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During the last decade, the neutral N4 mole- 
cule has been the subject of intense and sus- 
tained theoretical scrutiny, aimed at evaluat- 
ing the structure, stability, and properties of 
this experimentally unknown species (1-13). 
Apart from the molecule's fundamental sig- 
nificance, such unusual interest is motivated 
by the potential of N4 as a "pure" high-energy 
density material. Theory predicts that, where- 
as certain N4 isomers, such as tetraazatetra- 
hedrane, are metastable and long lived, their 
dissociation into two environmentally benign 
N2 molecules is very exothermic, releasing 
about 800 kJ mol- (7, 10-12). 

Despite the considerable help provided by 
the theoretical identification and character- 
ization of the target species, preparing and 
detecting N4 has posed a formidable chal- 
lenge to experimentalists. None of the sug- 
gested routes, involving the combination of a 
nitrogen atom with an N3' radical, binding of 
two excited N2 (A3]u+) molecules, and N4 
extrusion from larger, polycyclic molecules, 
proved viable (14). 

Here, we report the preparation, positive 
detection, and characterization as a long- 
lived gaseous species of an N4 molecule ob- 
tained by a different approach-the one-elec- 
tron reduction of the gaseous N4+ cation by 
neutralization-reionization (NR)-mass spec- 
trometry (15-17). We have used this tech- 
nique effectively for the preparation and de- 
tection of other elusive species, including 
HO3 (18), the [H2O+ 02-] charge-transfer 
complex (19), and 04 (20). 

The charged precursor chosen, N4+, is 
long known and thoroughly characterized as 
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a result of mass spectrometric (21, 22), ma- 
trix isolation (23, 24), spectroscopic (25, 26), 
and theoretical studies (23, 27-31), motivated 
by its role in N2 plasmas and in stratospheric 
chemistry. Ground-state and excited N4+ 
ions are conveniently obtained by electron 
bombardment of N2 (32). Our experimental 
approach was as follows. The N4+ ions 
formed in the chemical ionization (CI) source 
of a multisector mass spectrometer of EBE- 
TOF configuration (where E stands for elec- 
trostatic, B for magnetic sectors, and TOF for 
an orthogonal time-of-flight analyzer) were 
accelerated to 4 to 8 kV and mass selected. 
The N4+ ions underwent two consecutive 
collision events in the two separate cells lo- 
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of the flight time from the neutralization to 
the reionization cell, i.e, -1 tJs. 

Structural insight is provided by the iso- 
topic composition of the N2+ fragments dis- 
played by the NR spectra that can originate 
only from the uncharged species formed in 
the neutralization and/or in the reionization 
process. As expected, 14N4 gives only 14N2+, 
and 15N4 gives only '5N2+, but 14N215N2 
gives equal amounts of '4N2+ and 15N2+, 
without detectable formation of the isotopi- 
cally mixed 14N'5N+ fragment. This pattern 
strongly suggests that the N4 molecule con- 
tains two distinct N2 units that maintain their 
identity without exchanging their constituent 
atoms and that the four N atoms of N4 are 
inequivalent. 

As to the structure of the N4 species 
detected, and its identification with one of 
the theoretically predicted isomers, useful 
criteria are provided by the intrinsic fea- 
tures of NR spectrometry. Detection of a 
neutral species can occur only if its disso- 
ciation requires overcoming a sizeable bar- 
rier, on the order of 40 kJ mol-~ (15-17), 
and the vertical character of the neutraliza- 
tion process allows survival of the neutral 
molecule only if its geometry is not signif- 
icantly different from that of the parent ion 
(the transition displays adequate Franck- 
Condon factors). 
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Experimental Detection of 

Tetranitrogen 
F. Cacace,* G. de Petris, A. Troiani 

Tetranitrogen (N4), which has been the subject of great theoretical interest, has 
been prepared from the N4+ cation and positively detected as a gaseous metastable 
molecule with a lifetime exceeding 1 microsecond in experiments based on neu- 
tralization-reionization mass spectrometry. An examination of the geometry of 
N4+ and the fragmentation pattern of the '4N2,15N neutral molecule has 
revealed that the latter is characterized by an open-chain geometry with two 
distinct, closely bound N2 units joined by a longer weaker bond. 
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Fig. 1. (A) +NR+ spectra of 14N4+ (a), 14N215 N2 (b), and 15N4+ ions (c). Neutralizing gas was CH4, reionization gas, O., kinetic energy 6 kV (a and 
c), 8 kV (b). The "recovery" peaks are indicated by the arrows. (B) CAD spectra of 4N4 (a), 4N25N (b), and 1N4+ (c) ions. Collisions took place 
in He gas at a kinetic energy of 8 kV. 

However, this complication has little bearing 
on the present discussion, because recent the- 
oretical calculations show that N4+(4A') has 
the same connectivity as ground-state N4+ 
and is also characterized by two closely 
bound N2 units joined by a longer, weaker 
bond (32). 

Based on the above criteria, we can ex- 
clude the idea that the N4 molecule detected 
is a (N2)2 van der Waals complex, whose 
barrier to dissociation is far too low (33), or 
that it is tetraazatetrahedrane, N4 (Td), a sin- 
glet containing equivalent N atoms (7, 10- 
12). The fragmentation of the N4 (T4) 
14N215N2 isotopomer would be expected to 
give an abundant 14N'5N+ peak, which was 
not detected in the NR spectrum. By contrast, 
the rectangular N4 (D2h) singlet contains two 
distinct N2 units (7, 10-12), consistent with 
the fragmentation pattern observed in the NR 
spectrum of 14N215N2. However, the N4 
(D2h) geometry is too different from that of 
the N4+ parent, and its formation by neutral- 
ization of the cation would be prevented by 
unfavorable Franck-Condon factors. Among 
the theoretically identified isomers, the open- 
chain N4 (3A") triplet of Cs symmetry, pre- 
dicted to be experimentally detectable under 
certain conditions (7, 10-12), appears to be 
the most likely candidate, with regard to both 
its structural relationship with the parent cat- 
ion and the fragmentation pattern displayed 
by the NR spectra. However, such a tentative 
assignment does not exclude the existence of 
other isomers, such as tetraazatetrahedrane, 
that cannot be prepared by the NR technique 
because of the different geometry of the 
available charged precursors. Moreover, the 
accurate evaluation of the stability of the N4 
isomers, and especially of the barriers to their 
dissociation, proved a difficult task even us- 

ing state-of-the-art computational methods. 
We hope the present study, which shows that 
an N4 species is kinetically sufficiently stable 
for experimental observation, will encourage 
further theoretical analysis of the system. 

We have positively demonstrated the ex- 
istence of the tetranitrogen molecule, N4, as a 
metastable species whose lifetime, in the iso- 
lated gas state, exceeds 1 ,us at 298 K. The 
identification of N4 represents the first addi- 
tion in nearly half a century to the family of 
polynitrogen molecules, which now includes 
just three members, namely N2 (by Priestley), 
N3' (by Thrush), and N4 (detailed in this 
report), discovered in 1772, 1956, and 2001, 
respectively (34, 35). Such slow progress is a 
testament to the great experimental difficul- 
ties encountered in extending the Nn series 
beyond N2 and also to the value of the NR 
technique for the positive identification of 
otherwise inaccessible species. 
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