
REPORTS REPORTS 

long-term electricity harvesting in open systems 
such as sedimentary environments. 

Microbial communities consisting of fer- 
mentative microorganisms and Geobacteraceae 
are capable of degrading complex assemblages 
of organic matter (22). Thus, it seems likely that 
Geobacteraceae could aid in the harvesting of 
energy not only from aquatic sediments and 
subsurface environments, but also from a wide 
variety of organic waste materials. Molecular 
studies have shown that microorganisms in the 
Geobacteraceae are important members of the 
microbial community involved in the anaerobic 
degradation of aromatic hydrocarbons in petro- 
leum-contaminated aquifers (23, 24), but this 
metabolism is often limited by the availability of 
Fe(III) (25). It may be possible to simply use 
electrodes to increase the electron-accepting ca- 
pacity of contaminated sediments and enhance 
bioremediation of the subsurface. Further study 
of the mechanisms for electron transfer from the 
Geobacteraceae to electrodes should aid in de- 
signing strategies to optimize these processes. 

long-term electricity harvesting in open systems 
such as sedimentary environments. 

Microbial communities consisting of fer- 
mentative microorganisms and Geobacteraceae 
are capable of degrading complex assemblages 
of organic matter (22). Thus, it seems likely that 
Geobacteraceae could aid in the harvesting of 
energy not only from aquatic sediments and 
subsurface environments, but also from a wide 
variety of organic waste materials. Molecular 
studies have shown that microorganisms in the 
Geobacteraceae are important members of the 
microbial community involved in the anaerobic 
degradation of aromatic hydrocarbons in petro- 
leum-contaminated aquifers (23, 24), but this 
metabolism is often limited by the availability of 
Fe(III) (25). It may be possible to simply use 
electrodes to increase the electron-accepting ca- 
pacity of contaminated sediments and enhance 
bioremediation of the subsurface. Further study 
of the mechanisms for electron transfer from the 
Geobacteraceae to electrodes should aid in de- 
signing strategies to optimize these processes. 

annealing temperature 51?C. Testing showed 
that only Desulfuromonas and closely related 
Geobacteraceae sequences were amplified from 
environmental samples. These primers were used 
for five-tube MPN-PCR enumerations using DNA 
extracted from three different electrodes. 

13. A dual-chambered fuel cell was constructed using 
54-mm OD (outside diameter) glass tubing and a 
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and cysteine, and by culturing cells using fumarate as 
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rent and voltage measurements were collected with a 
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Immigrants to habitats occupied by conspecific organisms are usually expected 
to be competitively inferior, because residents may be locally adapted. If 
residents are inbred, however, mating between immigrants and residents results 
in offspring that may enjoy a fitness advantage from hybrid vigor. We dem- 
onstrate this effect experimentally in a natural Daphnia metapopulation in 
which genetic bottlenecks and local inbreeding are common. We estimate that 
in this metapopulation, hybrid vigor amplifies the rate of gene flow several 
times more than would be predicted from the nominal migration rate. This can 
affect the persistence of local populations and the entire metapopulation. 
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Gene flow between populations can be both a 
creative and a constraining force in evolution 
(1-3). The introduction of new genetic material 
into a population increases local genetic diver- 
sity and helps the spread of favorable alleles 
across metapopulations. On the other hand, it 
reduces genetic variation between populations 
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and hinders local adaptation. In inbred popula- 
tions, the consequences of migration may be 
particularly important: If the hybrid offspring of 
immigrants and residents are competitively su- 
perior, their hybrid vigor will amplify the gene 
flow caused by migration (4-6). Furthermore, 
the demographic consequences of increased 
vigor could prevent the decline and even the 
extinction of populations (7-12). The magni- 
tude of hybrid vigor is, however, controversial. 
Highly inbred populations may have low genet- 
ic loads because inbreeding exposes recessive 
deleterious alleles to purging by natural selec- 
tion (13-1 7). 

In subdivided populations with local ex- 
tinctions and colonizations, genetic bottle- 
necks can be frequent, leading to increased 
homozygosity (15, 16, 18). If homozygosity 
results in a fitness reduction (inbreeding de- 
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pression), then small amounts of immigration 
can have disproportional effects on the vigor 
and persistence of local populations. This 
will in turn influence the extinction and col- 
onization dynamics of the whole metapopu- 
lation (4-6). 

To test whether hybrid vigor has an effect 
on the genetic structure of local populations, 
we studied the consequences of immigration 
in small populations of the water flea Daph- 
nia magna. This planktonic crustacean occurs 
in various bodies of water, ranging from large 
ponds, with genetically diverse populations, 
to small intermittent pools, characterized by 
low genetic diversity. In our metapopulation, 
D. magna inhabits small pools (0.5 to 20 m2 
and 0.1 to 0.5 m deep) on the rocky banks of 
islands along the Swedish and Finnish Baltic 
Sea coast (19-22). The number of these rock 
pool populations is thought to be larger than 
105, with one to a few hundred pools per 
island. In our study area around Tvairminne in 
southern Finland, local extinction rates are 
about 20% per year, estimated over an 18- 
year study including 507 pools (21, 23). 
About 5% of the empty pools are colonized 
per year, and the proportion of occupied 
pools has remained around 20% since 1983. 
The life cycle of D. magna begins with the 
hatching of females from resting eggs in 
spring, followed by asexual reproduction for 
up to 12 generations. At the end of the sea- 
son, sexual reproduction produces resting 
eggs that survive the winter and also serve as 
dispersal stages. 
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In 1998, a population genetic survey of 96 
D. magna populations with known age indi- 
cated that local populations are often founded 
by a single clone, followed by a population 
increase due to clonal expansion (24). Such 
genetic bottlenecks lead to substantial in- 
breeding during sexual reproduction, which 
is most extreme when a single founder clone 
produces resting eggs by mating with clonal 
brothers and sisters (known as selfing) (25). 
The frequent occurrence of genetic bottle- 
necks makes this metapopulation an ideal site 
to study the impact of local inbreeding on the 
success of immigrants. 

To test whether hybrid vigor occurs in this 
metapopulation, we introduced immigrant 
genotypes into 22 D. magna populations and 
monitored the fate of their outbred offspring 
over one summer season. We chose 22 rock 
pool populations on nine islands in July 1999. 
These rock pools were known to be continu- 
ously inhabited by D. magna for at least 2 
years before the beginning of the study. Of 
the five genetic loci known to be polymor- 
phic in these metapopulations, the 22 studied 
populations were polymorphic at none (12 
populations), one (six populations), or two 
loci (four populations), which is typical of the 
metapopulation. In July 1999, we removed all 
D. magna from these populations and kept 
200 to 500 females from each population 
with minimal selection in the laboratory. To 
remove resting eggs that may have been pro- 
duced earlier in that season, we removed the 
water and most of the soft sediments from the 
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Fig. 1. Frequency changes of hybrids, residents, and inbred immigrants during asexual competition. 
The left plot of each pair of area plots shows frequency changes in the natural rock pools, whereas 
the right plots show changes in the laboratory. The population numbers are given on the right. All 
plots have the samey axis (genotype frequencies ranging from 0 to 1) and x axis (sampling events 
at 0, 60, and 100 days). The first sampling date was between 18 May and 5 June 2000 (depending 
on the emergence of Daphnia from resting eggs), the second between 18 and 21 July 2000, and the 
third on 28 August 2000. Empty places for two of the rock pool area plots and area plots including 
only the first and the second sample indicate extinction of these populations after the first or the 
second sample, respectively. Only 19 of the 22 populations are shown, because populations 4 and 
11 went extinct during the winter and in population 18 only residents were found (sample 
size >300). No hybrids were detected in population 15 and no inbred immigrants in populations 
12, 13, and 22. In all other populations, we found all three offspring types. 

pools. Comparable disturbances occur natu- 
rally in this metapopulation, where storms on 
the Baltic Sea frequently wash out parts of or 
even entire pools (19, 21). We also collected 
22 clones from different pools within the 
study area and propagated them in the labo- 
ratory. These we designated as our experi- 
mental immigrant clones. 

Two weeks later, after rain had refilled the 
pools, we brought 200 individuals of the 
populations back into their original pools and 
added 200 individuals of one immigrant 
clone into each pool (26). In each experimen- 
tal pool, the immigrant clone differed from 
the local clones at at least one allozyme 
marker locus. To avoid bias due to potential 
fitness effects of the genetic markers, we used 
multiple alleles at four loci. The genetic 
markers allowed us to distinguish between 
hybrids, offspring of local residents, and 
selfed offspring of the immigrant clone after 
the populations had undergone one round of 
sexual recombination, i.e., in spring of the 
following year. 

Rock pools were left undisturbed until we 
took the first samples in May 2000. From 
these samples, we genotyped 66 to 122 ani- 
mals and also founded laboratory populations 
using 200 to 300 females each. This was done 
to duplicate the natural rock pool experiment 
under controlled laboratory conditions so that 
we could decouple the effect of inbreeding 
from uncontrolled environmental effects, 
such as the local pool environment, predators, 
and further immigrants from the same or 
other Daphnia species (27). Second and third 
samples were taken from all populations 
about 60 and 100 days after the first samples 
had been collected. 

Our hypothesis was that the outbred off- 
spring would increase in frequency as the 
result of hybrid vigor. Figure 1 shows that 
this was the case in all rock pool popula- 
tions where we recovered hybrids in May 
2000 (all but pool 15). It was also the case 
in 17 of 18 laboratory populations (Fig. 1) 
(28). The changes in genotype frequencies 
in the field and the laboratory were highly 
correlated with each other (r = 0.71 to 0.93 
for the three offspring types, P < 0.002, 
n = 16), and the increase of outbred geno- 
types did not differ significantly among 
them (paired t test: t = 0.52, P = 0.61, n = 
16). Hybrids also increased significantly in 
the time period between the second and the 
third sample (P < 0.01 in the field and the 
laboratory) at a time when genotypes with 
very low fitness (e.g., due to castrating 
homozygous recessive mutations) had al- 
ready been purged. Therefore, the observed 
hybrid vigor is at least partially due to 
deleterious effects of alleles with weak to 
intermediate effect (6, 29). As selection 
against such alleles is weak, they can accu- 
mulate to high frequencies. High genetic 
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loads have been reported for Daphnia (30- 
32). 

We believe that hybrid vigor best explains 
our results, as a number of alternative hypoth- 
eses can be excluded. First, because we used a 
different immigrant clone for each population, 
it is unlikely that all of them carried superior 
alleles (33). Second, although rare genotypes 
could have had an advantage by, for example, 
exploiting unoccupied niches, we rejected this 
hypothesis because hybrids increased in fre- 
quency irrespective of their initial frequencies 
in May 2000 (Fig. 1). Third, although residents 
may suffer from locally adapted predators or 
parasites (34, 35), predators were excluded 
from the laboratory, and the increase of hybrids 
did not differ significantly between populations 
infected with a parasite or not (36). Fourth, 
mating success cannot explain our results (37- 
39) as hybrid success was measured during the 
asexual phase of the Daphnia life cycle. 

One key effect of hybrid vigor is an in- 
crease in effective gene flow (4). We esti- 
mate that 2 years after a natural immigration 
event (where immigrants represent a much 
smaller fraction of the population than in our 
experiments), the effective rate of gene flow 
is about 35 times larger than would be pre- 
dicted by the number of immigrants alone, 
and it will even increase further in the fol- 
lowing years (40). The amount by which 
gene flow is amplified depends on the causes 
and magnitude of hybrid vigor. It may be 
much smaller in genetically more diverse 
Daphnia populations but may be high in oth- 
er systems characterized by frequent extinc- 
tions and recolonizations. 

Amplified gene flow caused by hybrid 
vigor may account for lower observed levels 
of population differentiation than predicted 
by models based on neutral effects (4, 6, 
41-43) and may influence the evolution of 
dispersal (44). An important effect of hybrid 
vigor is the "genetic rescue" of populations 
from extinction, because it may influence 
extinction and colonization dynamics of the 
whole metapopulation (5). Although we did 
not show a link between population persis- 
tence and inbreeding depression, such a rela- 
tion has been shown before (9, 11, 12) and is 
likely to apply to Daphnia metapopulations 
as well. In this light, gene flow is an essential 
component for the persistence of metapopu- 
lations. Thus, our study gives clear empirical 
support for the need to maintain gene flow in 
the management and conservation of subdi- 
vided populations. 
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The separate components of nucleocytoplasmic transport have been well charac- 
terized, including the key regulatory role of Ran, a guanine nucleotide triphos- 
phatase. However, the overall system behavior in intact cells is difficult to analyze 
because the dynamics of these components are interdependent. We used a com- 
bined experimental and computational approach to study Ran transport in vivo. The 
resulting model provides the first quantitative picture of Ran flux between the 
nuclear and cytoplasmic compartments in eukaryotic cells. The model predicts 
that the Ran exchange factor RCC1, and not the flux capacity of the nuclear pore 
complex (NPC), is the crucial regulator of steady-state flux across the NPC. 
Moreover, it provides the first estimate of the total in vivo flux (520 molecules 
per NPC per second and predicts that the transport system is robust. 
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In vitro studies of nucleocytoplasmic trans- 
port estimate a maximum rate of -103 trans- 
location events NPC-' s-' (1). In the intact 
cell, however, steady-state flux rates might be 
a fraction of this value. To determine what 
factors contribute most toward the overall 
regulation of flux, we needed to integrate at a 
systems level the data for all the independent 
transport steps. This process required compu- 
tational analysis. Cargo is shuttled through 
the NPC as a cargo-carrier complex, and a 
lower limit for cargo flux can be approximat- 
ed if the steady-state flux of Ran is known, 
because at least one molecule of Ran is trans- 
located in each direction for each complete 
cycle of carrier and cargo transport. We 
therefore used experimental and computa- 
tional methods to estimate the steady-state 
flux rate for Ran in intact cells and to identify 
factors that most contribute to the global 
regulation of Ran transport. 

We constructed a mathematical model of 
the Ran transport system in a mammalian cell 
using a modeling program called Virtual Cell 
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partments were calculated as the product of a 
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scribing facilitated diffusion by the transport 
carriers. Passive diffusion of Ran through the 
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NPC was also incorporated. For the Ran 
transport cycle, reported data constrained the 
parameter values of reversible binding inter- 
actions and enzyme-mediated reactions (4- 
10) [Web table 1 and Web fig. 1 (11)]. All 
simulation results were obtained with the 
same parameter set, except where explicitly 
indicated. 

For visualization of Ran import into the 
intact cell, the recombinant protein was mod- 
ified with a fluorescent maleimide and was 
determined by several criteria to be function- 
al [Web fig. 2 (11)]. This tagged Ran species 
(FL-Ran) in the model allowed direct com- 
parisons of the simulation and experimental 
results. FL-Ran was injected into the cytosol 
of BHK-21 cells and imaged (at 0.5-s inter- 
vals) until nuclear accumulation reached a 
steady state (Fig. 1A) (12). Nuclear fluores- 
cence intensities were converted to units of 
concentration by comparison to known stan- 
dards (12). Import occurred with single ex- 
ponential kinetics and reached a steady state 
within 12 to 30 s (at 23?C) (Fig. 1B) [Web 
fig. 3A (11)]. 
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Fig. 1. Nucleocytoplasmic transport of FL-Ran in vivo. (A) Nuclear accumulation of FL-Ran in 
BHK-21 cells after cytosolic injection. (B) Comparison of time courses of nuclear accumulation for 
wild-type FL-Ran (initial cytosolic concentration = 7.8 pilM) and T24N (initial cytosolic concen- 
tration = 9.0 pJ.M). (C) Fluorescence loss in photobleaching on FL-Ran at steady state in 
microinjected BHK-21 cells. Graph shows remaining nuclear fluorescence intensity after each 
photobleaching cycle. 
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