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sibility of culturing each and every stage of the 
life cycle of the rodent parasite P. berghei im- 
mediately opens up important new areas of in- 
vestigation in this useful model species. 
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The intracellular pathogen Legionella pneumophila subverts vesicle traffic in 
eukaryotic host ceLls to create a vacuole that supports replication. The dotlicm 
genes encode a protein secretion apparatus that L. pneumophila require for 
biogenesis of this vacuole. Here we show that L. pneumophila produce a protein 
called RaIF that functions as an exchange factor for the ADP ribosylation factor 
(ARF) family of guanosine triphosphatases (GTPases). The RaIF protein is re- 
quired for the localization of ARF on phagosomes containing L. pneumophila. 
Translocation of RaIF protein through the phagosomal membrane is a dot! 
kcm-dependent process. Thus, RaIF is a substrate of the Dot/lcm secretion 
apparatus. 

Legionella pneumophila are aquatic bacteria 
that infect and grow within protozoan hosts in 
most freshwater ecosystems (1). When these 
bacteria are inhaled by humans, L. pneumophila 
will replicate in alveolar macrophages, resulting 
in a severe pneumonia known as Legionnaires' 
disease (2, 3). Legionella pneumophila replicate 
within phagocytes by first creating a specialized 
vacuole that is similar morphologically to the 
endoplasmic reticulum (ER) of its host (4, 5). 
Biogenesis of this replicative vacuole requires 
the Dot/lcm transporter (6), which is a type IV 
protein secretion apparatus (7, 8). Pathogens 
such as Agrobacterium tumefaciens and Helico- 
bacter pylori use type IV transporters to inject 
bacterial proteins directly into the cytosol of 
eukaryotic host cells (9-11). It is thought that 
the Dot/lcm transporter is used by L. pneumo- 
phila to inject proteins into host cells in order to 
control the biogenesis of a replicative organelle 
by modulating the activity of host factors in- 
volved in vesicle traffic. However, genetic 
screens that have been successful in isolating 
virulence determinants required for growth of L. 
pneumophila in host cells, including the genes 
encoding the Dot/Icm secretion apparatus, have 
not revealed any injected proteins (7, 8, 12, 13). 

The host protein ADP ribosylation factor-I 
(ARFI) is found on phagosomes containing 
wild-type L. pneumophila but is not localized to 
phagosomes containing L. pneumophila dotlicm 
mutants (14). ARFI is a highly conserved small 
GTP-binding protein that acts as a key regulator 
of vesicle traffic from the ER and Golgi [re- 
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viewed in (15)]. Because ARFI localization on 
phagosomes containing L. pneumophila re- 
quires the Dot/lcm transporter, an injected bac- 
terial protein may be required for ARFI recruit- 
ment. To find proteins that are injected into host 
cells by the Dot/lcm transporter, we focused on 
bacterial gene products that may play a direct 
role in localization of ARFI to phagosomes 
containing L. pneumophila. Because the associ- 
ation of cytosolic ARF onto vesicle membranes 
is coincident with GTP activation, we searched 
the genome of L. pneumophila for proteins that 
had homology to ARF-specific guanine nucleo- 
tide exchange factors (GEFs) (16). 

We identified a L. pneumophila gene that 
encodes a 374 amino acid protein with a Sec7- 
homology domain (Fig. IA) (17). Sec7-homol- 
ogy domains are found in a diverse family of 
eukaryotic ARF-GEFs and are sufficient to 
stimulate the exchange of GDP for GTP [re- 
viewed in (18)]. This L. pneumophila gene was 
called ralF. A gene from the intracellular patho- 
gen Rickettsia prowazekii (19) that is predicted 
to encode a protein that has 42% identity to the 
full-length RalF protein was identified using the 
RalF protein sequence as a BLASTP query 
(Fig. IA). Currently, the RalF protein and this 
R. prowazekii protein are the only two prokary- 
otic gene products known to contain a Sec7- 
homology domain. 

The RalF protein was detected (20) in 
wild-type L. pneumophila (Fig. IB, LpOl) 
and in an isogenic mutant that has a defective 
Dot/lcm transporter (Fig. IB, LpOl AdotA) 
but was not detected after the ralF gene was 
deleted from the L. pneumophila chromo- 
some (Fig. IB, LpOl AralF). The RalF pro- 
tein was also produced by L. pneumophila 
Philadelphila-I (Fig. IB, Lp philadelphia-1), 
which is a clinical isolate obtained from the 
first documented L. pneumophila disease out- 
break (3). These data demonstrate that a pro- 
tein containing a Sec7-homology domain is 
produced by L. pneumophila. 
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Fig. 1. Legionella pneumophila produce A 
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ysis with the use of an antibody specific for the RalF protein. The RalF protein was B D 1.2 

produced by a laboratory strain of L. pneumophila (LpOl), an isogenic mutant defective B C D 
in the Dot/lcm transporter (LpOl AdotA), and a clinical isolate of L. pneumophila (Lp _ LpO1 a 1.0 

philadelphia-1). The RalF protein was not detected in a mutant strain that had the ralF s 0.8 a 

gene deleted (LpOl AraIF). (C) Legionella pneumophila growing logarithmically and in a, < 

stationary phase were isolated. Whole cell lysates were prepared, and cellular levels of b U D 
a . 

the RalF protein were determined by immunoblot analysis (36). (D) Total RNA was _ E 0.4 
extracted from L. pneumophila cultures in logarithmic and stationary phase. The level ?Q ? Q CD c 
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of ralF mRNA was measured by quantitative slot blot hybridization (36). RaIF * 0.0 
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Fig. 2. The RaIF protein is a guanine nucleotide ex- A ARFl-GFP x L. pneumophila Merge 
change factor that recruits ARF1 to phagosomes con- 
taining L. pneumophila. (A) Mouse bone marrow- 
derived macrophages expressing ARF1-GFP were in- 
fected with wild-type L. pneumophila (LpOl) and an 
isogenic mutant that has the gene encoding RaIF LpOl 
deleted (AraIF). Macrophages were fixed 1 hour after 
infection. Bacteria were stained with antibody to L. 
pneumophila and secondary antibody labeled with 
Texas Red. Stacked confocal images show that ARFl- 
GFP is found on phagosomes containing wild-type L. 
pneumophila but is not located on phagosomes con- 
taining the AralF mutant. Bar, 5 R,m. (B) Localization 
of ARF1-GFP was measured for phagosomes contain- 
ing wild-type L. pneumophila (LpOl), mutants defec- 
tive in Dot/lcm transporter function (AdotA), and ralF AralF 
mutants (AraIF). The proportion of phagosomes that 
stain positive for ARF1-GFP at 60 and 120 min after 
infection is shown for each strain of L. pneumophila. 
Results are the average of two independent experi- 
ments in which at least 50 phagosomes were scored. 
The numbers obtained in each experiment varied by 50 0.7 
less than 20%. (C) ARF guanine nucleotide exchange activity of the GST-RalF B 0.6 
protein was determined with the use of myristoylated ARF3. Exchange activity 40 < RaIF+ARF3 
is presented as the stoichiometry of [35S]GTPyS bound to ARF3 (1 R,M) after a Z oC -a 0.5 - 

0 10-min incubation with varying concentrations of GST-RalF (RalF + ARF3). The 0 30 0.4 - 
minimal Sec7 homology domain from Saccharomyces cerevisiae Sec7p was used a * 0.3 
as a positive control (ySec7 domain + ARF3), and reactions containing GST-RalF Ly 20 0 
without ARF3 served as a negative control (RalF). 0.2 ySec7+ARF3 

1 0 
0-'. 

< RaIF 
00. 

60 120 0 1 2 3 4 5 6 
Time after infection (min) (exchange factor ] (gM) 

It has been hypothesized that proteins inject- 
ed into host cells by the Dot/Icm apparatus are 
up-regulated as exponentially growing bacteria 

enter stationary phase (21). Immunoblot analy- 
sis showed that the cellular concentration of the 
RalF protein is greater in stationary phase bac- 

teria than in bacteria growing exponentially 
(Fig. 1C). To examine whether the ralF gene is 
growth-phase regulated, mRNA levels from 
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Fig. 3. The RaIF protein is a substrate translocated into host cells by the Dot/lcm transporter. (A) Mouse 
bone marrow-derived macrophages expressing ARF1-GFP were infected with wild-type L. pneumophila 
and fixed 1 hour after uptake. Localization of the RaIF protein was visualized by staining with an 
affinity-purified antibody specific for RalF and a secondary antibody conjugated to Cy5. DNA was 
stained with propidium iodide, which labels both the macrophage nucleus and bacterial cells. A 
projection of stacked confocal images shows that RalF (blue) and ARF1-GFP (green) co-localize on 
phagosomes containing L. pneumophila (red). Bar, 5 ,um. (B) Intracellular growth of L. pneumophila 
strain LpOl (closed circles) and the isogenic ralF mutant (open circles) was measured in eukaryotic host 
cells. The intracellular growth kinetics of these L. pneumophila strains were determined in mouse bone 
marrow-derived macrophages, the human macrophage-like cell line U937, and the protozoan host A. 
castellanii. Graphs show colony-forming units ? standard deviation of each strain recovered from 
infected host cells over 48 hours. (C) Southern analysis indicates that the ralF gene is present in most 
serogroups of L. pneumophila but is not detected in other Legionella species examined, which included 
isolates of L. micdadei (Lm), L. bozemanii (Lb), L. gratiana (Lg), and L. longbeachae (LI). The strains of 
Legionella examined were obtained either as clinical specimens from infected patients (C) or were 
isolated from environmental sources (E). Blue type is used to highlight the ralF deletion mutant 
constructed in this study (LpOl AraIF) and serogroup 2 strain of L. pneumophila (ATCC 33154) lacking 
the ralF gene is highlighted with red type. The film in the far right panel was exposed longer (12 hours) 
than films in the left and middle paneLs (4 hours). 

bacteria in exponential and stationary phase 
were measured by slot-blot hybridization 
(Fig. 1D). There was a threefold increase in 
ralF expression as exponentially growing 
bacteria enter stationary phase. Thus, the RalF 
protein has an expression profile predicted for 
proteins injected into host cells by the Dot/ 
lcm transporter. 

To investigate the in vivo role of the RalF 
protein, the recruitment of ARF1 to phago- 

somes containing L. pneumophila was exam- 
ined (22). ARF1-GFP co-localization was ob- 
served on phagosomes containing wild-type 
L. pneumophila but was not detected on 
phagosomes containing AdotA mutants of L. 
pneumophila (Fig. 2, A and B). ARF1-GFP 
was not observed on phagosomes containing 
AralF mutants, indicating that this protein 
facilitates localization of ARF1 to phago- 
somes containing L. pneumophila. Thus, 

RalF protein and the Dot/Icm transporter are 
both required for the recruitment of ARF to 
the Legionella phagosome accounting for the 
acronym RALF. 

It was predicted that the RalF protein could 
function as an ARF-GEF by virtue of its Sec7- 
homology domain. The six mammalian ARFs 
fall into three classes that have overlapping 
functions in regulating vesicle transport (15). 
Guanine nucleotide exchange assays (23) re- 
vealed that RalF was active on ARF1 and 
ARF3, which are class I proteins (Fig. 2C) (24). 
RalF was also active on the class III protein 
ARF6, but was less active on the class II protein 
ARF5 (24). These data are consistent with pre- 
vious studies of eukaryotic proteins containing 
Sec7-homology domains, which often have 
guanine nucleotide exchange activity for more 
than one ARF protein family member (18). 
Thus, the RalF protein from L. pneumophila 
functions as an exchange factor that activates 
members of the ARF protein family. 

To interact with ARF and to activate it 
directly, the RalF protein must be translocated 
out of the bacterium and across the phagosome 
membrane. Because bacteria use type IV trans- 
porters to inject proteins into foreign cells and 
because dot/lim mutants of L. pneumophila are 
unable to recruit ARF to their phagosomes, we 
predicted that the Dot/Icm apparatus was nec- 
essary for RalF export during host cell infec- 
tion. This hypothesis was tested by immunoflu- 
orescent staining of L. pneumophila phago- 
somes with an affinity-purified antibody specif- 
ic for the RalF protein (25). Co-localization of 
RalF and ARF1-GFP was apparent on phago- 
somes containing wild-type L. pneumophila 
(Fig. 3A). When RalF staining on L. pneumo- 
phila phagosomes was measured 30 min after 
internalization, we found that 38 ? 5.5% of 
phagosomes containing wild-type L. pneumo- 
phila stained positive for RalF (24). Specific 
staining with the RalF antibody was not ob- 
served on phagosomes containing AdotA mu- 
tants (2.0 ? 1.4%) or on phagosomes contain- 
ing AralF mutants (3.7 ? 3.6%). Thus, local- 
ization of RalF protein on phagosomes contain- 
ing L. pneumophila requires a functional Dot/ 
Icm transporter, which indicates that RalF is 
translocated into eukaryotic host cells by the 
Dot/lcm transporter. There are no obvious rea- 
sons why RalF protein staining remains local- 
ized to phagosomes containing L. pneumophila. 
Transmembrane or membrane interaction do- 
mains are not apparent in the RalF protein 
sequence. This may mean that RalF interacts 
with another protein or a lipid on the phago- 
some membrane or perhaps RalF is rapidly 
degraded in the host cytoplasm. 

We were interested in whether L. pneu- 
mophila require RalF for replication inside 
eukaryotic cells. Growth of wild-type L. 
pneumophila and an isogenic AralF mutant 
was measured in murine bone marrow-de- 
rived macrophages (26), in the human mac- 
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rophage-like cell line U937 (27), and in the 
protozoan host Acanthamoeba castellanii 
(28). There was no intracellular growth defect 
observed for the AralF mutant in these three 
eukaryotic hosts (Fig. 3B). Thus, the RalF 
protein is not required for growth of L. pneu- 
mophila within these hosts, which explains 
why ralF had not been isolated previously in 
genetic screens for L. pneumophila intracel- 
lular growth mutants. 

The high degree of sequence identity be- 
tween the Sec7-homology domains in RalF and 
eukaryotic ARF-GEFs in addition to the obser- 
vation that proteins with Sec7-homology do- 
mains have been found in only two prokaryotic 
organisms suggests that horizontal gene transfer 
of a eukaryotic gene gave rise to the ralF gene. 
If ralF were acquired recently by horizontal 
gene transfer, it might not be present in all L. 
pneumophila serogroups or in other Legionella 
species. To address this question, genomic 
DNA from several L. pneumophila serogroups 
was analyzed by Southern hybridization to de- 
termine the genetic distribution of ralF (29). 
The ralF gene was present in all L. pneumo- 
phila serogroups with the exception of the 
American Type Culture Collection (ATCC) L. 
pneumophila serogroup 2 strain #33154 (Fig. 
3C, red type). The ralF gene was not detected 
in any other species of Legionella examined. 
However, the dotA gene was detected in these 
other species (24) and we have shown previ- 
ously that the IcmX protein is produced by 
these bacteria (30), which means these species 
of Legionella have essential components of the 
Dot/Icm transporter but do not have the ralF 
gene. Although a gene similar to ralF is found 
in R. prowazekii, comparative genomic analysis 
indicates that there are no gene products con- 
taining a Sec7-homology domain in the related 
species R. conorii (31). Thus, the ralF gene was 
most likely acquired by L. pneumophila and R. 
prowazekii after speciation occurred within 
each genus. 

Legionella pneumophila are found ubiqui- 
tously in freshwater environments where they 
parasitize protozoan hosts (1). It is reasonable 
to assume that natural conditions exist where L. 
pneumophila containing the ralF gene have a 
selective advantage. For instance, ralF may 
allow L. pneumophila to infect protozoan hosts 
that restrict the growth of Legionella lacking 
ralF, or perhaps ralF enables L. pneumophila 
to infect permissive protozoan host cells more 
efficiently during periods of environmental 
stress. There are over 35 different species of 
Legionella, yet most large outbreaks of com- 
munity-acquired Legionnaires' disease world- 
wide are caused by L. pneumophila (32). This 
raises the question of whether acquisition of 
ralF makes L. pneumophila a more virulent 
human pathogen compared with the other Le- 
gionella species that are missing ralF. It is 
likely that genes acquired recently encoding 
proteins that are secreted by the Dot/Icm trans- 

porter may not only enhance replication of Le- 
gionella in new environments but could coin- 
cidentally increase virulence of those Legio- 
nella for humans. For example, a newly ac- 
quired substrate of the Dot/Icm transporter may 
allow L. pneumophila to evade host immune 
responses more effectively or permit replication 
of L. pneumophila in human cells that are not 
permissive for bacteria which lack this protein. 
Identifying and characterizing additional sub- 
strates of the Dot/Icm transporter, in combina- 
tion with a comparative analysis of Legionella 
genomes, will provide valuable information on 
how an environmental organism has become a 
human pathogen. 
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