
the induction of associative LTP. Such a role is 
also supported by recent experiments with a 
caged function-blocking antibody to BDNF 
(36), although the site of BDNF release is not 
clear yet. Although an autocrine action of 
postsynaptically released neurotrophin-4/5 has 
been proposed for the neuromuscular junction 
(2), there is evidence for an activity-dependent 
release of BDNF from presynaptic terminals in 
cortical neurons (37). A recent report (38) pro- 
vides evidence for activity-dependent postsyn- 
aptic release of BDNF from cultured hippocam- 
pal neurons. However, because this BDNF re- 
lease has not yet been directly correlated with 
LTP recordings, more work is required to de- 
termine whether, during LTP induction, BDNF 
is released from either pre- or postsynaptic 
compartments, or even from both compart- 
ments together. 

Whatever the site of BDNF release, our 
results show that a brief BDNF pulse and a 
weak afferent burst robustly elicited LTP. Like 
tetanus-induced LTP (16, 17), the induction of 
BDNF-mediated LTP required postsynaptic 
Ca2+ signaling (39) and NMDA receptor acti- 
vation, as well as a close temporal association 
of pre- and postsynaptic activity. The mutual 
occlusion between BDNF-mediated and teta- 
nus-evoked LTP suggests shared expression 
mechanisms. However, our results do not ex- 
clude a presynaptic expression of the BDNF- 
mediated LTP and are, therefore, not necessar- 
ily in contradiction with earlier evidence stress- 
ing the contribution of presynaptic mecha- 
nisms. An important conclusion of the present 
study is that spiny dendrites of mature dentate 
granule cells represent a highly responsive 
compartment for the rapid BDNF action. The 
block of this responsiveness prevented the in- 
duction of BDNF-mediated LTP. Our results 
reveal a critical mechanism underlying the sur- 
prisingly rapid, LTP-inducing action of BDNF 
and support an instructive role for BDNF in the 
induction of LTP in the mature brain. 
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Divided by Cytochrome 
Oxidase: A Map of the 

Projections from V1 to V2 in 

Macaques 
Lawrence C. Sincich* and Jonathan C. Horton 

Current models partition the primate visual system into dorsal (magno) and ventral 
(parvo, konio) streams. Perhaps the strongest evidence for this idea has come from 
the pattern of projections between the primary visual area (V1) and the second 
visual area (V2). Prior studies describe three distinct pathways: magno to thick 
stripes, parvo to pale stripes, and konio to thin stripes. We now demonstrate that 
V1 output arises from just two sources: patch columns and interpatch columns. 
Patch columns project to thin stripes and interpatch columns project to pale 
and thick stripes. Projection of interpatches to common V2 stripe types (pale 
and thick) merges parvo and magno inputs, making it likely that these functional 
channels are distributed strongly to both dorsal and ventral streams. 

In primates, the pathway from the eye via the pathway from V1 to V2 is thought to perpet- 
lateral geniculate nucleus to striate cortex is uate this division, by maintaining segregation 
segregated along three lines: magnocellular, of these three channels (3-5). Specifically, a 
parvocellular, and koniocellular (1, 2). The magno-dominated pathway from layer 4B 
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terminates in thick stripes (6), a konio-dominat- 
ed patch pathway from layer 2/3 innervates thin 
stripes, and a parvo-dominated interpatch path- 
way links layer 2/3 to pale stripes (7). These 
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Fig. 1. V2 stripes and injec- 
tion sites can be identified in 
flattened macaque visual 
cortex before transported 
tracer is revealed. (A) Cyto- 
chrome oxidase-stained sec- 
tion containing the central 
portions of V1 and V2, show- 
ing pale stripes between thick 
stripes (brackets) and thin 
stripes (black arrows). CTB 
injections appear as minis- 
cule purple spots; three 
(white arrows) are squarely 
in thick stripes. Inset shows 
injection marked with an as- 
terisk. (B) Same section, after 
silver enhancement of CTB, 
showing that none of the _ 
thick stripe injections spread _ 
into flanking pale stripes. (C) _ 
Pale stripe (white arrows) 
and thin stripe (arrowhead) _ 
injections from another ma- _ 
caque, after reaction for CTB. _ 
Dashed outlines indicate _ 
fields shown in Fig. 2. Scale _ 
bars, 2 mm. 

Fig. 2. All V2 stripes receive A Th 
projections from neurons in 
layers 2/3 and 4B. (A) CTB ? . 
labeled cells in layer 2/3 (top y: 
panel) from a thick stripe in- . 
jection are outlined by com- 
puter-generated contours of p 
the labeling (39). Middle, the 
same section, in bright-field, 
with layer 2/3 labeling clear- _ 
ly nestled in the cytochrome _ 
oxidase interpatch regions. _ 
Bottom, the labeling in layer _ 
4B (shaded blue) from the _ 
same injection, with outlines _ 
superimposed from the layer 
2/3 labeling. Inset, a group of 
4B cells at higher magnifica- _ 
tion. (B) Cells in layer 2/3 _ 
(top) labeled after a pale 
stripe injection were situated o.. 
in interpatches (middle) and ^ 
aligned, with clusters of la- 
beled interpatch cells in layer 4B' 
4B (bottom). (C) Thin stripe 
injection led to patch label- 
ing in layer 2/3 (top and mid- 
dle), plus light patch labeling ; 
in layer 4B (bottom). Scale bar, 1 mm. 

discrete parallel channels are believed to convey 
visual information about motion, color, and 
form, respectively. V2 neurons reflect this seg- 
regation, both in their physiological properties 
(8-10) and in their pattern of projections to 
higher visual centers. Thick stripes project to 
area MT, a motion center in the dorsal pathway, 
whereas thin and pale stripes project to area V4, 
a form/color region in the ventral pathway (9, 
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11, 12). This scheme is admittedly an oversim- 
plification (13, 14), but it prevails in our current 
view of the basic organization of the visual 
system (15-17). 

The link from V1 to V2 is a major path- 
way through which most visual signals pass 
before dissemination to the rest of extrastriate 
cortex (18-21). By making [3H]proline injec- 
tions into VI, we have shown that pale stripes 
receive the strongest striate input (22). We 
have now mapped the Vl-to-V2 projections 
in macaque monkeys (n = 17) using a retro- 
grade tracer. Contrary to prior reports, the 
thin, pale, and thick stripes in V2 received 
input from the same layers of striate cortex. 
More important, their V1 input was segregat- 
ed by cytochrome oxidase into only two sys- 
tems: patch columns or interpatch columns. 

To map V1-to-V2 projections, one must 
identify the cytochrome oxidase stripes reli- 
ably; these are often indistinct in macaques 
(23). To accomplish this, we unfolded and 
flattened the convoluted lunate sulcus before 
histological processing. A section cut parallel 
to the flattened cortical surface, containing 
portions of V1 and V2 representing central 
vision, is shown stained for cytochrome oxi- 
dase (Fig. 1A). The stripes could be readily 
differentiated. They formed a repeating pale- 
thick-pale-thin pattern oriented perpendicular 
to the V1/V2 border (24). To make discrete 
retrograde tracer injections, we used gold- 
conjugated cholera toxin B subunit (CTB). 
This tracer resists diffusion, allowing <1- 
mm-diameter injections, arid leaves a faint 
purple witness mark at injection sites (Fig. 
1A, inset). This enabled one to assign each 
injection to a stripe type before the pattern of 
cytochrome oxidase staining was obscured by 
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,known. Only injections confined to a clear-cut 
thick, pale, or thin stripe were included in our 
analysis (n = 77, from a total of 187 injections). 
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Fig. 3. Thick and pale stripes share input from interpatches in layer 2/3. (A) Paired injections (white 
outlines) of CTB and WGA-HRP showed no cross-contamination at the injection sites. The black box 
indicates the zone of maximum overlap between the fields of cells filled retrogradely by the two labels. 
(B) An adjacent cytochrome oxidase section shows that the CTB injection is in a pale stripe and the 
WGA-HRP injection is in a thick stripe (bracket). (C) Cytochrome oxidase section of the box in (A), 
outlining the patches. (D) Dark-field view of the box in (A) photographed to reveal only CTB. (E) 
Bright-field view with semicrossed polarizers to show only WGA-HRP. (F) An enlarged bright-field view 
of the blue box in (D) and (E), containing 202 labeled cells: 102 with CTB (G), 67 with WGA-HRP (H), 
and 33 with both tracers (I). Scale bars: 2 mm, (A and B); 100 pXm, (C to E); 50 pxm, (F); 3 !Jm, 
(G to I). 

Fig. 4. Projections from V1 to V2 in 
macaques are mainly bipartite. Sche- / 
matic model showing that cells in layers 

............................ 

2/3, 4A, and 4B from patches project to P/ 
ale Stripe / / 

thin stripes, whereas those from inter- / - 

patches project to thick and pale i / 
stripes. Cells in layer 5/6 from patches ? j- / 
and interpatches project to all stripe = ' / 

More than 100 injections were rejected because 
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labeled cells in V1. The lateral three injections 
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thick stripe, without contamination of flanking 
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Thick stripe injections labeled a large 
population of cells in layer 2/3 (Fig. 2A, top). 
This layer was not previously thought to 
project to thick stripes (6). Layer 2/3 labeling 
was produced by all thick stripe injections 
(n = 27). The labeled neurons were localized 
to interpatches (Fig. 2A, middle). From the 
same injections, labeled neurons were also 
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umns, like the projections to thick stripes. 
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labeling of patches in layer 2/3 (Fig. 2C, top 
and middle). We also found label in layer 4B 
(Fig. 2C, bottom) directly beneath the labeled 
cells of layer 2/3, thereby defining a patch 
column. Among the three stripe types, thin 
stripes received projections from the fewest 
cells in layer 4B. 

We hypothesized that separate interpatch 
cell populations might provide inputs to thick 
and pale stripes. Paired injections of CTB and 
WGA-HRP (wheat germ agglutinin conjugated 
to horseradish peroxidase), separated by 1.25 
mm, were made into V2. In three cases we 
succeeded in hitting cleanly adjacent thick and 
pale stripes (Fig. 3, A and B) (25). The labeled 
fields from the two tracers partially overlapped 
in V1 (Fig. 3, C to E). A third of the WGA- 
HRP-positive cells were double-labeled, indi- 
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silver intensification of the conjugated gold. 
Stripe assignments could thus be made before 
the pattern of retrograde labeling in V1 was 
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cating that many VI neurons project to both pale 
and thick stripes (Fig. 3, F to I). By contrast, 
paired tracer injections (n = 2) in adjacent thin 
and pale stripes revealed virtually no double- 
labeled cells. Thus, the V1 projections from 
interpatches to pale and thick stripes arise from 
a common source, although most neurons do 
project exclusively to either a pale stripe or a 
thick stripe. 

The V2 tracer injections revealed novel pro- 
jections from other cortical layers. Layer 4A is 
the thinnest layer in V1 (<50 ,Jm thick), re- 
ceives a direct projection from the parvocellular 
system, and has a characteristic cytochrome ox- 
idase honeycomb pattern (26). It sent a dual 
pattern of projections to V2. Thick and pale 
stripe injections produced 4A label in interpatch 
columns [Web fig. 1A (27)]. Thin stripe injec- 
tions resulted in 4A label that coincided with 
patch columns [Web fig. 1B (27)]. This projec- 
tion from layer 4A adds a second potential 
disynaptic route from the geniculate to V2: par- 
vocellular -- layer 4A -> V2, in addition to the 
known koniocellular -- patches -> V2 pathway 
(28). Injections in all stripes labeled numerous 
large neurons, often Meynert cells, near the 
layer 5/6 border. These cells were distributed 
indiscriminately with respect to patches and in- 
terpatches. 

These findings recast the Vl-to-V2 pathway. 
Previous studies found projections arising from 
only single layers, organized in a tripartite fash- 
ion: layer 2/3 patches -> thin stripes, layer 2/3 
interpatches -> pale stripes, and layer 4B -> 
thick stripes (6, 7). It has subsequently been 
recognized that considerable mixing of magno, 
parvo, and konio geniculate channels occurs 
within V1 (29). However, the apparent exis- 
tence of three distinct, partitioned VI projec- 
tions to thick, pale, and thin stripes implied that 
three channels-dominated by magno, parvo, 
and konio inputs-survived after processing 
within V1. We now show that thick, thin and 
pale stripes all receive projections from the 
same VI layers: heaviest from layer 2/3 and less 
from layers 4A, 4B, and 5/6. The dominant 
theme is not tripartite, but bipartite segregation 
defined by cytochrome oxidase columns: patch- 
es -- thin stripes, and interpatches -> pale and 
thick stripes (Fig. 4). These anatomical data 
explain the relatively poor segregation of recep- 
tive field properties in pale and thick stripes 
found by some investigators (30-32). Our re- 
sults provide a new connectional foundation for 
the cortical hierarchy of visual areas (16, 33). 
They suggest a rich intermingling of form, col- 
or, and motion signals between the streams 
bound for the dorsal "where" and ventral "what" 
pathways (17, 34). 
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Imaging a Shared Neuronal 

Network 
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It has been suggested that placebo analgesia involves both higher order cognitive 
networks and endogenous opioid systems. The rostral anterior cingulate cortex 
(rACC) and the brainstem are implicated in opioid analgesia, suggesting a similar 
role for these structures in placebo analgesia. Using positron emission tomography, 
we confirmed that both opioid and placebo analgesia are associated with increased 
activity in the rACC. We also observed a covariation between the activity in the 
rACC and the brainstem during both opioid and placebo analgesia, but not during 
the pain-only condition. These findings indicate a related neural mechanism in 
placebo and opioid analgesia. 

Placebo analgesia is an important component least some aspects of placebo analgesia are 
in pain management (I), although the basic dependent upon endogenous opioid systems 
mechanisms are still poorly understood. At (1-3) because the effect may be partly abol- 
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