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shown by cholinergic brain tracts may be due 
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Dynamics and Constancy in 

Cortical Spatiotemporal Patterns 

of Orientation Processing 
Dahlia Sharon* and Amiram Grinvald 

How does the high selectivity to stimulus orientation emerge in the visual 
cortex? Thalamic feedforward-dominated models of orientation selectivity 
predict constant selectivity during the visual response, whereas intracortical 
recurrent models predict dynamic improvement in selectivity. We imaged the 
cat visual cortex with voltage-sensitive dyes to measure orientation-tuning 
dynamics of a large neuronal population. Tuning-curve width did not narrow 
after response onset, whereas the difference between preferred and orthogonal 
responses (modulation depth) first increased, then declined. We identified a 
suppression of the evoked responses, referred to as the evoked deceleration- 
acceleration (DA) notch, which was larger for the orthogonal response. Fur- 
thermore, peak selectivity of the tuning curves was contemporaneous with the 
evoked DA notch. These findings suggest that in the cat brain, sustained visual 
cortical processing does not narrow orientation tuning; rather, intracortical 
interactions may amplify modulation depth and suppress the orthogonal re- 
sponse relatively more than the preferred. Thus, feedforward models and re- 
current models of orientation selectivity must be combined. 
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Visual cortical neurons are highly selective 
for the orientation of stimuli presented within 
their receptive field (1), a property not shared 
by their thalamic inputs (2). How orientation 
selectivity arises in the cortex is still debated. 
Previous experiments (3-10) have suggested 
mechanisms that include feedforward (thal- 
amically dominated) (1, 11) and recurrent 
(intracortically dominated) (12-15) models. 
The input impinging on orientation-selective 
neurons has constant selectivity in feedfor- 
ward models, whereas recurrent models pre- 
dict improvement in selectivity during the 
visual response. Although single-unit meth- 
odologies excel at determining the properties 
of individual neurons, these properties are 
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highly variable, making it extraordinarily dif- 
ficult to obtain large samples on which to 
base estimates of neuronal population behav- 
ior. In optical imaging with voltage-sensitive 
dyes (16), the recorded signal accurately rep- 
resents membrane-potential changes at the 
neuronal population level (17, 18), emphasiz- 
ing synaptic potentials in the dendritic tufts of 
cortical neurons from superficial and deep 
layers. Recently, this method has been im- 
proved substantially, enabling in vivo imag- 
ing of cortical neuronal population activity 
with millisecond temporal resolution and spa- 
tial resolution of 50 to 100 p.m (19). We there- 
fore used optical imaging to explore the dynam- 
ics of orientation selectivity (9, 20-22). 

We imaged the responses of area 18 in the 
cat visual cortex to high-contrast square- 
wave gratings of six different orientations 
(23). We examined the recording period start- 
ing 50 ms before stimulus onset and lasting 
300 ms (thus avoiding late intrinsic signal 
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artifacts). Figure 1A shows the evoked re- 
sponse (24) to 150? gratings at a sampling 
rate of 9.6 ms per frame: the time series of 
single-condition responses (25), normalized 
to activity recorded during presentation of a 
blank screen. At 36 ms after stimulus onset, a 
brightening began (the dye fluorescence in- 
creased in response to depolarization) across 
the entire imaged area rather than only in the 
preferred orientation patches. Thus, this 
brightening signal had both an orientation- 
nonselective component and an orientation- 
selective component (Fig. 1, A and B). 

We examined the orientation-selective re- 
sponse by fitting a Gaussian to the tuning 
curve (26) at every point in time (27), as 
exemplified in Fig. 1C for the data frame at 
65 ms, for pixels within the delineated re- 

I 

REPORTS 

gions.of Fig. 1A (rightmost frame). Preferred 
orientation is obtained from the peak angle of 
the Gaussian. Selectivity is determined by 
three additional independent attributes of the 
tuning curve, obtained from the Gaussian fit 
(27): half width at half height (HWHH), 
modulation depth (MD, preferred - orthogo- 
nal), and nonselective component (NSC). We 
combined these attributes into a single selec- 
tivity index (28). 

We analyzed preferred orientation, ob- 
tained from pixel-by-pixel Gaussian fitting 
(26, 27) from the same hemisphere shown in 
Fig. 1. Figure 2A shows a sequence of polar 
maps (29) in which preferred orientation and 
MD are represented by color and brightness, 
respectively. After the map emerged at 36 
ms, its strength increased until 74 ms. Before 

Fig; 1. Voltage-sensitive dye-imaging of the evoked- - .... 
response dynamics. (A) Time series of single-condi- 0.8 
tion maps: raw (unfiltered) response to a 150? grat- I 

ing stimulus, normalized to activity during the pre- 
. 

I .. , 
* 

sentation of a blank isoluminant screen. Time (in / ^ I 
milliseconds after stimulus onset) is indicated at the LL ' C i 
top right, with the orientation of the grating stim- i : NSCI 
ulus. The sampling rate is 9.6 ms per frame. Gray- <: 
scale values are 0 to 1.8%o (parts in a thousand). 
The scale bar here and in all other figures is 1 mm. . . 
(B) Pixels within the patches delineated in (A) (right- - r .... 
most frame) brighten more in response to a 150? 0 100 200 -0 0 90 
grating (blue) than to a 60? grating (red). Thus, the Time (ms) Angle (deg) 
150? stimulus is preferred by neurons in these 
patches. They axis is the fractional response (AF/F, %o) (the brightness of pixels relative to the 
resting fluoresence level). The two dots highlight the evoked DA notch (see text). (C) 
Orientation tuning curve, for the pixels delineated in (A) (rightmost frame), at the time marked 
by the two dots in (B), with the best-fitting Gaussian. HWHH, MD, and NSC are marked by 
arrows. The NSC here is considerably larger than that normally reported in simple cells. 
However, the optical signal is dominated by the superficial layers, in which the more common 
neurons are complex cells. In these cells, the intracellular NSC is considerably larger than in 
simple cells-in a few cells it was up to 67%, although in others it was almost absent (39). 
Furthermore, the optical signal emphasizes activity in dendritic tufts that spread laterally, 
beyond the borders of orientation domains of neuronal somata. 

one can draw any conclusions from these 
maps, it is important first to examine their 
reproducibility by comparing two indepen- 
dent subsets of stimulus presentations. Before 
response onset, the apparent "orientation 
map" was not reproducible, whereas it 
reached near-maximal reproducibility at 46 
ms, -10 ms after response onset (18). All 
subsequent analysis was done exclusively for 
the pixels in the high-reproducibility region 
indicated by the dotted line (in Fig. 2C). 

Qualitative visual inspection of Fig. 2A 
suggested that preferred orientation at each 
cortical location was stable over time, be- 
cause the color at each pixel did not change 
appreciably between frames in the time 
sequence. This was quantified by compar- 
ing the map at each frame to a high signal- 
to-noise ratio map. Figure 2B demonstrates 
the correlation coefficient between pre- 
ferred orientation in each frame and in this 
average map (Fig. 2C). As soon as the 
response was fully reproducible (46 ms, 
close to the time of the first cortical spikes) 
(18), the correlation coefficient stabilized 
at -0.8, and the change in preferred orien- 
tation between successive frames had a me- 
dian of 4.4?, well within the effect of re- 
sidual noise in the images. Having ob- 
served the same result in two additional 
hemispheres, we concluded that as soon as 
the signal was reproducible, preferred ori- 
entation was constant as a function of time. 

We next calculated the evolution in time 
of orientation selectivity for the entire popu- 
lation by Gaussian fitting of the tuning curve 
averaged over all pixels delineated in Fig. 2C, 
on a frame-by-frame basis. Figure 3A shows 
the tuning curves and their fits for a few 
frames for the same hemisphere shown in 
Figs. 1 and 2. To facilitate comparison, we 
removed the offset of the tuning curves 
(NSC) so that they all started at the same 
baseline value of 0. These tuning curves sug- 
gest that as the response develops, MD in- 
creases, but tuning width does not change 

Fig. 2. Dynamics of 
orientation maps. (A) 
Time course of the 
polar orientation map. 
Colors represent the 
preferred orientation 
of each pixel (ranging 
from 00 to 180?; bottom to top, respectively, of the color scale, on the right), and brightness 
represents the MD of each pixel's tuning curve (ranging from 0 to 0.5%o; left to right of the 
color scale). After peaking at 74 ms, map strength declines gradually to -65% of the 
maximal value, at 120 ms (not shown). (B) Temporal stability of orientation preference: 
correlation between each frame and the map averaged over a set of later, independent 
frames [shown in (C)], for pixels within the delineated region in (C). The gray line is the 99% 
confidence limit of prestimulus level, based on the 18 frames before stimulus onset 
(one-tailed t test). (C) Polar orientation map constructed by averaging over responses at 
257 to 526 ms. The high-reproducibility region is delineated. 
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appreciably. We used two different approach- 
es to assess the reliability of the Gaussian fits 
and the parameters derived from them (18). 
The response for early data points was small 
and indistinguishable from background noise 
(marked in red and orange). The first frames 
that showed highly reliable fits are marked in 
green throughout Fig. 3. For the three exper- 
iments shown in Fig. 3, a reliable fit was 
obtained already in the first or second frame 
after onset of the evoked responses (e.g., Fig. 
IB). 

Figure 3B shows the time course of 
orientation tuning width. HWHH of the 
fitted Gaussian started at 35.5? already in 
the first frame with an acceptable fit, at 36 
ms. It then widened gradually to -38? 
during about the next 60 ms. For the three 
experiments, the narrowest initial values of 
HWHH range from 33? to 36?, and late 
values range from 36? to 38?. This range is 
well within that found for the intracellular 
response averaged over hundreds of milli- 
seconds (30-33). Therefore, the measure- 
ment of tuning dynamics averaged over 
several populations of thousands of neu- 

Fig. 3. Dynamics of 
orientation selectivi- 
ty. (A) Tuning curves 
(mean ? SE) were av- 
eraged over pixels in 
the reproducible re- 
gion (Fig. 2C) for sev- 
eral frames, the times 
of which are indicated 
on the right. The 
hemisphere used was 
the same as that in 
Figs. 1 and 2. (Insets). 
Two additional exper- 
iments: the frames 
shown are the same 
as those in the main 
panel, with modifica- 
tions of frame color 
notation shown in the 
small boxes. The blue- 
and magenta-colored 
insets in (A) to (D) 
show the same two 
experiments. Frame 
color notations are 
constant for each ex- 
periment; red and or- 
ange curves mark the 
last frames before re- 
liable fits were ob- 
tained, and green 
curves mark the first 
frames with reliable 
fits. For the two ex- 
periments shown in 
the insets, the first 
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rons did not show an improvement in tun- 
ing width (narrowing) as cortical response 
continued to increase (Fig. 1B). 

Modulation depth is presented in Fig. 3C 
as the amplitude of the fitted Gaussian. It 
increased until 74 ms after stimulus onset 
(during the first 50 ms of the response), after 
which it decreased to a relatively stable level 
of -65% of maximal response during the 
course of -40 ms. This behavior was consis- 
tent in all three hemispheres, with a late MD 
of 65 to 90% of the peak value. Moreover, 
because MD is the difference between pre- 
ferred and orthogonal responses, it can be 
assessed in experiments in which only two 
orientations were presented, and these results 
were confirmed in the other 10 hemispheres 
in this study (18), in which only two stimulus 
orientations were used. Taken together, we 
concluded that MD peaked tens of millisec- 
onds after cortical response began, rather than 
at its onset. 

To evaluate overall selectivity, we deter- 
mined the selectivity index (Fig. 3D) (28). 
After response onset, selectivity increased 
and peaked at 55 ms, decaying to about one- 
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variance] (15), all exhibit an extremely similar time course to the selec 

third of its peak value at -150 ms. Because 
HWHH is fairly constant throughout the re- 
sponse (Fig. 3B), this temporal profile was 
affected mainly by the ratio between the se- 
lective component (MD) and the nonselective 
one. This normalized MD (preferred - or- 
thogonal/orthogonal) peaked at 55 to 100 ms 
over the additional 10 hemispheres in this 
study (18). 

What mechanisms are involved in cre- 
ating the peak in selectivity observed 55 to 
100 ms after response onset? One possibil- 
ity is suggested by the finding that the 
selectivity index (as well as normalized 
MD) peaked simultaneously with a small 
transient drop in the rate at which the 
evoked response increased. This decelera- 
tion and subsequent acceleration, which we 
term the evoked deceleration-acceleration 
(DA) notch, is marked by two dots in Fig. 
1B and suggests a temporary suppression: 
The response first slowed down, then sped 
up. Peak selectivity (Fig. 3D) was attained 
at the same time, at 55 ms. The evoked DA 
notch was detected in 12 of the 13 hemi- 
spheres examined. Because the evoked DA 
notch is rather small, we investigated 
whether it was present in existing in vivo 
intracellular recordings in area 18 of the cat 
visual cortex (34). Not surprisingly, we 
detected the notch in the averaged intracel- 
lular recording of the visually evoked 
response. 

Enlargements of two optically detected 
evoked DA notches are shown in the red and 
green insets of Fig. 4 [for the complete set of 
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hemispheres, see (18)]. In these 12 hemi- 
spheres, peak normalized MD (or peak selec- 
tivity index, in the two hemispheres where six 
orientations were presented) occurred within 10 
ms of the acceleration at the end of the evoked 
DA notch, with a correlation coefficient be- 
tween the two events of 0.83 (P < 0.001, 
two-tailed t test). A comparison between the 
evoked DA notch at the preferred and orthog- 
onal orientations (Fig. 4, insets) (18) showed 
that, although the magnitude of the evoked DA 
notch varied among experiments, it was always 
stronger for the orthogonal orientation than for 
the preferred. Comparison of the evoked DA 
notch index (35) at the orthogonal and preferred 
orientations is shown in Fig. 4 for the 12 hemi- 
spheres in which an evoked DA notch was 
detected. A larger notch index corresponds to a 
greater deflection of the response. Equal values 
lie on the dashed line, so in all cases the orthog- 
onal stimulus induced a larger evoked DA 
notch than the preferred stimulus (P < 0.01, 
one-tailed paired t test). Therefore, analysis of 
the evoked DA notch suggests that suppression, 
which has a stronger relative influence when 
the orthogonal orientation is presented, coin- 
cides with maximal selectivity. 

The data presented here imply that sustained 
cortical processing does not narrow tuning 
width and is not required to establish preferred 
orientation at a given cortical location (36). 
However, the dynamic time course of MD sug- 
gests that cortical interactions are involved in 
determining the amplification of the tuning 
curve; both intracortical excitation (12-14) and 
inhibition (7-11, 15, 37) may be involved. We 
identified an evoked DA notch in the evoked 
response at -50 to 80 ms, which we interpret as 
the peaking of a suppressive mechanism, simul- 
taneous with peak normalized (MD). Questions 
remain regarding the orientation selectivity of 
the underlying synaptic mechanism and wheth- 
er it results from increased inhibition or from 
withdrawal of excitation. Shunting inhibition 
has been shown to peak as early as 50 to 70 ms 
(38), and in light of evidence for the involve- 
ment of cross-orientation inhibition in orienta- 
tion selectivity (7, 10), we favor the involve- 
ment of inhibition. However, the present results 
suggest that the inhibition observed in these 
previous studies should be involved in ampli- 
fying rather than narrowing the tuning curve- 
increasing its normalized MD by preventing the 
response to the orthogonal orientation from in- 
creasing as rapidly as the response to the pre- 
ferred orientation. 
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