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mum. None of the cells expressing ARII- 
CFP responded with increased [cAMP]i 
above 30% of the maximum (Fig. 5E). 
These results indicate that only the GFP- 
tagged PKA anchored to AKAPs can effi- 
ciently sense the localized change in 
[cAMP]i induced by [3-AR stimulation. 

The hypothesis of compartments of high 
[cAMP]i in cardiac myocytes was formulated 
more than 20 years ago (4, 22), and restricted 
pools of cAMP appear to function in cat- 
echolamines-mediated control of cardiac 
Ca2+ channels (13). Our data provide direct 
evidence of microdomains of high cAMP and 
demonstrate that cAMP can act with a short 
range of about 1 pam. 
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Siderophore-mediated acquisition systems facilitate iron uptake. We present 
the crystallographic structure of the integral outer membrane receptor FecA 
from Escherichia coli with and without ferric citrate at 2.5 and 2.0 angstrom 
resolution. FecA is composed of three distinct domains: the barrel, plug, and 
NH2-terminal extension. Binding of ferric citrate triggers a conformational 
change of the extracellular loops that close the external pocket of FecA. Ligand- 
induced allosteric transitions are propagated through the outer membrane by 
the plug domain, signaling the occupancy of the receptor in the periplasm. These 
data establish the structural basis of gating for receptors dependent on the 
cytoplasmic membrane protein TonB. By compiling available data for this family 
of receptors, we propose a mechanism for the energy-dependent transport of 
siderophores. 
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Despite its relative abundance in Earth's 
crust, iron is biologically unavailable in an 
oxidizing atmosphere because of the insolu- 
bility of ferric oxyhydroxide. In response to 
iron deficiency, most microbes secrete organ- 
ic chelators called siderophores, which are 
designed to sequester ferric iron. The ability 
to acquire this metal is an important determi- 
nant of bacterial virulence. Most bacteria ex- 
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press a sophisticated repertoire of parallel 
iron acquisition systems (1), which under- 
scores their biological importance and the 
clinical potential to exploit these pathways 
for combating multi-drug-resistant bacterial 
strains (2). 

Regulatory mechanisms, responsive to 
both the internal and external iron concentra- 
tion, control the transcription of genes in- 
volved in iron uptake (3). The ferric citrate 
uptake (fec) genes are responsible for the 
transport of ferric citrate from the external 
medium into the cytoplasm (4-7). Proteins 
required for each phase of these energy-de- 
pendent transport processes have defined 
functions and are localized to specific cell 
envelope compartments. Embedded within 
the outer membrane is FecA, which performs 
two mutually independent functions: It binds 
and transports ferric citrate, and it is required 
to initiate transcription of the fecABCDE 
transport operon but not the regulatory fecIR 
genes (4-7). Both siderophore transport and 
the initiation of transcription require the 
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chemiosmotic potential of the cytoplasmic 
membrane as transduced by a complex com- 
posed of the proteins TonB, ExbB, and 
ExbD. However, transport is not required for 
the initiation of transcription; rather, sid- 
erophore binding to FecA initiates a signaling 
cascade from the cell surface, resulting in 
transcription in the cytoplasm (4-7). The 
transmembrane regulatory protein FecR acti- 
vates the cytoplasmic sigma factor FecI to 
bind to the fecA promoter (4-7). We there- 
fore sought to probe the molecular architec- 
ture of FecA and its role in siderophore- 
induced transcription. 

The three-dimensional structures of unli- 
ganded FecA and its complex with dinuclear 
ferric citrate were determined at 2.0 and 2.5 
A resolution by x-ray crystallography using 
multiple anomalous dispersion (MAD) (Ta- 
ble 1) (8, 9). The crystal structure of full- 
length FecA (741 residues) is composed of 
three domains (Fig. 1, A and B) and has an 
overall topology similar to those of FhuA 
(9-11) and FepA (9, 12). A monomeric 22- 
stranded 3 barrel is formed by residues 222 to 
741. In vivo, these antiparallel strands tra- 
verse the outer membrane. Adjacent strands 
are connected by solvent-accessible extracel- 
lular loops containing two ao helices and three 
L3 strands; turns are oriented toward the 
periplasm. The position and length of these 
connecting segments are different for each 
receptor (9). When viewed along its axis, the 
barrel has ellipsoidal dimensions (35 A by 47 
A) and is 65 A in height, extending 30 A 
above the external interface of the upper leaf- 
let of the outer membrane. Two girdles of 
aromatic residues inscribe the membrane-em- 
bedded hydrophobic surface of the receptor. 

The plug domain (residues 80 to 221) is 
located inside the barrel, comprising five he- 
lices, two L strands, and a mixed four-strand- 
ed 13 sheet that is tilted by about 45? with 
respect to the membrane plane (Fig. 1, A and 
B). FhuA and FepA present a similar fold (9). 
The plug domain prevents the direct passage 
of ferric citrate across the outer membrane 
and separates the external and periplasmic 
pockets, which are located above and below 
the four-stranded [3 sheet. The extracellular 
pocket of FecA is lined with positively 
charged residues (ferric citrate is negatively 
charged). The equivalent regions of FhuA 
and FepA are predominantly lined with aro- 
matic and/or hydrophilic residues (10-12). 
The electrostatic properties of these pockets 
confer specificity on the basis of the chemical 
attributes of the siderophore. The flexible 
79-residue domain of FecA termed the NH2- 
terminal extension (residues 1 to 79), which 
resides entirely within the periplasm and 
transmits the liganded status of the receptor 
to FecR (4-7), was not visible in the electron 
density maps and could not be modeled. 

Noncovalently bound within the external 

pocket of FecA is a single dinuclear ferric 
citrate molecule (13). Three loops of the plug 
domain-apices A (Thr138), B (Arg155), and 

A 

B 

C (Ser'80)-extend above the plane of the 
upper leaflet of the outer membrane. In the 
liganded structure, apices A, B, and C, to- 

Fig. 1. Crystallographic structure of FecA, (A) unliganded and (B) liganded. The 22-stranded P barrel 
is shown in blue. The molecule is presented as found in the outer membrane with extracellular 
loops extending into the solvent (top) and periplasmic turns oriented toward the periplasm 
(bottom). Extracellular loops 7 and 8, which undergo major conformational changes upon ligand 
binding, are shown in red. The mixed four-stranded 13 sheet of the plug domain is shown in green, 
with helices in purple and loops in yellow. The switch helix, located in the periplasmic pocket of 
FecA, is colored orange and is only observed in the unliganded conformation. Dinuclear ferric citrate 
is represented as a bond model with oxygen atoms in red and carbon atoms in green; both ferric 
ions are shown as orange spheres. (C) Surface representation of unliganded FecA. Although ferric 
citrate is not found in the unliganded structure, it is represented as a bond model (with carbon 
atoms in green, oxygen atoms in red, and ferric ions in orange) to indicate the location of the 
binding site. (D) Surface representation of liganded FecA. The binding of ferric citrate causes 
conformational changes of the extracellular loops, such that the siderophore becomes solvent- 
inaccessible. The molecular surfaces are colored according to electrostatic potential, with blue and 
red corresponding to +40 kT and -40 kT, respectively. The view is given from the solvent. All 
figures were prepared using BobScript (42), GLR (43), POV-Ray, and GRASP (44). 
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gether with residues located on extracellular 
loops 4, 5, 8, and 11, form hydrogen bonds 
and electrostatic interactions with dinuclear 
ferric citrate (Fig. 2). Additional van der 
Waals contacts are provided by Leu156 from 
the plug domain and Phe333 from the barrel. 
The binding site of FhuA is markedly differ- 
ent from the binding site of FecA. Although 
apices A, B, and C of FhuA and several barrel 
residues also form specific interactions with 
the ligand, the binding site of FhuA is pre- 
dominantly formed by hydrophobic residues 
(10-12, 14, 15). 

Formation of the liganded complex sub- 
stantially affects the conformation of the bar- 
rel and the plug domain of FecA. Binding of 
ferric citrate causes both minor and major 
changes in the spatial arrangement and con- 
formation of five extracellular loops (Fig. 1, 
A and B). Minor changes (<0.5 A) are ob- 
served in the fourth, fifth, and ninth extracel- 
lular loops. Strikingly, the seventh extracel- 
lular loop (residues 516 to 535) is translated 
by up to 11 A, and it changes conformation 

such that helix 2 (residues 522 to 529) is 
unwound. Residues 562 to 581 from the 
eighth extracellular loop are also translated 
by up to 15 A. 

Allosteric transitions tightly regulate the 
opening and closing of TonB-dependent recep- 
tor channels, where these events are modulated 
by (i) siderophore binding and (ii) the transfer 
of stored potential energy from TonB. This 
bipartite gating mechanism refers to the process 
by which siderophore binding to its receptor 
induces allosteric transitions that enable trans- 
port by establishing or removing a physical 
channel obstruction, referred to as the gate (16). 
Opening and closing of the two gates regulates 
transmembrane siderophore flow. Diverse or- 
ganisms, from bacteria to humans, use gating 
mechanisms in the regulated influx and efflux 
of solutes across biological membranes. The 
rearrangement of the seventh and eighth extra- 
cellular loops of FecA establishes the structural 
basis of gating for TonB-dependent receptors. 
In FecA, these movements render the external 
pocket and the ferric citrate-binding site inac- 

cessible to solvent. Hence, the barrel of a TonB- 
dependent receptor is a dynamic entity that 
actively participates in the energy-dependent 
siderophore uptake (Fig. 1, C and D). 

Allosteric transitions are propagated across 
the outer membrane by the plug domain via 
shifts (0.5 to 0.7 A) toward the ferric citrate 
molecule of apices A and C, and of apex B 
away from the siderophore, and via the concert- 
ed downward movement (0.7 to 2.0 A) toward 
the periplasm of (3E and 13F (10, 11, 17). In the 
liganded structure, an NH2-terminal segment 
located within the periplasmic pocket of FecA, 
termed the switch helix (10), unwinds to as- 
sume a flexible extended conformation (as 
judged by the absence of interpretable electron 
density before residue Asn95). Similar changes 
have been observed in the three-dimensional 
structures of multiple liganded complexes of 
FhuA (10, 11, 14, 15). The unwinding of the 
switch helix signals the occupancy of the recep- 
tor in the periplasm such that energized TonB 
molecules can effectively discriminate between 
unliganded and liganded receptors (18). 

Table 1. Data collection, phasing, and refinement statistics. 

Compound Holo- Apo- Holo- Apo- 
native native selenomethionyl selenomethionyl 

Space group P2,2,2 P2,2,2 P2,2,2 P2,2,2 
Unit cell dimensions (A) 

a 117.72 117.08 117.47 117.48 
b 89.36 88.09 88.76 88.25 
c 95.70 94.58 95.07 95.50 

a = P = 3 (?) 90 90 90 90 

X-ray data 

Beam line NSLS-X4A NSLS-X12B APS-BM19 APS-ID19 
Wavelength (A) 1.73961 0.97800 1.00003 0.97951 0.97967 0.96411 
Resolution range (A) 50 to 2.8 50 to 2.0 50 to 2.5 50 to 2.5 50 to 2.5 50 to 2.5 
Unique reflections 16,906 62,452 34,980 31,845 31,437 28,902 
Average multiplicity 6.9 3.9 5.8 8.2 8.2 4.3 
Completeness (%) 99.4 92.3 98.3 92.4 92.7 83.2 
(I/Al) 13.1 11.1 6.6 22.6 22.6 13.8 
Rmerge (%)* 0.095 0.090 0.169 0.081 0.087 0.10 
Phasing power - - - 1.69 1.65 0.77 
Figure of merit after SHARP - - - - 0.4978 

refinement 
Figure of merit after density 0.8613 

modification 

Refinement 

Liganded (holo-selenomethionyl) Unliganded (apo-native) 
Rworkt/Rfreet (%) 24.2/28.2 20.7/24.5 
Ordered water molecules 252 368 
Ordered LDAO? molecules 16 17 
Ordered heptane-(1,2,3)-triol molecules 0 2 
Ordered dinuclear ferric citrate molecules 1 0 
Root mean square deviation 

Bond lengths (A) 0.007 0.011 
Bond angles (?) 1.4 1.7 

Average B factor (A2) 
Protein 23.9 24.9 
LDAO 44.9 70.9 
Water 23.8 28.5 
Heptane-(1,2,3)-triol 65.5 
Ferric citrate 54.9 

Rmerge = (/hkl) 
- (/) I/(/hk), where hkl is the integrated intensity of a given reflection. tRwork 

= (IFobs - Fcac )/(Fobs)' where Fobs and Fcalc are observed and calculated 
structure factors. :For unliganded (apo-native) and liganded (holo-selenomethionyl) FecA, 5% of reflections were excluded from the refinement to calculate Rfree (8). ?LDAO: 
N,N-dimethyldodecylamine-N-oxide. 
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Fig. 2. Stereoview of the ferric citrate-binding site. All side chains within 3.5 A of dinuclear ferric 
dicitrate are shown with carbon atoms in white, nitrogen atoms in blue, and oxygen atoms in red. 
Several water molecules found within the binding site mediate additional protein-ligand interac- 
tions. The strands and extracellular loops of the barrel are shown in blue; the strands forming the 
plug domain are in green, and loops are in yellow. The seventh, eighth, and eleventh extracelluar 
loops of the barrel are shown in red. The dinuclear ferric citrate molecule is represented as a bond 
model with oxygen atoms in red, carbon atoms in green, and ferric ions in orange. 

The TonB-box is a functionally important 
region of TonB-dependent receptors (19) that 
physically interacts with TonB and is essential 
for the transfer of the chemiosmotic potential of 
the cytoplasmic membrane as transduced by the 
TonB-ExbB-ExbD complex (20-23). After fer- 
ric citrate binding, the TonB box of FecA (res- 
idues 80 to 84) becomes disordered, as evi- 
denced by its lack of discernible electron den- 
sity in the liganded structure. 

By consolidating these data with other 
available genetic, biochemical, and structural 
observations for this family of TonB-depen- 
dent receptors, we have derived the following 
transport mechanism. 

Stage 1: The siderophore is adsorbed from 
the medium with low affinity, primarily by 
aromatic residues found within the upper por- 
tion of the external pocket of the unliganded 
receptor. 

Stage 2: The siderophore is transferred to its 
high-affinity binding site, where primarily api- 
ces A, B, and C of the plug domain and numer- 
ous charged residues found within the extracel- 
lular loops and 1B strands of the barrel form 
electrostatic contacts with the siderophore. 
These interactions cause translations of apices 
A, B, and C toward and away from the sid- 
erophore, as well as the concerted downward 
movement of other plug domain segments, 
leading to the unwinding and repositioning of 
the switch helix and the TonB-box. 

Stage 3: Multiple extracellular loops of the 
receptor change their relative conformation and 
position. This bipartite gating mechanism clos- 
es the external pocket of the barrel, thereby 
favoring directed transport by disrupting the 
low-affinity binding site and shielding the high- 
affinity binding site from the solvent. However, 
the structural transitions observed in stages 2 
and 3 may also be concerted. 

Stage 4: Given the absence of an unob- 

structed channel of sufficient size to accom- 
modate the passage of siderophores through 
TonB-dependent receptors, transitions that 
modify the conformation of the plug domain 
and/or barrel are required for transport. These 
changes are mediated by physical interactions 
between TonB and the TonB-box (20-23), 
and possibly by periplasmic turns of the bar- 
rel (24). Formation of a complex with TonB 
results in the transfer of stored potential en- 
ergy to the receptor (25), which in turn pro- 
motes ligand transport. 

Although the structural basis of the final 
energy-dependent transport stage remains to 
be established, two plausible models have 
been proposed (10-12). In the first proposal, 
an energized TonB molecule induces alloste- 
ric transitions within the plug domain and/or 
barrel, such that the unfolded plug domain 
with bound ligand is ejected into the 
periplasm. In the second proposal, the plug 
domain remains inside the barrel, and both 
domains undergo allosteric transitions that 
lead to the opening of an underlying trans- 
membrane channel within the receptor, 
through which the siderophore permeates into 
the periplasm by a surface-diffusion mecha- 
nism (similar to those characterized for gly- 
coporins). Biophysical studies recently re- 
vealed that in the absence of the FepA barrel, 
the plug domain is predominantly unfolded 
yet soluble and retains some binding affinity 

(26). 
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Long-Range Interactions Within 

a Nonnative Protein 

Judith Klein-Seetharaman,l* Maki Oikawa,2 Shaun B. Grimshaw,3 
Julia Wirmer,1t Elke Duchardt,1t Tadashi Ueda,2 Taiji Imoto,2 
Lorna J. Smith,3 Christopher M. Dobson,3t Harald Schwalbe1t? 

Protein folding and unfolding are coupled to a range of biological phenomena, from 
the regulation of cellular activity to the onset of neurodegenerative diseases. 
Defining the nature of the conformations sampled in nonnative proteins is crucial 
for understanding the origins of such phenomena. We have used a combination 
of nuclear magnetic resonance (NMR) spectroscopy and site-directed mutagen- 
esis to study unfolded states of the protein lysozyme. Extensive clusters of 
hydrophobic structure exist within the wild-type protein even under strongly 
denaturing conditions. These clusters involve distinct regions of the sequence 
but are all disrupted by a single point mutation that replaced residue Trp62 with 
Gly located at the interface of the two major structural domains in the native 
state. Thus, nativelike structure in the denatured protein is stabilized by the 
involvement of Trp6Z in nonnative and long-range interactions. 
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Incompletely folded states of proteins are cou- 
pled to cellular processes such as protein syn- 
thesis, translocation across membranes, and sig- 
nal transduction [reviewed in (1, 2)]. In addi- 
tion, intrinsically unstructured proteins have 
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been predicted to be common within the ge- 
nomes of all organisms (3). Unstructured and 
partially folded conformations of proteins are, 
however, prone to aggregate and have been 
implicated in a wide range of diseases (4). The 
structural and dynamic characterization of non- 
native states of proteins is therefore crucial for 
understanding these processes in addition to 
being fundamental to an understanding of pro- 
tein folding itself. 

Nonnative states of proteins are ensem- 
bles of conformers, the individual members 
of which may differ substantially in their 
structural and dynamic properties. Conforma- 
tional sampling of denatured proteins can be 
significantly restricted, and the existence of 
"compact states" has been postulated to occur 
(5-9). In some cases, specific experimental 
structural information has been obtained al- 
though in general this information is either 
indirect or highly localized. An important 
question relating to all nonnative states is the 
extent to which long-range interactions are 
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important in the stabilization of nonrandom 
interactions. We use site-directed mutagene- 
sis and NMR spectroscopy to show that long- 
range nonnative interactions stabilize native- 
like hydrophobic clusters in lysozyme. 

A wide range of approaches has been de- 
veloped to characterize nonnative states of pro- 
teins in atomic detail by NMR spectroscopy 
(10), and evidence for the presence of residual 
structure even under strongly denaturing condi- 
tions has been presented, see, e.g. (11-17). 
Residual structure appears to reside predomi- 
nantly in hydrophobic clusters, in which tryp- 
tophan or histidine residues are surrounded by 
other hydrophobic side chains (18-20). It has 
been postulated that hydrophobic clusters are 
stabilized by long-range interactions and may 
influence the folding of the protein, for example 
by acting as nucleation sites around which 
structure can be formed (16-18, 21). Hydro- 
phobic clusters have also been identified in 
nonnative states of hen lysozyme, in both the 
oxidized and the reduced form in 8 M urea at 
pH 2 [in the reduced protein the free sulfhydryl 
groups are blocked by methylation (16)]. 

Of the measured NMR parameters, chemi- 
cal shift values of HN and Ha, protons and 
transverse (R2) relaxation rates are the most 
direct indicators of residual structure. Here, we 
use such parameters to examine the reduced 
state of hen lysozyme in the absence of urea and 
then to investigate the structural changes result- 
ing from the replacement of residue Trp62 by 
Gly (W62G). HN and H, chemical shifts mea- 
sured for reduced and methylated wild-type 
lysozyme (WT-SME) in water are shown in Fig. 
1A along with data for WT-SME in 8 M urea 
(16). In WT-SME, significant deviations in 
chemical shifts of the HN resonances from ran- 
dom coil values (22, 23) can be seen for Gly22, 
Trp63, and Cys64, and of the HCX resonances for 
residues 19 to 32, 58 to 64, 119 to 124, and 106 
to 113. The largest differences are observed at 
positions 106 to 116, a result indicative of an 
increase in helical character for this region of 
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use such parameters to examine the reduced 
state of hen lysozyme in the absence of urea and 
then to investigate the structural changes result- 
ing from the replacement of residue Trp62 by 
Gly (W62G). HN and H, chemical shifts mea- 
sured for reduced and methylated wild-type 
lysozyme (WT-SME) in water are shown in Fig. 
1A along with data for WT-SME in 8 M urea 
(16). In WT-SME, significant deviations in 
chemical shifts of the HN resonances from ran- 
dom coil values (22, 23) can be seen for Gly22, 
Trp63, and Cys64, and of the HCX resonances for 
residues 19 to 32, 58 to 64, 119 to 124, and 106 
to 113. The largest differences are observed at 
positions 106 to 116, a result indicative of an 
increase in helical character for this region of 

www.sciencemag.org SCIENCE VOL 295 1 MARCH 2002 www.sciencemag.org SCIENCE VOL 295 1 MARCH 2002 1719 1719 


