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Abnormal Vascular Function 

and Hypertension in Mice 

Deficient in Estrogen Receptor P 
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Oliver Smithies,4 Jan-Ake Gustafsson,2 Michael E. Mendelsohn,l* 

Blood vessels express estrogen receptors, but their role in cardiovascular phys- 
iology is not well understood. We show that vascular smooth muscle cells and 
blood vessels from estrogen receptor P (ERpI)-deficient mice exhibit multiple 
functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates 
vasoconstriction by an ERI-mediated increase in inducible nitric oxide synthase 
expression. In contrast, estrogen augments vasoconstriction in blood vessels 
from ERp-deficient mice. Vascular smooth muscle cells isolated from ER3- 
deficient mice show multiple abnormalities of ion channel function. Further- 
more, ERI-deficient mice develop sustained systolic and diastolic hypertension 
as they age. These data support an essential role for ERp in the regulation of 
vascular function and blood pressure. 
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Steroid hormones regulate a wide range of 
cellular events by activating a receptor family 
of transcription factors (1). Estrogens influ- 
ence gene expression, growth, and cellular 
differentiation in target tissues by activating 
one or both of two estrogen receptors, ERa 
and ERP (2, 3). Estrogen receptors have been 
studied intensely in female reproductive 
physiology, but functional estrogen receptors 
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are also present and physiologically impor- 
tant in other tissues of both sexes, including 
the liver, brain, bone, and the cardiovascular 
system (4). 

ERa and ERI both are expressed in vas- 
cular endothelial and smooth muscle cells, 
and in myocardial cells (5). ERI3 expression 
is induced in vascular cells following injury 
(6). Both estrogen receptors are necessary 
and sufficient for estrogen-mediated protec- 
tion against measures of vascular injury in 
mice (7, 8). Estrogen receptors also regulate 
the expression of a number of vasodilator and 
vasoconstrictor proteins, including multiple 
components of the renin-angiotensin system 
(5). An association between an ERI3 gene 
polymorphism and systemic blood pressure 
in postmenopausal Japanese women (9) is the 
only genetic data to implicate estrogen recep- 
tors in blood pressure regulation. 

Vascular tone is regulated by a complex 
set of variables that determine the contractile 
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state of vascular smooth muscle (10, 11). 
Inherited forms of hypertension have been 
shown to involve mutations in genes regulat- 
ing renal salt reabsorption (12), but the patho- 
genesis in most individuals with hypertension 
remains unknown. Both acute and longer 
term changes in vascular tone due to estrogen 
are mediated principally by nitric oxide (5, 
13-15). Endothelial-dependent vascular re- 
laxation is mediated by production of nitric 
oxide (NO) by endothelial nitric oxide syn- 
thase (eNOS) (16). Estrogen enhances pro- 
duction of NO by endothelial cells by in- 
creasing eNOS activity or expression of the 
eNOS gene, or both (17, 18). In vivo, estro- 
gen enhances vasodilatation in both primates 
and humans with normal and abnormal endo- 
thelial function (5, 19, 20). Endothelial cell- 
independent vascular contraction is mediated 
by the direct actions of contractile agonists on 
vessel wall smooth muscle cells (11). Estro- 
gen reduces vasoconstriction in vessels from 
which the endothelium has been removed 
from both humans and wild-type (WT) ani- 
mals (21, 22), an effect that is blocked by 
pharmacologic inhibition of inducible nitric 
oxide synthase (iNOS) (22). To examine the 
role of estrogen receptors in vascular physi- 
ology, the existence of an estrogen effect on 
vasoconstriction was explored in vessels 
from WT mice. 

We studied endothelial cell-independent 
vascular contraction (11, 22) in endothelium- 
denuded vascular rings from WT mice. Treat- 
ment of endothelial-denuded aortic rings 
from WT mice with 1713-estradiol (E2) for 18 
to 20 hours attenuated constriction to the 
alpha (1B)-adrenergic receptor agonist phen- 
ylephrine (PE) [decrease of 45% and 69%, 
respectively, P < 0.05 for both, (Fig. 1, A 
and B) (5, 21, 22)]. The attenuating effect of 
E2 on PE-induced constriction was partially 
reversed by treatment with the general inhib- 
itor of nitric oxide synthases, N(G)-nitro-L- 
arginine (L-NNA) (Fig. 1A), and with the 

state of vascular smooth muscle (10, 11). 
Inherited forms of hypertension have been 
shown to involve mutations in genes regulat- 
ing renal salt reabsorption (12), but the patho- 
genesis in most individuals with hypertension 
remains unknown. Both acute and longer 
term changes in vascular tone due to estrogen 
are mediated principally by nitric oxide (5, 
13-15). Endothelial-dependent vascular re- 
laxation is mediated by production of nitric 
oxide (NO) by endothelial nitric oxide syn- 
thase (eNOS) (16). Estrogen enhances pro- 
duction of NO by endothelial cells by in- 
creasing eNOS activity or expression of the 
eNOS gene, or both (17, 18). In vivo, estro- 
gen enhances vasodilatation in both primates 
and humans with normal and abnormal endo- 
thelial function (5, 19, 20). Endothelial cell- 
independent vascular contraction is mediated 
by the direct actions of contractile agonists on 
vessel wall smooth muscle cells (11). Estro- 
gen reduces vasoconstriction in vessels from 
which the endothelium has been removed 
from both humans and wild-type (WT) ani- 
mals (21, 22), an effect that is blocked by 
pharmacologic inhibition of inducible nitric 
oxide synthase (iNOS) (22). To examine the 
role of estrogen receptors in vascular physi- 
ology, the existence of an estrogen effect on 
vasoconstriction was explored in vessels 
from WT mice. 

We studied endothelial cell-independent 
vascular contraction (11, 22) in endothelium- 
denuded vascular rings from WT mice. Treat- 
ment of endothelial-denuded aortic rings 
from WT mice with 1713-estradiol (E2) for 18 
to 20 hours attenuated constriction to the 
alpha (1B)-adrenergic receptor agonist phen- 
ylephrine (PE) [decrease of 45% and 69%, 
respectively, P < 0.05 for both, (Fig. 1, A 
and B) (5, 21, 22)]. The attenuating effect of 
E2 on PE-induced constriction was partially 
reversed by treatment with the general inhib- 
itor of nitric oxide synthases, N(G)-nitro-L- 
arginine (L-NNA) (Fig. 1A), and with the 

www.sciencemag.org SCIENCE VOL 295 18 JANUARY 2002 www.sciencemag.org SCIENCE VOL 295 18 JANUARY 2002 505 505 



REPORTS 

-8 
PE (log M) 

-'8 -7 -'6 
PE (log M) 

B 

O 

.L 

-6 

-En 

1.4 

1.3 

1.2 

1.1 

1.0 

0.9 

C 

c 

o 

IL 

2.U 
-En 

1.8 

1.6 

1.4 

1.2 

iNOS+/+ 
1.0C 

-8 -7 -6 
PE (log M) 

B -8 -7 -6 -5 
PE (log M) 

E 
iNOS 

C E2 ICI LPS 

200 - 
. .. . -- - _ -INOS 116- .. 

97-. 
66- 

45 - . : .' 

-5 

Fig. 1. Mechanism of estrogen inhibition of endothelial cell-independent 
vasoconstriction in vascular rings from WT mice. Effect of E2 on vascular 
constriction in endothelium-denuded (-En) WT aortic rings. Rings were 
treated with the indicated concentration of PE (closed circles) in the 
absence or presence of E2 (10-8 M) alone (open circles) or E2 + NOS 
inhibitors (triangles) L-NNA (10-4 M, n = 6) (A) or aminoguanidine 
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E2 + inhibitor versus +E2 alone. Vehicle alone versus E2 + AG, P = NS. 
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relatively selective iNOS inhibitor, amino- 
guanidine (Fig. 1B). 

Vasoconstriction was examined in denud- 
ed aortic rings from mice lacking iNOS 
(iNOS-/-) and WT controls (Fig. 1, C and D). 

Treatment of the rings with estrogen attenu- 
ated PE-induced constriction in vascular 
rings from WT animals (21%, P < 0.05). 
This effect was completely prevented by si- 
multaneous treatment of the rings with the 

ER antagonist ICI 182,780 (Fig. 1C). In con- 
trast, E2 failed to attenuate PE-induced con- 
striction in aortic rings from iNOS-/- mice 
(Fig. 1D). These data support the hypothesis 
that E2, acting via estrogen receptors, atten- 
uates vasoconstriction by an iNOS-dependent 
pathway in denuded WT blood vessels. The 
eNOS and neuronal NOS proteins were bare- 
ly detected or undetected in untreated rings, 
and their expression was unaffected by E2 
(Fig. 1E). The iNOS protein also was barely 
detected in untreated rings, but treatment of 
endothelium-denuded rings with E2 led to 
increased accumulation of the 130-kD iNOS 
protein, which was fully inhibited by simul- 
taneous treatment of the rings with the ER 
antagonist ICI-182,780 (Fig. 1E). In primary 
human VSMC transfected with ERp, E2 
treatment caused a 3.3-fold activation of an 
iNOS reporter gene (Fig. 1F). In contrast, E2 
treatment of cells transfected with ERa re- 
sulted in suppression of iNOS reporter activ- 
ity. Transfection of both estrogen receptors 
resulted in an intermediate activation of the 
reporter (Fig. IF). Thus, in normal vessels, 
the estrogen-stimulated increase in iNOS 
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in (24). 

gene transcription appears to be mediated by 
ER3 and antagonized by ERa, and ER3- 
mediated induction of iNOS protein appears 
to attenuate vascular contraction. 

We studied intact and endothelium-de- 
nuded vascular rings from ERP-deficient 
mice [ERPKOcH (8, 23); ERp3KO] and from 
their WT littermates. Contraction and relax- 
ation in response to PE were identical in 
intact vascular rings from ERp3KO mice or 
their WT littermates and were not altered by 
E2 treatment (24). However, endothelial cell- 
independent constriction was altered in vas- 
cular rings from ER3KO mice. Contraction 
of vascular rings from WT littermates of the 
ERp3KO mice was diminished after treatment 
with E2 (15% reduction, P < 0.05) (Fig. 2A), 
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We used the whole-cell patch c 
nique to examine membrane current 
and ERpKO vascular smooth m 

(VSMC). WT VSMC were generally about 
twice as large as the ERpKO cells [WT 41.3 ? 
2.8 picofarads (pf), n = 8; ER,pKO 17.7 ? 1.3 
pf, n = 9], and displayed larger voltage-depen- 
dent, outward currents in response to voltage 
steps (Fig. 3, A through C). Three of eight WT 
cells displayed evidence of inward rectifier po- 

N^'^A tassium channels (Fig. 3A, lower panel), but 
such currents were not observed in ERi3KO 
cells (Fig. 3B, lower panel) (24). Furthermore, 

20 24 after normalization for cell capacitance (and 
thus membrane area), WT cells had a signifi- 
cantly larger outward current density (Fig. 3D). 
The loss of outward current observed could be 
due to loss of either voltage-activated (Kv type), 
or Ca2+ and voltage-activated (BK, type) po- 
tassium channels, both of which have been 
implicated in the control of vasomotor tone 
(24). To test whether ERpKO animals exhibit 
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:helial cell- month-old WT and ERp3KO male mice were 
augmented studied with implantable, telemetric blood pres- 
ly twofold sure monitoring devices. The average blood 
reated WT pressures recorded over an 8-day period in WT 
11-denuded and ERIKO mice were 108 + 2.9 and 120 + 
ce relaxed 9.7 mm-Hg, respectively [n = 5 (24)]. Over 

thelium-in- 24-hour recording periods, both systolic and 

troprusside diastolic blood pressures were increased in 

re leads to ER3KO mice (Fig. 4, A and B), as was mean 

e vasocon- arterial pressure (Fig. 4C). No differences in 

he contrac- heart rate were noted between the ERp3KO 
ular rings. mice and WT littermates (24). In studies of 
:lamp tech- separate ERp3KO animals, blood pressure re- 
s from WT mained elevated for as long as 22 months of age 
uscle cells (25). 
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Our results identify a clear physiologic 
function for ERE3. Estrogen receptors are 
known to regulate a number of genes that 
affect vascular function (5, 26). Multiple 
ERI3-regulated gene products may contrib- 
ute to the abnormal vascular contraction, 
ion channel dysfunction and hypertension 
observed in ERI3KO animals. Our findings 
also support the concept that the transcrip- 
tion factor ERI3 controls expression of 
genes critical to normal vascular physiolo- 
gy in both males and females. Gene targets 
of ERPI in relevant target tissues may pro- 
vide insights into the pathophysiology and 
treatment of hypertension. 
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Alternative Splicing and 

Neuritic mRNA Translocation 

Under Long-Term Neuronal 

Hypersensitivity 
Eran Meshorer.1 Christina Erb,1 Roi Gazit,2 Lev Pavlovsky,3 

Daniela Kaufer,.* Alon Friedman,3 David Glick,1 
Nissim Ben-Arie,2 Hermona Soreq1t 

To explore neuronal mechanisms underlying long-term consequences of stress, 
we studied stress-induced changes in the neuritic translocation of acetylcho- 
linesterase (AChE) splice variants. Under normal conditions, we found the 
synaptic AChE-S mRNA and protein in neurites. Corticosterone, anticholines- 
terases, and forced swim, each facilitated a rapid (minutes), yet long-lasting 
(weeks), shift from AChE-S to the normally rare AChE-R mRNA, promoted 
AChE-R mRNA translocation into neurites, and induced enzyme secretion. 
Weeks after stress, electrophysiological measurements in hippocampus slices 
displayed apparently normal evoked synaptic responses but extreme hyper- 
sensitivity to both anticholinesterases and atropine. Our findings suggest that 
neuronal hypersensitivity under stress involves neuritic replacement of AChE-S 
with AChE-R. 
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Traumatic stress is often followed by long- 
term pathological changes (1, 2). In humans, 
extreme cases of such changes are clinically 
recognized as posttraumatic stress disorder 
(PTSD) (3). Although the immediate re- 
sponse to acute stressful insults has been 
extensively studied, the molecular mecha- 
nisms leading to the long-term neuronal hy- 
persensitivity that is characteristic of PTSD 
are yet unknown. Stimulus-induced changes 
in alternative splicing have recently emerged 
as a major mechanism of neuronal adaptation 
to stress, contributing to the versatility and 
complexity of the expression patterns of the 
human genome (4-6). Another stimulus-in- 
duced post-transcriptional process is dendrit- 
ic mRNA translocation, which has been de- 
scribed for several transcripts (7-12). Be- 
cause psychological, physical, and chemical 
stressors all cause neuronal activation and 
hyperexcitation, dendritic translocation of 
specific target mRNAs may follow. 

Acetylcholinesterase (AChE) modulations 
provide an appropriate case study for explor- 
ing long-term stress effects. Chemical, psy- 
chological, and physical stresses all shift 
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splicing from the primary mRNA product 
that encodes the synaptic membrane AChE-S 
multimeric protein to the normally rare 
"readthrough" AChE-R transcript, which 
yields soluble monomers (13). We thus ex- 
amined neuronal distributions of the two 
splice variants, which have characteristic 3' 
regions (Fig. 1A). A comprehensive search of 
the NCBI GenBank and EST databases re- 
vealed several AChE-S mRNAs but only a 
single AChE-R mRNA of rodent brain origin 
(GenBank accession number X70141), attest- 
ing to the scarcity and/or instability of neu- 
ronal AChE-R mRNA under normal condi- 
tions. To study changes in gene expression at 
the subcellular level, we used double-label 
fluorescence in situ hybridization (FISH) of 
specific AChE mRNA splice variants (14) 
and confocal microscope image analysis. 

FISH detection efficiencies likely depend 
on probe sequences, but subcellular distribu- 
tions can be reliably compared for single 
transcripts in different cells and conditions. 
Cultured PC12 cells (15), primary cultures of 
mouse cerebellar neurons (16), and pyrami- 
dal neurons in paraffin-embedded sections of 
the prefrontal cortex (17) all displayed a 
larger fraction of AChE-S mRNA transcripts 
in neuronal processes than of AChE-R 
mRNA (Fig. 1, B through D). Also, both cell 
types displayed nuclear localization of 
AChE-R but not of AChE-S mRNA (Fig. 1, 
B and C) (18). To test whether labeling prop- 
erties prejudiced this conclusion, we reversed 
the fluorophores on the two probes (Fig. 1, B 
and C). In paraffin-embedded brain sections 
from naive mice, cortical pyramidal neurons 
presented dispersed AChE-S mRNA through- 
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