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according to their past experience. A decision 
rule specifies the trait (laying date, in this 

case) as a function of an estimate of future 
environmental suitability made at the time of 

making the decision. Such a rule may be 

genetically determined, but birds might be 

expected to recalibrate this rule if it appears 
to produce a mismatch between breeding and 
the conditions for feeding the young (17, 18) 
(in this case, a temporal mismatch between 

nestling phase and caterpillar peak date). 
Learning when is best to breed is only 

adaptive when the environment in a certain 

locality carries some information on the en- 
vironment at the time of the next breeding 
event. The shifts in laying date shown in this 

study may be viewed as a mechanism by 
which birds adapt their breeding time to the 
local environmental conditions. This is par- 
ticularly relevant for species such as the blue 
tit that may settle in a wide variety of habi- 

tats, but once settled will breed at that same 
location for the duration of their lives. The 
seven localities on the Hoge Veluwe, for 
which we measured caterpillar biomass pat- 
terns for 1993 to 2000, differed in the peak 
date of caterpillar biomass (effect of locality 
on variation in local peak dates across 8 

years: F7,42 
= 11.0, P < 0.0001 corrected for 

year). This indicates that some sites are con- 

sistently earlier than others, independent of 
the between-year differences. If the best time 
for rearing the offspring (i.e., the caterpillar 
peak date) in a certain locality is consistently 
earlier or later than in other localities, birds 
are expected to benefit from learning. 
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Bile Acid Secreted by Male Sea 

Lamprey That Acts as a Sex 

Pheromone 

Weiming Li,'* Alexander P. Scott,3 Michael J. Siefkes,1 
Honggao Yan,2 Qin Liu,2 Sang-Seon Yun,1 Douglas A. Gage2 

We show that reproductively mature male sea lampreys release a bile acid that 
acts as a potent sex pheromone, inducing preference and searching behavior in 
ovulated female lampreys. The secreted bile acid 7ca,12oa,24-trihydroxy-5a- 
cholan-3-one 24-sulfate was released in much higher amounts relative to 
known vertebrate steroid pheromones and may be secreted through the gills. 
Hence, the male of this fish species signals both its reproductive status and 
location to females by secreting a pheromone that can act over long distances. 
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The sea lamprey, Petromyzon marinus, is an 
ancestral jawless fish and an invasive parasite 
of fishes, particularly in the Laurentian Great 
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Lakes of North America. It migrates into 
streams to spawn in the spring. The males 
arrive earlier than the females (1) and build 
nests in areas where flow rates are 0.5 to 1.5 m 
s-1 (1, 2). It has long been suspected that the 
males release a pheromone to guide the females 
to their nests (3, 4). This type of sex phero- 
mone, capable of inducing spatial orientation of 

conspecifics "downwind," is well established in 
insects (5), but not so in vertebrates, whose 
identified sex pheromones tend to have a small 
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range of effectiveness (6-12). In fish, the 
known sex pheromones are gonadal steroids or 
prostaglandins and have been identified from a 
priori knowledge of their structures (9-12). 
However, it has not been clear whether such sex 
pheromones can function at great distances for 
fish such as the sea lamprey. 

Behavioral tests confirmed that water con- 
ditioned by spermiating lamprey males influ- 
enced the distribution and locomotor activities 
of ovulated female lampreys. When tested in a 
two-choice maze (13), ovulated females (but 
not males or preovulatory females) (14) spent 
more time in the compartment conditioned with 
washings from spermiating males (Table 1). 
There was no preference of ovulated females 
for washings of prespermiating males or fe- 
males (14). Further, the ovulated females 
showed increased search behavior in the cham- 
ber with water conditioned by spermiating 
males (Table 1). At a natural spawning site, 
ovulated females that were tagged with radio 
transmitters (15) and placed 65 m downstream 
(16) showed a similar response (P = 0.02) (14), 
indicating a large active space for the male 
pheromone. 

Water conditioned by spermiating lampreys 
was passed through C-18 solid phase extraction 
(SPE) cartridges (17), which can extract nearly 
100% of attractant molecules, as determined by 
electro-olfactogram (EOG) experiments (18). 
In our maze (13), ovulated females spent more 
time and showed increased search behavior on 
the side conditioned with extracts from spermi- 
ating males (Table 1). 

SPE extracts were subjected to fast atom 
bombardment mass spectrometry (FABMS) 
and thin-layer chromatography (TLC) to de- 
tect the compounds released by spermiating 
males and then were subjected to reverse- 
phase high-performance liquid chromatogra- 
phy (HPLC) to isolate them. FABMS identi- 
fied an abundant ion representing the proton- 
ated molecule (MH+) at a mass-to-charge 
ratio (m/z) of 473 in extracts from spermiat- 
ing males. In the negative mode, a corre- 
sponding strong deprotonated molecule 
[M-H]- ion at m/z 471 was observed, suggest- 
ing the presence of an acidic moiety in the 
molecule (Fig. 1). Tandem MS analysis of 
this peak showed that it lost 98 mass units, 
suggesting that the compound was phospho- 
rylated or sulfated. Similar ions were not 
present in detectable amounts in extracts 
from prespermiating males (Fig. 1, inset) or 
from females (14). TLC of extracts (19) dis- 
played a relatively large amount of a few 
major compounds in spermiating, as opposed 
to prespermiating, male washings (Fig. 2, 
inset). The material separated into three 
bands on TLC, the one at the origin being 
established, by dilution, as the most abun- 
dant. The HPLC (20) fractions eluting at 46 
and 47 min contained the 472-dalton mole- 
cule according to FABMS analysis, were 

stained strongly by phosphomolybdic acid 
(PBA) when spotted on TLC plates, remained 
at the origin when run on TLC, and had the 
highest olfactory potency according to an 
EOG (Fig. 2) (21). HPLC fractions of ex- 
tracts of prespermiating male washings at 46 
and 47 min did not contain the 472-dalton 
molecule and did not show EOG potency 
(14). Fractions 64 and 71 are unidentified. 

The chemical structure of the 472-dalton 
molecule was determined by nuclear magnetic 
resonance spectrometry (22). The one-dimen- 
sional (1D) 13C spectrum (Fig. 3A) showed one 
peak at 210.9 parts per million (ppm) and no 
other peaks above 80 ppm, suggesting the pres- 
ence of a carbonyl group and the absence of 
double bonds between carbon atoms. The 'H- 
'3C heteronuclear single-quantum coherence 
(HSQC) (Fig. 3B) showed three intense cross 
peaks characteristic of CH3 groups. Two of 
them were singlet peaks, suggesting they were 
bonded to quartemary carbons. CH and CH2 
groups were distinguished by '3C editing. The 
cross peaks with 'H chemical shifts >3.0 ppm 
and 13C chemical shifts >60 ppm were as- 
signed to CH2 or CH groups linked to an 
oxygen through a single bond. These chemical 
groups were then linked together with through- 
bond correlations obtained from 2D 'H-'H cor- 
related spectroscopy (COSY) and total correla- 

100 

4) 0 
c 
( 
0 
c m 

.0 4) 

0 
0) 

0 

0 

80 

60 

40 

20 

0 

100- 

80- 

60- 

40 

20- 

0 480 5, 
400 420 440 460 480 500 

tion spectroscopy (TOCSY) and 1H-13C 

HSQC-TOCSY and heteronuclear multiple- 
bond correlation (HMBC) spectra. The stereo- 
chemistries of 7-H and 12-H were determined 
on the basis of their narrow multiplets (<10 
Hz), and that of 5-H was determined on the 
basis of the chemical shift of C-19 (9.7 ppm) 
(22, 23). The formula based on this structure, 
C24H4007S, was confirmed by an exact mass 
measurement (MH+ calculated, 473.2573; ob- 
served, 473.2578; error 1.1 ppm), indicating 
that the compound contained a sulfate rather 
than a phosphate group. We concluded that the 
structure was 7ca,12a,24-trihydroxy-5a-cholan- 
3-one 24-sulfate. 

The deduced structure differs from that of 
petromyzonol sulfate (3ct,7ca,12ca,24-tetrahy- 
droxy-5ct-cholan 24-sulfate; PS) by its 3- 
keto, as opposed to 3or-hydroxyl, group. PS is 
a lamprey larvae bile acid (21, 24) and a 
component of a pheromone that influences 
behaviors of migrating, but not reproductive- 
ly mature, adult lampreys (21, 25). We con- 
verted the 3ox-OH of synthetic PS into 3-keto 
(26) and acquired its 'H-'3C HSQC (22). The 
chemical shifts and intensity of cross peaks 
were virtually identical between the convert- 
ed compound and purified male pheromone 
(Fig. 3B), suggesting that both molecules had 
an identical chemical structure and purity. 

Fig. 1. Fast atom bombardment 
mass spectra of an extract of 
washings from a spermiating 
male sea lamprey and of an ex- 
tract of washings from a presper- 
miating male (inset). The matrix 
is glycerol. 

400 420 440 460 480 500 

m/z 

Table 1. Influence of male odorants on distribution and search behavior of ovulated female sea lampreys 
in a two-choice maze. "Conditioned" refers to the side of maze into which caged fish or test substances 
were placed; "unconditioned" refers to the control side. The numbers refer to the number of ovulated 
females that were tested and that spent more of their time (attraction) or showed more activity (search 
behavior) in either the conditioned or unconditioned sides (13). SM, spermiating male; PSM, prespermi- 
ating male; SMW, washings collected from spermiating males; SME, C-18 SPE extracts of spermating male 
washings; PP, purified pheromone (7a,12a,24-trihydroxy-5(a-cholan-3-one 24-sulfate). P values were 
determined with a Wilcoxon Signed Ranks Test (two-tailed) using indices of preference described in (13). 
*NS, not significant. 

Attraction Search behavior 
Stimuli 

Unconditioned Conditioned P value Unconditioned Conditioned P value 

SM 0 22 0.01 0 8 0.01 
PSM 12 12 NS* 3 3 NS* 
SMW 3 12 0.01 0 7 0.01 
SME 3 11 0.01 2 7 0.05 
PP 0 8 0.01 0 6 0.03 
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Further, these two compounds comigrated on 
TLC, co-eluted on HPLC, and showed tan- 
dem FABMS. 

We confirmed that the purified com- 
pound, which showed a virtually identical 
'H-'3C HSQC to the synthetic compound, 
(Fig. 3B) replicated the pheromonal activity 
of washings of spermiating males. Approxi- 
mately 30 mg of pheromone was isolated 
from 4-hour washings of approximately 30 
spermiating males, suggesting a rate of re- 
lease of about 250 Ig male-l hour-'. From 
this, we estimated that, in the experiments 
with live males (13), the pheromone reached 
a concentration of between 0.1 and 0.2 nM. 

We therefore tested 
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main gonadal (steroid) pheromone released by 
a 25-g female goldfish (33). Interference with 
this pheromone system offers an attractive tar- 
get for selective and environmentally benign 
control of the sea lamprey, whose invasion of 
the Great Lakes represents arguably the worst 
ecological disaster ever to befall a large water- 
shed (34). 
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Full-length complementary DNAs (cDNAs) are essential for the correct annotation 
of genomic sequences and for the functional analysis of genes and their products. 
We isolated 155,144 RIKEN Arabidopsis full-length (RAFL) cDNA clones. The 3'-end 
expressed sequence tags (ESTs) of 155,144 RAFL cDNAs were clustered into 
14,668 nonredundant cDNA groups, about 60% of predicted genes. We also 
obtained 5' ESTs from 14,034 nonredundant cDNA groups and constructed a 
promoter database. The sequence database of the RAFL cDNAs is useful for 
promoter analysis and correct annotation of predicted transcription units and 
gene products. Furthermore, the full-length cDNAs are useful resources for 
analyses of the expression profiles, functions, and structures of plant proteins. 
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