
sequence of calcium oscillations in the cell 
cycle is to trigger centrosome duplication, 
and in particular we suggest that IP3-depen- 
dent calcium oscillations regulate the initia- 
tion of centrosome duplication through 
CaMKII activation. Consistent with the re- 
quirement for CaMKII to trigger centrosome 
duplication, chelation of calcium in cycling 
Xenopus egg extracts blocks the cell cycle 
before S phase entry, when centrosome du- 
plication starts (13). CaMKII is localized on 
centrosomes (15, 16) and phosphorylates 
several centrosomal proteins in vitro (16). 
These proteins may be candidate substrate(s) 
for initiation of centrosome duplication by 
CaMKII. 
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The germ line of the nematode Caenorhabditis elegans influences life-span; 
when the germ-line precursor cells are removed, life-span is increased dra- 
matically. We find that neither sperm, nor oocytes, nor meiotic precursor cells 
are responsible for this effect. Rather life-span is influenced by the proliferating 
germ-line stem cells. These cells, as well as a downstream transcriptional 
regulator, act in the adult to influence aging, indicating that the aging process 
remains plastic during adulthood. We propose that the germ-line stem cells 
affect life-span by influencing the production of, or the response to, a steroid 
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Killing the germ-line precursor cells, Z2 and 
Z3, extends the life-span of C. elegans by 
-60% (1). This longevity is not a result of 
sterility, because removing the entire repro- 
ductive system (germ line and somatic go- 
nad) has no effect on life-span. In order for 
germ line-ablated animals to live longer than 
normal, they require DAF-12, a nuclear hor- 
mone receptor, and DAF-16, a forkhead-fam- 
ily transcription factor. We found that this 
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effect could be reproduced genetically: mes- 
l(bn7) mutants, which lack germ cells, were 
long lived (Fig. 1A), as were glp-l(q158) 
mutants (Fig. 1B) (2, 3). glp-l encodes the 
receptor for a germ-line proliferation signal 
that is produced by the distal tip cells of the 
somatic gonad (4-7). In glp-1 (q158) mutants, 
Z2 and Z3 generate only a few germ cells, 
which then enter meiosis and differentiate as 
sperm (7). In both mutants, life-span exten- 
sion was suppressed by a daf-16 null muta- 
tion and by ablation of the somatic gonad 
precursor cells (Fig. 1) (8, 9). Many other 
mutants with defective germ-line prolifera- 
tion were also long lived [Web table 1, ex- 
periments A and B (10); (9)]. 

The germ-line precursors are stem cells 
that divide continuously during development. 
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Fig. 1. Life-spans of germ-line mutants. In each graph, A 
experimental and control animals were grown in parallel. 
n, total number of animals observed in each experiment/ daf-16; 
total number of uncensored animals. m, mean adult life- m 
span (days). (-), ablated. P values refer to experimental L 
and control animals in a single experiment. (A) Life-spans 
of germ-line(-) mutants. At 20?C, mes-1(bn7) is 50% o.s 
penetrant; half of the animals have normal germ lines (3). 
mes-l(bn7) fertile, n = 48/38, m = 15.8; sterile, n = , ,- 
48/31, m = 29.8; Z1/Z4(-), n = 52/51, m = 17.2, P < 
0.0001. daf-16(mu86), n = 54/26, m = 14.1; daf- 
16(mu86); mes-l(bn7) sterile, n = 62/22, m = 14.2, P = _ 
0.90. Note that daf-16 mutants are short-lived (25). (B) 20Days 
Life-spans of glp-1(q158) mutants. All of these strains 
contained the dpy-19(e1259) mutation. dpy-19(e1259) 
(control), n = 48/26, m = 21.5; dpy-19(e1259) glp- 
1(q158), intact, n = 95/52, m = 27.4, P ? 0.0001; Empty Gona 
dpy-19(e1259) glp-1(q158), Z2/Z3(-), n = 30/17, m = 
25.3, P = 0.04; dpy-19(e1259) glp-1(q158), Z1/Z4(-), n = 35/34, m = 20.7, P = 0.72. 
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1. 
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As development progresses, germ cells locat- 
ed farthest from the distal tip cells enter 
meiosis and then differentiate into sperm 
(during the L4 stage) or oocytes (during 
adulthood) (6), but a pool of proliferating 
stem cells is maintained well into adulthood 

*(Fig. 2). 
We found that neither sperm nor oocytes are 

required for the germ line to shorten life-span. 
Previously, fem-3(e1996) mutants, which do 
not produce sperm and develop as females, 
were found to have normal life-spans (11). We 
found that three additional female mutants,fog- 
l(q180), fog-2(q71), and fog-3(q470) (12-14), 
also had normal life-spans [Web table 1, exper- 
iments C and D (10)]. In daz-l(tj3) mutants, 
oocyte precursor cells arrest development at 
meiotic prophase and subsequently undergo ap- 
optosis (15). We found that the life-spans of 
daz-1 mutants were similar to those of the wild 
type (Table 1, experiment A). In addition, 
germ-line ablation extended the life-span of 
males, which do not produce oocytes, to the 
same extent as for control hermaphrodites (Ta- 
ble 1, experiment B). 

To determine whether germ-line stem 
cells might influence life-span, we forced 
these cells to exit mitosis and enter meiosis at 
different times using a temperature-sensitive 
allele of glp-l, e2141 (16). Surprisingly, we 
found that inducing this switch by shifting 
glp-l(ts) mutants to the nonpermissive tem- 
perature either during development or in ear- 
ly adulthood (when the animals were already 
producing progeny) extended life-span (Fig. 
2). This demonstrates that germ-line stem 
cells do influence life-span, and that they can 
exert their influence in the adult. The life- 
span increase we observed after shifting L4 
larvae or young adults was smaller than we 
observed after shifting younger animals. 
Thus, germ-line proliferation in the larva may 
also influence life-span. 

We also asked whether excessive germ-line 
proliferation might shorten life-span. We tested 
two mutants in which germ-line stem cells fail 
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Fig. 2. Germ-line stem cells regulate life- 1 glp-1 
span in the adult. The panels show life- o L N2 
spans of glp-1(e2141ts) animals shifted 
from the permissive temperature (20?C) to X 0.5 
nonpermissive temperature (25?C) at dif- .? 
ferent stages. Diagrams represent the germ 
lines of glp-1 animals soon after the shift. 
Yellow circles, germ-line stem cells; violet o ___ 
circles, meiotic cells; green rectangles, oo- o 15 30 Days 
cytes; brown rectangles, sperm; black dots, 'I3S * 
distal tip cells [adapted from (30)]. (A) 
Animals cultured continuously at 20?C. Few germ cells 
Wild type (N2), n = 80/71, m = 19.4; 
glp-1(e2141ts), n = 60/46, m = 19.9, P = 0.24. (B) Animals cultured at 20?C until day 1 of 
adulthood, and then shifted to 25?C. N2, n = 80/57, m = 11.9; glp-1(e2141ts), n = 80/79, m = 
15.0, P s 0.0001. (C) Animals cultured at 20?C until L4 and then shifted to 25?C. N2, n = 
80/64, m = 11.6; glp-1(e2141ts), n = 65/64, m = 13.9, P = 0.008. (D) Animals shifted from 
20?C to 25?C at L2. N2, n = 78/59, m = 13.3; glp-1(e2141ts), n = 80/80, m = 18.6, P c 
0.0001. (E) Animals cultured continuously at 25?C. N2, n = 80/70, m = 11.6; glp-1(e2141ts), 
n = 80/77, m = 17.7, P ' 0.0001. This experiment was repeated twice, yielding similar results 
(9). 
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Table 1. Life-spans of daz-l(tj3) mutants and germ line-ablated males. The animals described in each 
experiment (A and B) were grown in parallel (28, 29). P values are relative to the control animals grown 
in parallel. Life-spans were measured at 20?C. 

Mean life-span No. of animals 
Strain (75th percentile) observed/no. of 

in days uncensored animals 

Experiment A 
Wild type 19.3 (23) 80/71 
daz-l(tj3) 21.0 (26) 65/41 0.080 
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unc-50(e306); him-5(e1490) males 16.4 (23) 52/20 
unc-50(e306); him-5(e1490) males Z2/Z3 (-) 23.9 (33) 42/27 0.008 
unc-50(e306); him-5(e1490) hermaphrodites 15.9 (21) 58/39 
unc-50(e306); him-5(e1490) hermaphrodites 24.0 (30) 65/43 0.0001 
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Fig. 3. Time of action of DAF-16 in germ-line 
regulation of life-span. Panels show the response 
of mes- l1(bn7) fertile and sterile animals to a shift 
from control bacteria (vector only) onto bacteria 
expressing daf-16 dsRNA. daf-16 RNAi bacteria 
were grown on plates containing ampicillin, and 
carried an ampicillin-resistance gene. Bacteria 
carrying the plasmid vector alone were not am- 
picillin resistant. The sterile Mes-1 phenotype 
was assayed using a dissecting microscope. (A) 
mes-1(bn7) mutants grown on bacteria carry- 
ing the plasmid vector. Fertile animals, n = 
70/41, m = 12.5; sterile animals, n = 66/51, 
m = 19.5, P ? 0.0001. (B) mes-1(bn7) grown 
on daf-16 RNAi bacteria. Fertile animals, n = 
67/40, m = 12.9; sterile animals, n = 66/42, 
m = 14.9, P = 0.022. (C) mes-1(bn7) shifted to 
daf- 16 RNAi bacteria at the onset of adulthood. 
Fertile animals, n = 69/47, m = 12.2; sterile 
animals, n = 79/51, m = 14.1, P = 0.036. 

to differentiate and instead overproliferate, glp- 
1(ozll2gf) and gld-1(q485) (17, 18). Both had 
short life-spans [Web table 1, experiments E 
and F (10)], although, in principle, this could 
also be caused by an independent, deleterious 
effect of germ-line overproliferation. 

Because the germ line acts in the adult to 
influence life-span, we also investigated the 
timing of DAF-16 transcription factor func- 
tion. To do this, we reduced daf-16 activity at 
specific times using RNA interference 
(RNAi) (19, 20). We cultured mes-1 mutants 
on bacteria expressing daf-16 double-strand- 
ed RNA either throughout life, or only during 

adulthood, and found that both treatments 
completely suppressed their longevity (Fig. 3, 
B and C). Thus, DAF-16 appears to be re- 
quired specifically in the adult to effect germ- 
line modulation of life-span. 

Many long-lived mutants are resistant to 
heat and oxidative stress (21-24). We found 
that this was also true of germ line-ablated 
animals [Web table 2 (10)]. It is possible that 
resistance to oxidative damage causes lon- 
gevity; alternatively, the germ line could in- 
fluence both stress resistance and longevity 
independently of one another. 

In summary, we have found that the aging 
process of C. elegans is modulated, during 
adulthood, by the activity of germ-line stem 
cells. How might these cells affect aging? 
One possibility is that germ-line proliferation 
shortens life-span by increasing energy ex- 
penditure, channeling resources that could 
otherwise be used for maintaining cellular 
integrity toward growth and reproduction. 
However, there does not appear to be a sim- 
ple trade-off between reproduction (or energy 
expenditure) and aging in this system; for 
example, animals that lack the entire repro- 
ductive system are not long-lived. Another 
possibility is that the role of germ-line stem 
cells is simply to produce more germ-line 
tissue, which then influences life-span re- 
gardless of its state of differentiation. How- 
ever, the gonads of daz-1 mutants have a 
much smaller mass than those of glp-1 mu- 
tants shifted to high temperature as adults, 
because oocyte precursors die instead of be- 
coming large, mature oocytes (15). Yet daz-1 
animals are not long-lived. Therefore the 
germ-line stem cells may be uniquely capable 
of influencing life-span. We propose that 
stem-cell proliferation influences life-span by 
affecting either the production of, or the re- 
sponse to, a steroid hormone ligand for DAF- 
12, which, in turn, promotes longevity. In 
addition, a signal dependent on stem-cell pro- 
liferation must regulate the nuclear localiza- 
tion of DAF-16 in somatic nongonadal tis- 
sues (25). 

Surprisingly, we found that the aging pro- 

cess is subject to modulation by the germ line 
in the adult. It was particularly striking that 
DAF-16 acts exclusively in the adult to me- 
diate germ-line modulation of aging. Consis- 
tent with this, ablating the germ line at hatch- 
ing causes DAF-16 to accumulate in nuclei 
only during adulthood (25). In contrast, when 
life-span is extended by mutations in the 
daf-16-dependent insulin/IGF-1 system, 
DAF-16 accumulates in nuclei throughout 
development and into adulthood (25). 

In conclusion, our findings demonstrate 
that germ-line stem cells preside over two 
fundamental processes in the life cycle of C. 
elegans: reproduction and aging. These cells 
initiate the cascade of germ line develop- 
ment, thereby generating the pool of mature 
gametes, and they also regulate a steroid- 
dependent system that accelerates aging. By 
governing both processes, germ-line stem 
cells may help to coordinate the rate of aging 
with reproduction. Because killing germ-line 
precursor cells in Drosophila melanogaster 
also extends life-span (26), it is possible that 
this system is evolutionarily conserved. 

Note added in proof: While this paper was 
in press, Gerisch et al. (31) reported that the 
germ line may regulate the activity of daf-9, 
which encodes a cytochrome p450 and may 
produce a steroid ligand for daf-12. 
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Abnormal Vascular Function 

and Hypertension in Mice 

Deficient in Estrogen Receptor P 
Yan Zhu,1 Zhao Bian,z23 Ping Lu,1 Richard H. Karas,1 Lin Bao,1 
Daniel Cox,1 Jeffrey Hodgin,4 Philip W. Shaul,5 Peter Thoren,3 
Oliver Smithies,4 Jan-Ake Gustafsson,2 Michael E. Mendelsohn,l* 

Blood vessels express estrogen receptors, but their role in cardiovascular phys- 
iology is not well understood. We show that vascular smooth muscle cells and 
blood vessels from estrogen receptor P (ERpI)-deficient mice exhibit multiple 
functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates 
vasoconstriction by an ERI-mediated increase in inducible nitric oxide synthase 
expression. In contrast, estrogen augments vasoconstriction in blood vessels 
from ERp-deficient mice. Vascular smooth muscle cells isolated from ER3- 
deficient mice show multiple abnormalities of ion channel function. Further- 
more, ERI-deficient mice develop sustained systolic and diastolic hypertension 
as they age. These data support an essential role for ERp in the regulation of 
vascular function and blood pressure. 
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Steroid hormones regulate a wide range of 
cellular events by activating a receptor family 
of transcription factors (1). Estrogens influ- 
ence gene expression, growth, and cellular 
differentiation in target tissues by activating 
one or both of two estrogen receptors, ERa 
and ERP (2, 3). Estrogen receptors have been 
studied intensely in female reproductive 
physiology, but functional estrogen receptors 
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are also present and physiologically impor- 
tant in other tissues of both sexes, including 
the liver, brain, bone, and the cardiovascular 
system (4). 

ERa and ERI both are expressed in vas- 
cular endothelial and smooth muscle cells, 
and in myocardial cells (5). ERI3 expression 
is induced in vascular cells following injury 
(6). Both estrogen receptors are necessary 
and sufficient for estrogen-mediated protec- 
tion against measures of vascular injury in 
mice (7, 8). Estrogen receptors also regulate 
the expression of a number of vasodilator and 
vasoconstrictor proteins, including multiple 
components of the renin-angiotensin system 
(5). An association between an ERI3 gene 
polymorphism and systemic blood pressure 
in postmenopausal Japanese women (9) is the 
only genetic data to implicate estrogen recep- 
tors in blood pressure regulation. 

Vascular tone is regulated by a complex 
set of variables that determine the contractile 
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state of vascular smooth muscle (10, 11). 
Inherited forms of hypertension have been 
shown to involve mutations in genes regulat- 
ing renal salt reabsorption (12), but the patho- 
genesis in most individuals with hypertension 
remains unknown. Both acute and longer 
term changes in vascular tone due to estrogen 
are mediated principally by nitric oxide (5, 
13-15). Endothelial-dependent vascular re- 
laxation is mediated by production of nitric 
oxide (NO) by endothelial nitric oxide syn- 
thase (eNOS) (16). Estrogen enhances pro- 
duction of NO by endothelial cells by in- 
creasing eNOS activity or expression of the 
eNOS gene, or both (17, 18). In vivo, estro- 
gen enhances vasodilatation in both primates 
and humans with normal and abnormal endo- 
thelial function (5, 19, 20). Endothelial cell- 
independent vascular contraction is mediated 
by the direct actions of contractile agonists on 
vessel wall smooth muscle cells (11). Estro- 
gen reduces vasoconstriction in vessels from 
which the endothelium has been removed 
from both humans and wild-type (WT) ani- 
mals (21, 22), an effect that is blocked by 
pharmacologic inhibition of inducible nitric 
oxide synthase (iNOS) (22). To examine the 
role of estrogen receptors in vascular physi- 
ology, the existence of an estrogen effect on 
vasoconstriction was explored in vessels 
from WT mice. 

We studied endothelial cell-independent 
vascular contraction (11, 22) in endothelium- 
denuded vascular rings from WT mice. Treat- 
ment of endothelial-denuded aortic rings 
from WT mice with 1713-estradiol (E2) for 18 
to 20 hours attenuated constriction to the 
alpha (1B)-adrenergic receptor agonist phen- 
ylephrine (PE) [decrease of 45% and 69%, 
respectively, P < 0.05 for both, (Fig. 1, A 
and B) (5, 21, 22)]. The attenuating effect of 
E2 on PE-induced constriction was partially 
reversed by treatment with the general inhib- 
itor of nitric oxide synthases, N(G)-nitro-L- 
arginine (L-NNA) (Fig. 1A), and with the 
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