequences of RAFL cDNAs will be 
useful for gene identification and positional 
cloning. The RAFL cDNA clones are public- 
ly available from the RIKEN Bioresource 
Center. 
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Conserved Structure for 

Single-Stranded Telomeric DNA 

Recognition 
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The essential Cdcl3 protein in the yeast Saccharomyces cerevisiae is a single- 
stranded telomeric DNA binding protein required for chromosome end pro- 
tection and telomere replication. Here we report the solution structure of the 
Cdcl3 DNA binding domain in complex with telomeric DNA. The structure 
reveals the use of a single OB (oligonucleotide/oligosaccharide binding) fold 
augmented by an unusually large loop for DNA recognition. This OB fold is 
structurally similar to OB folds found in the ciliated protozoan telomere end- 
binding protein, although no sequence similarity is apparent between them. The 
common usage of an OB fold for telomeric DNA interaction demonstrates 
conservation of end-protection mechanisms among eukaryotes. 
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Telomeres are the specialized nucleoprotein 
complexes that cap eukaryotic chromosomes, 
protecting chromosome ends from unregulat- 
ed degradation and end-to-end fusion. Telo- 
meric DNA is typically composed of repeti- 
tive, noncoding sequence terminating in a 
single-stranded TG-rich overhang. Several 
mechanisms have been identified for capping 
this overhang, ranging from sequestration 
through protein binding in ciliates and yeasts 
to t-loop formation in mammals (1-3). Pro- 
teins that specifically bind to this single- 
stranded overhang, such as the Oxytricha 
nova telomere end-binding protein (TEBP) 
(4, 5), the Schizosaccharomyces pombe pro- 
tection oftelomeres 1 (Potl) and human Potl 
(6), and the Saccharomyces cerevisiae Cdcl3 
(7, 8), are involved in telomeric end protec- 
tion. For example, depletion of Cdcl3 activ- 
ity causes extensive resection of the 5' strand 
of the yeast telomere and DNA damage- 
dependent cell cycle arrest (9-12), whereas 
deletion of the potl gene leads to complete 
telomere loss and cell death (6). Cdcl3 is 
also required for telomere elongation as a 
positive regulator of telomerase (7, 13). 
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Cdcl3 is believed to fulfill both of these 
important, yet disparate, roles through local- 
ization to the 3' single-stranded telomeric 
end, followed by recruitment of relevant 
complexes to the telomere through protein- 
protein interactions (14-16 ). 
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Fig. 1. The solution structure of the Cdcl3 
DBD in complex with the ssDNA 11-nt o[i- 
gomer dGTGTGGGTGTG. (A) Stereoview of 
the backbone overlay of the family of 10 
low-energy structures. The protein only is 
shown (residues 5 to 191), with the mean 
structure in red, sheets in cyan, and helices in 
dark blue. This family has a backbone rmsd of 
1.21 A over residues 7 to 191 (1.74 A rmsd 
for all heavy atoms) and a backbone rmsd of 
0.43 A over the secondary structure of the 
OB fold (0.90 A for heavy atoms) (21, 26). 
The fit shown was performed over all resi- 
dues involved in secondary structural ele- 
ments (0.69 A backbone rmsd). (B) Ribbon 
representation of the lowest energy struc- 
ture, residues 7 to 191. Figures were pre- 
pared with MOLMOL (33) and RIBBONS (34). 
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Evidence for conservation of telomeric 
end-protection proteins among distantly relat- 
ed eukaryotes has been elusive. Although the 
Pot proteins were originally identified on the 
basis of weak sequence similarity to the NH2- 
terminal portion of the a( subunit of the het- 
erodimeric 0. nova TEBP (6), no similarity 
was apparent between any of these proteins 
and Cdcl3. To investigate the requirements 
for telomeric end protection and sequence- 
specific interaction with single-stranded 
DNA (ssDNA), we determined the solution 
structure of the Cdcl3 DNA binding domain 
(DBD) in complex with telomeric ssDNA. 
This 23.5-kD domain retains DNA binding 
activity and specificity (17-19), and fusions 
of the DBD with other components of the 
end-protection or telomerase machinery elim- 
inate the need for full-length protein in vivo 
(14, 15). The ssDNA 11-nucleotide (nt) oli- 
gomer dGTGTGGGTGTG in the complex is 
the minimal Cdcl3 binding site (17) and the 
complement to the center of the coding re- 
gion of the telomerase RNA template (20). 

The high-resolution Cdcl3 DBD structure 
in complex with ssDNA (Fig. 1) was calcu- 
lated from a total of 2865 nuclear magnetic 
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