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specificity of the effects of the second, encoding Krox- 
Engrailed, is attested to by the minor fraction of tested 
genes on which it had any effect whatsoever (19) and 
the fact that the only genes that were affected are 
required just where krox is expressed, even though the 
exogenous mRNA is present globally. The last, encoding 
an Elk-Engrailed construct, affects only three other 
genes out of all those tested (19) (Fig. 3). Elk plays a 
peripheral role in the network up to 24 hours, and its 
main importance may be for later events in develop- 
ment. 

33. In such rescue experiments, if the effect is indirect via a 
second gene, then the introduction of mRNA generated 
from the second gene will suffice to correct the pertur- 
bation effect; but if it is direct, no rescue can be ob- 
tained by this route. For example, if gene A activates 
gene B, which in turn activates gene C, then the effect 
of a knockout of gene A expression is direct for gene B 
but indirect for gene C, and the effect of the gene A 
knockout on gene C would be rescued by the introduc- 
tion of B mRNA. If, on the other hand, there are 
necessary target sites for the gene A product in the 
cis-regulatory elements of both genes B and C, then the 
effect on gene C of a gene A knockout cannot be 
rescued by the introduction of B mRNA. 

34. C. T. Brown et al., Dev. Biol., in press. 
35. J. P. Rast et al., Dev. Biol. 228, 270 (2000). 
36. A. Ransick, J. P. Rast, T. Minokawa, C. Calestani, E. H. 

Davidson, Dev. Biol., in press. 
37. J. P. Rast, R. A. Cameron, A. J. Poustka, E. H. Davidson, 

in preparation. 
38. See Science Online for supplementary Web material 

(www.sciencemag.org/cgi/content/full/295/5560/ 
1669/DC1). 

39. C. Calestani, E. Davidson, unpublished data. All QPCR 
measurements cited are posted on the QPCR Web 
site (30). The phenotype of the negatively acting N 
embryos is shown in Fig. 2D. The expression of the 
pks gene is posted on the Science Web site (38). 

40. P. Gonzalez, H. A. Lessios, Mol. Biol. Evol. 16, 938 
(1999). 

41. C. R. C. Paul, A. B. Smith, Biol. Rev. 59, 443 (1984). 

specificity of the effects of the second, encoding Krox- 
Engrailed, is attested to by the minor fraction of tested 
genes on which it had any effect whatsoever (19) and 
the fact that the only genes that were affected are 
required just where krox is expressed, even though the 
exogenous mRNA is present globally. The last, encoding 
an Elk-Engrailed construct, affects only three other 
genes out of all those tested (19) (Fig. 3). Elk plays a 
peripheral role in the network up to 24 hours, and its 
main importance may be for later events in develop- 
ment. 

33. In such rescue experiments, if the effect is indirect via a 
second gene, then the introduction of mRNA generated 
from the second gene will suffice to correct the pertur- 
bation effect; but if it is direct, no rescue can be ob- 
tained by this route. For example, if gene A activates 
gene B, which in turn activates gene C, then the effect 
of a knockout of gene A expression is direct for gene B 
but indirect for gene C, and the effect of the gene A 
knockout on gene C would be rescued by the introduc- 
tion of B mRNA. If, on the other hand, there are 
necessary target sites for the gene A product in the 
cis-regulatory elements of both genes B and C, then the 
effect on gene C of a gene A knockout cannot be 
rescued by the introduction of B mRNA. 

34. C. T. Brown et al., Dev. Biol., in press. 
35. J. P. Rast et al., Dev. Biol. 228, 270 (2000). 
36. A. Ransick, J. P. Rast, T. Minokawa, C. Calestani, E. H. 

Davidson, Dev. Biol., in press. 
37. J. P. Rast, R. A. Cameron, A. J. Poustka, E. H. Davidson, 

in preparation. 
38. See Science Online for supplementary Web material 

(www.sciencemag.org/cgi/content/full/295/5560/ 
1669/DC1). 

39. C. Calestani, E. Davidson, unpublished data. All QPCR 
measurements cited are posted on the QPCR Web 
site (30). The phenotype of the negatively acting N 
embryos is shown in Fig. 2D. The expression of the 
pks gene is posted on the Science Web site (38). 

40. P. Gonzalez, H. A. Lessios, Mol. Biol. Evol. 16, 938 
(1999). 

41. C. R. C. Paul, A. B. Smith, Biol. Rev. 59, 443 (1984). 

42. C.-H. Yuh et al., Dev. Biol., in press. 
43. P.Y. Lee, E. Davidson, unpublished data. All QPCR data 

cited are posted on the QPCR Web site (30). An 
image of the es-GataE MASO phenotype is posted on 
the Science Web site (38). 

44. N. H. Luke, C. E. Killian, B. T. Livingston, Dev. Growth 
Differ. 39, 285 (1997). 

45. D. R. McClay, D. R. Gross, Dev. Biol. 239, 132 (2001). 
46. R. Cameron, E. Davidson, unpublished data. The ex- 

panded expression of bra in sea urchin embryos 
bearing ca-foxa MASO is illustrated on the Science 
Web site (38). 

47. V. Hinman, E. Davidson, unpublished data. The expand- 
ed expression of bra in a starfish embryo bearing rc-foxa 
MASO is illustrated on the Science Web site (38). 

48. P. Oliveri, E. Davidson, unpublished data. All foxa 
QPCR data cited are posted on the QPCR Web site 
(30). Other data are cited in (19). 

49. A. Ransick, E. Davidson, unpublished data. An image 
of the albino phenotype produced by cr-gcm MASO is 
posted on the Science Web site (38). Evidence for 
gem autoregulation comes from QPCR data posted 
on the web site indicated in (30). 

50. E. W. Howard, L. A. Newman, D. W. Oleksyn, R. C. 
Angerer, L. M. Angerer, Development 128, 365 
(2001). 

51. A. P. Kenny, D. Kozlowski, D. W. Oleksyn, L. M. 
Angerer, R. C. Angerer, Development 126, 5473 
(1999). 

52. K. Akasaki, personal communication. 
53. X. Li, C. K. Chuang, C. A. Mao, L. M. Angerer, W. H. 

Klein, Dev. Biol. 187, 253 (1997). 
54. R. J. Britten, E. H. Davidson, Quart. Rev. Biol. 46, 111 

(1971). 
55. This description relates specifically to indirectly de- 

veloping euechinoid species, such as S. purpuratus, L. 
variegatus, Hemicentrotus pulcherrimus, and Paracen- 
trotus lividus. 

56. C. Chuang, A. H. Wikramanayake, C. Mao, X. Li, W. 
Klein, Dev. Genet. 19, 231 (1996). 

57. H. C. Sweet, P. G. Hodor, C. A. Ettensohn, Develop- 
ment 126, 5255 (1999). 

42. C.-H. Yuh et al., Dev. Biol., in press. 
43. P.Y. Lee, E. Davidson, unpublished data. All QPCR data 

cited are posted on the QPCR Web site (30). An 
image of the es-GataE MASO phenotype is posted on 
the Science Web site (38). 

44. N. H. Luke, C. E. Killian, B. T. Livingston, Dev. Growth 
Differ. 39, 285 (1997). 

45. D. R. McClay, D. R. Gross, Dev. Biol. 239, 132 (2001). 
46. R. Cameron, E. Davidson, unpublished data. The ex- 

panded expression of bra in sea urchin embryos 
bearing ca-foxa MASO is illustrated on the Science 
Web site (38). 

47. V. Hinman, E. Davidson, unpublished data. The expand- 
ed expression of bra in a starfish embryo bearing rc-foxa 
MASO is illustrated on the Science Web site (38). 

48. P. Oliveri, E. Davidson, unpublished data. All foxa 
QPCR data cited are posted on the QPCR Web site 
(30). Other data are cited in (19). 

49. A. Ransick, E. Davidson, unpublished data. An image 
of the albino phenotype produced by cr-gcm MASO is 
posted on the Science Web site (38). Evidence for 
gem autoregulation comes from QPCR data posted 
on the web site indicated in (30). 

50. E. W. Howard, L. A. Newman, D. W. Oleksyn, R. C. 
Angerer, L. M. Angerer, Development 128, 365 
(2001). 

51. A. P. Kenny, D. Kozlowski, D. W. Oleksyn, L. M. 
Angerer, R. C. Angerer, Development 126, 5473 
(1999). 

52. K. Akasaki, personal communication. 
53. X. Li, C. K. Chuang, C. A. Mao, L. M. Angerer, W. H. 

Klein, Dev. Biol. 187, 253 (1997). 
54. R. J. Britten, E. H. Davidson, Quart. Rev. Biol. 46, 111 

(1971). 
55. This description relates specifically to indirectly de- 

veloping euechinoid species, such as S. purpuratus, L. 
variegatus, Hemicentrotus pulcherrimus, and Paracen- 
trotus lividus. 

56. C. Chuang, A. H. Wikramanayake, C. Mao, X. Li, W. 
Klein, Dev. Genet. 19, 231 (1996). 

57. H. C. Sweet, P. G. Hodor, C. A. Ettensohn, Develop- 
ment 126, 5255 (1999). 

58. S. W. Ruffins, C. A. Ettensohn, Dev. Biol. 160, 285 
(1993). 

59. , Development 122, 253 (1996). 
60. A. Ransick, E. H. Davidson, Dev. Biol. 195, 38 (1998). 
61. C. Y. Logan, D. R. McClay, Development 124, 2213 

(1997). 
62. R. A. Cameron, E. H. Davidson, Dev. Biol. 187, 236 

(1997). 
63. W. Wang et at., Mech. Dev. 60, 185 (1996). 
64. C. Livi, E. Davidson, unpublished data. QPCR data 

cited are posted on the QPCR Web site (30); the 
Krox-Engrailed phenotype is illustrated in Fig. 28. 

65. D. Kurokawa et al., Mech. Dev. 80, 41 (1999). 
66. T. L. Jacobsen, K. Brennan, A. Martinez-Arias, M. A. T. 

Muskavitch, Development 125, 4531 (1998). 
67. E. Yeh, L. Zhou, N. Rudzik, G. L. Boulianne, EMBOJ. 19, 

4827 (2000). 
68. E. Yeh et al., Curr. Biol. 11, 1675 (2001). 
69. H. M. Sucov, B. R. Hough-Evans, R. J. Britten, E. H. 

Davidson, Genes Dev. 2, 1238 (1988). 
70. We are particularly grateful to E. Branscombe, who 

arranged for the U.S. Department of Energy's Joint 
Genome Institute to provide many of the BAC se- 
quences included in this work (19); the remainder 
were obtained at the Institute for Systems Biology, 
Seattle, WA. We thank E. Rothenberg of Caltech for 
perspicacious and very helpful comments on the 
manuscript. The major embryological aspects of this 
work were supported by grants from NIH (HD-37105 
and RR-06591); the computational aspects were sup- 
ported by a grant from NIH (GM-61005); the com- 
parative aspects were supported by a grant from the 
NASA/Ames Fundamental Space Biology program 
(NAG2-1368); the arrayed cDNA and BAC libraries on 
which the project depended were produced with the 
support of a grant from NIH (RR-15044); and the 
work on the brachyury gene was supported by a 
Human Frontiers grant (RG0290) to R.A.C. Other 
support was provided by the Lucille P. Markey Char- 
itable Trust, the Stowers Institute for Medical Re- 
search, the Beckman Institute of Caltech, and a grant 
from NSF (IBN99882875) to R.A.C. 

58. S. W. Ruffins, C. A. Ettensohn, Dev. Biol. 160, 285 
(1993). 

59. , Development 122, 253 (1996). 
60. A. Ransick, E. H. Davidson, Dev. Biol. 195, 38 (1998). 
61. C. Y. Logan, D. R. McClay, Development 124, 2213 

(1997). 
62. R. A. Cameron, E. H. Davidson, Dev. Biol. 187, 236 

(1997). 
63. W. Wang et at., Mech. Dev. 60, 185 (1996). 
64. C. Livi, E. Davidson, unpublished data. QPCR data 

cited are posted on the QPCR Web site (30); the 
Krox-Engrailed phenotype is illustrated in Fig. 28. 

65. D. Kurokawa et al., Mech. Dev. 80, 41 (1999). 
66. T. L. Jacobsen, K. Brennan, A. Martinez-Arias, M. A. T. 

Muskavitch, Development 125, 4531 (1998). 
67. E. Yeh, L. Zhou, N. Rudzik, G. L. Boulianne, EMBOJ. 19, 

4827 (2000). 
68. E. Yeh et al., Curr. Biol. 11, 1675 (2001). 
69. H. M. Sucov, B. R. Hough-Evans, R. J. Britten, E. H. 

Davidson, Genes Dev. 2, 1238 (1988). 
70. We are particularly grateful to E. Branscombe, who 

arranged for the U.S. Department of Energy's Joint 
Genome Institute to provide many of the BAC se- 
quences included in this work (19); the remainder 
were obtained at the Institute for Systems Biology, 
Seattle, WA. We thank E. Rothenberg of Caltech for 
perspicacious and very helpful comments on the 
manuscript. The major embryological aspects of this 
work were supported by grants from NIH (HD-37105 
and RR-06591); the computational aspects were sup- 
ported by a grant from NIH (GM-61005); the com- 
parative aspects were supported by a grant from the 
NASA/Ames Fundamental Space Biology program 
(NAG2-1368); the arrayed cDNA and BAC libraries on 
which the project depended were produced with the 
support of a grant from NIH (RR-15044); and the 
work on the brachyury gene was supported by a 
Human Frontiers grant (RG0290) to R.A.C. Other 
support was provided by the Lucille P. Markey Char- 
itable Trust, the Stowers Institute for Medical Re- 
search, the Beckman Institute of Caltech, and a grant 
from NSF (IBN99882875) to R.A.C. 

Modeling the Heart-from Genes to Cells 

to the Whole Organ 
Denis Noble 

Modeling the Heart-from Genes to Cells 

to the Whole Organ 
Denis Noble 

Successful physiological analysis requires an understanding of the functional 
interactions between the key components of cells, organs, and systems, as 
well as how these interactions change in disease states. This information 
resides neither in the genome nor even in the individual proteins that genes 
code for. It lies at the level of protein interactions within the context of 
subcellular, cellular, tissue, organ, and system structures. There is therefore no 
alternative to copying nature and computing these interactions to determine 
the logic of healthy and diseased states. The rapid growth in biological 
databases; models of cells, tissues, and organs; and the development of 
powerful computing hardware and algorithms have made it possible to 
explore functionality in a quantitative manner all the way from the level of 
genes to the physiological function of whole organs and regulatory systems. 
This review illustrates this development in the case of the heart. Systems 
physiology of the 21st century is set to become highly quantitative and, 
therefore, one of the most computer-intensive disciplines. 

The amount of biological data generated over "parts" and the structures they form in detail. 
the past decade by new technologies has But there is as yet no "user's guide" describ- 
completely overwhelmed our ability to un- ing how these parts are put together to allow 
derstand it. Genomics has provided us with a those interactions that sustain life or cause 
massive "parts catalog" for the human body; disease. In many cases, the cellular, organ, 
proteomics seeks to define these individual and system functions of genes and proteins 
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are unknown, although clues often come 
from similarity in the gene sequences. More- 
over, even when we understand function at 
the protein level, successful intervention, for 
example, in drug therapy, depends on know- 
ing how a protein behaves in context, as it 
interacts with the rest of the relevant cellular 
machinery to generate function at a higher 
level. Without this integrative knowledge, we 
may not even know in which disease states a 
receptor, enzyme, or transporter is relevant, 
and we will certainly encounter side effects 
that are unpredictable from molecular infor- 
mation alone. 

Inspecting genome databases alone will 
not get us very far in addressing these prob- 
lems. The reason is simple. Genes code for 
protein sequences. They do not explicitly 
code for the interactions between proteins 
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and other cell molecules and organelles that 
generate function. Nor do they indicate which 
proteins are on the critical path for supporting 
cell and organelle function in health and dis- 
ease. Much of the logic of the interactions in 
living systems is implicit. Wherever possible, 
nature leaves that to the chemical properties 
of the molecules themselves and to the ex- 
ceedingly complex way in which these prop- 
erties have been exploited during evolution. 
It is as though the function of the genetic 
code, viewed as a program, is to build the 
components of a computer, which then self- 
assembles to run programs about which the 
genetic code knows nothing, although pro- 
teomics can show us some aspects of the 
grouping and interaction of proteins (1). Syd- 
ney Brenner (2) expressed this very effective- 
ly when he wrote: "Genes can only specify 
the properties of the proteins they code for, 
and any integrative properties of the system 
must be 'computed' by their interactions." 
Brenner meant not only that biological sys- 
tems themselves "compute" these interac- 
tions but also that, in order to understand 
them, we need to compute them, and he 
concluded, "this provides a framework for 
analysis by simulation." In this review, I 
describe how far we have advanced in using 
simulation to understand these interactions in 
the case of the heart. 

Cellular Models of the Heart 
Models of heart cells have become highly 
sophisticated and have benefited from four 
decades of iterative interaction between ex- 
perimental and simulation work (3). Models 
of all the main types of cardiac myocyte exist 
(in many cases there are multiple models of 
the same cell type), and we are now able to 
represent the variations in the expression of 
particular genes, for example, across the ven- 
tricular wall (4), between the center and pe- 
riphery of the sinoatrial node (5), and within 
the atrium (6). These variations are of funda- 
mental importance in understanding global 
phenomena such as the electrocardiogram 
(ECG, see Fig. 1), and for analyzing the way 
in which cardiac rhythm is generated. They 
are also fundamental to understanding dis- 
ease states, some of which, like heart failure 
(7), can be characterized by alterations in 
gene expression profiles. 

Linking to Genetics 
An important strength of models based on 
reconstructing the functional properties of 
proteins is that it is possible for the models to 
reach down to the genetic level, for example, 
by reconstructing the effects of particular mu- 
tations when these are characterized by 
changes in protein function. An example of 
this approach is the use of multistate 
(Markov) models of the cardiac sodium chan- 
nel (8) in which models of the wild-type and 

of a mutant sodium channel were formulated 
and validated. The simulated mutation was 
the AKPQ mutation, a three-amino acid (ly- 
sine-proline-glutamine) deletion that affects 
the channel inactivation and is associated 
with a congenital form of the long-QT syn- 
drome, LQT3. The simulations showed that 
mutant channel reopenings from the inacti- 
vated state and channel bursting due to a 
transient failure of inactivation generate a 
persistent inward sodium current during the 
action potential plateau in the mutant cell. 
This causes major prolongation of repolariza- 
tion and the development of arrhythmogenic 
early afterdepolarizations at slow pacing 
rates, a behavior that is consistent with the 
clinical presentation of bradycardia-related 
arrhythmogenic episodes during sleep or re- 
laxation in LQT3 patients. 

Another sodium-channel mutation that 
has been, at least partially, reconstructed is a 
missense mutation that affects the voltage 
dependence of sodium-channel inactivation; 
it is responsible for one form of idiopathic 
ventricular fibrillation [the Brugada syn- 
drome (9)]. In this case, small shifts of the 
voltage dependence of inactivation generate 
early afterdepolarizations that may underlie 
fatal arrhythmia (10). 

Early afterdepolarizations are also respon- 
sible for the arrhythmias of congestive heart 
failure. This process can be modeled on the 
basis of experimentally determined changes 
in gene expression for several of the trans- 
porter proteins involved (7). 

These examples highlight the ability of 
cellular models to reconstruct the arrhythmo- 
genic consequences of genetic and ion-chan- 
nel abnormalities either of behavior or of 

expression levels. Given the present explo- 
sion of genetic information, such studies will 
continue to be at the forefront of modeling 
efforts in the next decade. Connecting the 
genome to physiology is one of the exciting 
prospects for computational biology. 

Counterintuitive Predictions 

Characteristically, the results of modeling 
complex systems are frequently counterintui- 
tive. This occurs because, beyond a certain 
degree of complexity, armchair (qualitative) 
thinking is not only inadequate for under- 
standing such systems, it can even be mis- 
leading. A good example of this comes from 
the extension of cellular models to include 
some of the biochemical changes that occur 
during ischemia (11). This work succeeds in 
reconstructing arrhythmias attributable to de- 
layed afterdepolarizations that arise as a con- 
sequence of intracellular calcium oscillations 
in conditions in which intracellular concen- 
trations of sodium and calcium become ex- 
cessive. These oscillations generate an in- 
ward current carried by the sodium-calcium 
exchanger that can lead to premature excita- 
tion of the cell. This work has led to coun- 
terintuitive predictions concerning up- and 
down-regulation of sodium-calcium ex- 
change in disease states involving metabolic 
damage, such as cardiac ischemia (12). This 
transporter is currently a focus of antiarrhyth- 
mia drug therapy. Simulation is playing an 
important role in clarifying and assessing the 
mechanism of action of such drugs, by un- 
raveling the complex changes that occur as a 
consequence of the change in transporter 
activity. 

Another area in which modeling has been 

Fig. 1. Reconstruction of cardiac ventricular transmural action potential shapes attributable to 
variations in gene expression levels and the insertion of these cellular models into a 3D model of 
the ventricular wall capable of reproducing the T wave of the ECG. Left, supercomputer recon- 
struction of electrical field (color coded) when ventricular wall wedge is inserted into a conducting 
medium. Middle, in silico models of endocardial, mid-myocardial (M cell) and epicardial cells 
together with the reconstructed ECG obtained from the wedge model. Right, Experimental 
recordings of dog ventricle (34, 35). The in silico records (left and middle) are from the CardioPrism 
cardiac safety assessment program of Physiome Sciences, Inc. (36). 
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Fig. 2. Spread of the 
electrical activation 
wavefront in an ana- 
tomically detailed car- 
diac model (21). Earli- 
est activation occurs at 
the left ventricular en- 
docardial surface near 
the apex (left). Activa- 
tion then spreads in 
endocardial-to-epicar- 
dial direction (out- 
ward) and from apex 
towards the base of the heart (upward, middle frames). The activation sequence is strongly influenced by the fibrous-sheet architecture of the myocardium, 
as illustrated by the nonuniform transmission of excitation. Red, activation wavefront; blue, endocardial surface. 

rich in counterintuitive results is that of 
mechano-electric feedback, in which the con- 
traction of the heart influences its electrical 
properties. This feedback mechanism has 
been unraveled in elegant experimental and 
computational work (13). Some of the results, 
particularly on the actions of changes in cell 
volume (which are important in many disease 
states) are unexpected and have been respon- 
sible for determining the next stage in exper- 
imental work. Indeed, it is hard to see how 
such unraveling of complex physiological 
processes can occur without the iterative in- 
teraction between experiment and simulation. 

Assessing and predicting drug actions. 
Drugs act on proteins such as receptors, chan- 
nels, transporters, and enzymes. Models that 
simulate effects of perturbing protein struc- 
ture and function are therefore highly rele- 
vant to assessing and predicting drug actions. 
Simulations have already been used in assess- 
ing drug action by the U.S. Food and Drug 
Administration, and we can expect use of 
such biological models to increase greatly as 
their complexity and power grows (14, 15). 
One obvious use in the case of the heart is in 
assessing the cardiac safety of drugs. It 
should be noted that half the drug withdraw- 
als that have occurred since 1998 in the USA 
when drugs have come on the market have 
been attributable to cardiac side effects, often 
in the form of effects on the ECG and con- 
sequent arrhythmias. This is a large and very 
expensive form of attrition. Because virtually 
all the ion transporters involved in cardiac 
repolarization are now modeled and because 
very realistic simulations of the T wave of the 
ECG can be obtained when these models are 
incorporated into three-dimensional (3D) car- 
diac tissue models, it is clearly becoming 
possible to use in silico screens for drug 
development. One of the reasons that this is 
necessary is that the ECG is, unfortunately, 
an unreliable indicator of potential arrhyth- 
mogenicity. Similar changes in form of the 
QT interval and T waveform can be induced 
by very different molecular and cellular ef- 
fects, some benign, others dangerous. We 
need to understand and predict the mecha- 
nisms all the way from individual channel 
properties through to the ECG. This goal is 

within reach, particularly as we acquire more 
experience of the incorporation of accurate 
cellular models into anatomically detailed or- 
gan models (see below). 

Another use of simulation in drug discov- 
ery is screening drugs for multiple actions. 
Very few drugs that act on the heart bind to 
just one receptor. It is much more common 
for two, three, or even more receptors or 
channels to be affected. This is particularly 
true for drugs that act on the sodium-calcium 
exchanger (16). An important point to realize 
here is that multisite action may actually be 
beneficial. Many multireceptor drug actions 
are expected to be beneficial. I predict that 
this will be one of the ways in which more 
rational discovery of antiarrhythmic drugs 
may occur. In regulating cardiac function, 
nature has developed many multiple-action 
processes, particularly those regulated by G 
protein-coupled receptors. In seeking more 
"natural" ways of intervening in disease 
states, we should also be seeking to play the 
orchestra of proteins in more subtle ways. We 
need simulation to guide us through the com- 
plexity and to understand multiple action 
functionality. 

Incorporation of cellular models into 
whole-organ models. There has been consid- 
erable debate over the best strategy for bio- 
logical simulation, whether it should be "bot- 
tom-up," "top-down" or some combination of 
the two [see discussions in (17, 18)]. The 
consensus is that it should be "middle-out," 
meaning that we start modeling at the level(s) 
at which there are rich biological data and 
then reach up and down to other levels. In the 
case of the heart, we have benefited from the 
fact that, in addition to the data-rich cellular 
level, there has also been data-rich modeling 
of the 3D geometry of the whole organ (19, 
20). Connecting these two levels has been an 
exciting venture (21, 22). Anatomically de- 
tailed models of the ventricles, including fi- 
ber orientations and sheet structure, have 
been used to incorporate the cellular models 
in an attempt to reconstruct the electrical and 
mechanical behavior of the whole organ. 

Still pictures from a simulation in which 
the spread of the activation wavefront is re- 
constructed are shown in Fig. 2. This is 

heavily influenced by cardiac ultrastructure, 
with preferential conduction along the fiber- 
sheet axes, and the result corresponds well 
with that obtained from multielectrode re- 
cording from dog hearts in situ. I referred 
earlier (Fig. 1) to work that reconstructs the 
later phases of the ECG using detailed recon- 
struction of the dispersion of repolarization. 
Accurate reconstruction of the depolarization 
wavefront promises to provide reconstruction 
of the ECG during the early phases of ven- 
tricular excitation, i.e., the QRS complex, and 
as the sinus node, atrium, and conducting 
system are incorporated into this whole heart, 
we can look forward to the first example of 
reconstruction of a complete physiological 
process from the level of protein function 
right up to routine clinical observation. The 
whole ventricular model has already been 
incorporated into a virtual torso (23), includ- 
ing the electrical conducting properties of the 
different tissues, to extend the external field 
computations to reconstruction of multiple- 
lead chest and limb recording. 

Blood flow and the coronary circulation. 
Blood flow within the chambers of the heart, 
including the movement of valves, has been 
elegantly modeled by McQueen and Peskin 
(24) and this has been extended to the study 
of diastolic mechanical function (25). Blood 
flow within the coronary circulation has also 
been modeled (26). 

Ischemic heart disease is a major cause of 
serious incapacity and mortality. It is also a 
good example of the multifactorial character 
of most disease states. Very few diseases are 
attributable to a single gene or protein mal- 
function. As noted above, cellular reconstruc- 
tions of the metabolic and electrophysiologi- 
cal processes that occur following depriva- 
tion of the energy supply to cardiac cells have 
already advanced to the point at which some 
arrhythmic mechanisms can be reproduced. 
The initiating process in such energy depri- 
vation is restriction or block of coronary ar- 
teries. This is another example where model- 
ing at different data-rich levels is holding out 
the prospect of very exciting integration of 
function. Some of the spectacular modeling 
of the coronary circulation are shown in Fig. 
3 (26). These are stills from a simulation in 
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Fig. 3. Flow calcula- 
tions coupled to the 
deforming myocardi- 
um. The color coding 
represents transmural 
pressure acting on the 
coronary vessels from 
the myocardial stress 
(dark blue, zero pres- 
sure, red, peak pres- 
sure). The deformation 
states are (from left to 
right) zero pressure, 
end-diastole, early systole, and late systole (26). 

Fig. 4. Left, the coronary cir- 
culation model shown in Fig. 3 
has been subjected to a con- 
striction of one of the main 
branches leading to blocked 
blood flow in the regions col- 
ored blue. Right, simulation of 
ectopic beats in a Purkinje fi- 
ber model in conditions of cal- 
cium overload of the kind that 
occurs in ischemic tissue. Os- 
cillatory calcium changes (bot- 
tom) induce inward sodium- 
calcium exchange current 
(middle) leading to initiation 
of action potentials (above). 
Linking these two levels of 
modeling to create a complete 
model of coronary heart at- 
tack is one of the grand chal- 
lenges requiring massive com- 
puter power. [Top panel kindly potis 
provided by N. Smith. Bottom - o 
panel specially prepared for u \ 
this review using the Di- \ 
Francesco-Noble 1985 Purkin- \ 
je fiber model (37) as follows. 0 \ 
To simulate sodium/calcium \ 
overload, [Na]. was increased g \ 
from 8 to 12 mM. The first - ? c 

action potential is evoked by a c\ Nxc 
current pulse. The second two \ 
are initiated by calcium oscil- \ 
lations. Note that the rise in 
[Ca]i and the flow of inward -0 
Na-Ca exchange current occur 
before the depolarization.] - 

which the blood flow through an anatomical- 
ly detailed model of the coronary circulation 
is computed while the ventricles are beating. 
The simulation, therefore, also included the 
deformation that occurs as mechanical events 
influence blood flow. 

This model has already been used to 
investigate the changes in blood flow that 
occur following constriction or blockage of 
one of the main arterial branches, and work 
is in progress to connect this to the model- 
ing of ischemia at the cell and tissue level 
(see Fig. 4). If we can also connect the cel- 
lular mechanisms of arrhythmia to the pro- 
cesses by which regular excitation breaks 
down into the multiple wavelets of ventri- 
cular fibrillation (27) then yet another "grand 

challenge" for integrative physiological com- 
putation will come within range: the full- 
scale reconstruction of a coronary heart attack. 

The term "grand challenge" is chosen 
deliberately. This kind of work requires 
massive computer power. The whole organ 
simulations described here require many 
hours of computation using supercomput- 
ers. (By contrast, the single-cell models can 
be run faster than in real time on a PC or 
laptop!) Future progress will be determined 
partly by the availability of computing ca- 
pacity. It is significant therefore that at- 
tempts to break Moore's law (computing 
power doubles every 18 months) are in 
progress, notably that of IBM's blue gene 
project (28). 

The Future: From Genome to 
Proteome to Physiome 

The computer modeling of biological systems 
is an important technique for organizing and 
integrating vast amounts of biological infor- 
mation. Although this review has focused on 
modeling of the heart, it is important to note 
that biological simulation is now being done 
for a wide range of pathways, cells, and 
systems (29). The role of in silico biology in 
medical and pharmaceutical research is likely 
to become increasingly prominent as we seek 
to exploit the data generated through rapid 
gene sequencing and proteomic mapping (1) 
through to creating the physiome (30, 31). 

However, progress will be significantly 
enhanced by enabling ever greater numbers 
of researchers to use and verify models in the 
course of their everyday experimental work 
[for simulation and experiment must go to- 
gether (3)]. It has been extremely difficult to 
transfer models between research centers, or 
to extend existing models so that more com- 
plex models can be constructed in an object- 
oriented or modular fashion. This process 
will be enhanced by the development of uni- 
form standards for representing and commu- 
nicating the content of models, and by the 
wide distribution of software tools that permit 
even nonmodelers to access, execute, and 
improve existing models. Increasingly, pub- 
lication of models is accompanied by their 
availability on Web sites. Also, the process of 
establishing standards of communication and 
languages is developing (32, 33). 

Once this is achieved, we can confident- 
ly predict an explosion in the development 
of integrated model cells, organs, and sys- 
tems. In a few years' time we shall all 
wonder how we ever managed to do with- 
out them in biological research. For drug 
development, there will certainly be a ma- 
jor change as these tools come on line and 
rapidly increase in their power. This will 
grow in a nonlinear way with the degree of 
biological detail that is incorporated. The 
number of interactions modeled increases 
much faster than the number of compo- 
nents. Biology is set to become highly 
quantitative in the 21st century. It will be- 
come a computer-intensive discipline. 
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